#!/usr/bin/env python # processing.py -- various audio processing functions # Copyright (C) 2008 MUSIC TECHNOLOGY GROUP (MTG) # UNIVERSITAT POMPEU FABRA # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see . # # Authors: # Bram de Jong # 2012, Joar Wandborg import Image, ImageDraw, ImageColor #@UnresolvedImport from functools import partial import math import numpy import os import re import signal def get_sound_type(input_filename): sound_type = os.path.splitext(input_filename.lower())[1].strip(".") if sound_type == "fla": sound_type = "flac" elif sound_type == "aif": sound_type = "aiff" return sound_type try: import scikits.audiolab as audiolab except ImportError: print "WARNING: audiolab is not installed so wav2png will not work" import subprocess class AudioProcessingException(Exception): pass class TestAudioFile(object): """A class that mimics audiolab.sndfile but generates noise instead of reading a wave file. Additionally it can be told to have a "broken" header and thus crashing in the middle of the file. Also useful for testing ultra-short files of 20 samples.""" def __init__(self, num_frames, has_broken_header=False): self.seekpoint = 0 self.nframes = num_frames self.samplerate = 44100 self.channels = 1 self.has_broken_header = has_broken_header def seek(self, seekpoint): self.seekpoint = seekpoint def read_frames(self, frames_to_read): if self.has_broken_header and self.seekpoint + frames_to_read > self.num_frames / 2: raise RuntimeError() num_frames_left = self.num_frames - self.seekpoint will_read = num_frames_left if num_frames_left < frames_to_read else frames_to_read self.seekpoint += will_read return numpy.random.random(will_read)*2 - 1 def get_max_level(filename): max_value = 0 buffer_size = 4096 audio_file = audiolab.Sndfile(filename, 'r') n_samples_left = audio_file.nframes while n_samples_left: to_read = min(buffer_size, n_samples_left) try: samples = audio_file.read_frames(to_read) except RuntimeError: # this can happen with a broken header break # convert to mono by selecting left channel only if audio_file.channels > 1: samples = samples[:,0] max_value = max(max_value, numpy.abs(samples).max()) n_samples_left -= to_read audio_file.close() return max_value class AudioProcessor(object): """ The audio processor processes chunks of audio an calculates the spectrac centroid and the peak samples in that chunk of audio. """ def __init__(self, input_filename, fft_size, window_function=numpy.hanning): max_level = get_max_level(input_filename) self.audio_file = audiolab.Sndfile(input_filename, 'r') self.fft_size = fft_size self.window = window_function(self.fft_size) self.spectrum_range = None self.lower = 100 self.higher = 22050 self.lower_log = math.log10(self.lower) self.higher_log = math.log10(self.higher) self.clip = lambda val, low, high: min(high, max(low, val)) # figure out what the maximum value is for an FFT doing the FFT of a DC signal fft = numpy.fft.rfft(numpy.ones(fft_size) * self.window) max_fft = (numpy.abs(fft)).max() # set the scale to normalized audio and normalized FFT self.scale = 1.0/max_level/max_fft if max_level > 0 else 1 def read(self, start, size, resize_if_less=False): """ read size samples starting at start, if resize_if_less is True and less than size samples are read, resize the array to size and fill with zeros """ # number of zeros to add to start and end of the buffer add_to_start = 0 add_to_end = 0 if start < 0: # the first FFT window starts centered around zero if size + start <= 0: return numpy.zeros(size) if resize_if_less else numpy.array([]) else: self.audio_file.seek(0) add_to_start = -start # remember: start is negative! to_read = size + start if to_read > self.audio_file.nframes: add_to_end = to_read - self.audio_file.nframes to_read = self.audio_file.nframes else: self.audio_file.seek(start) to_read = size if start + to_read >= self.audio_file.nframes: to_read = self.audio_file.nframes - start add_to_end = size - to_read try: samples = self.audio_file.read_frames(to_read) except RuntimeError: # this can happen for wave files with broken headers... return numpy.zeros(size) if resize_if_less else numpy.zeros(2) # convert to mono by selecting left channel only if self.audio_file.channels > 1: samples = samples[:,0] if resize_if_less and (add_to_start > 0 or add_to_end > 0): if add_to_start > 0: samples = numpy.concatenate((numpy.zeros(add_to_start), samples), axis=1) if add_to_end > 0: samples = numpy.resize(samples, size) samples[size - add_to_end:] = 0 return samples def spectral_centroid(self, seek_point, spec_range=110.0): """ starting at seek_point read fft_size samples, and calculate the spectral centroid """ samples = self.read(seek_point - self.fft_size/2, self.fft_size, True) samples *= self.window fft = numpy.fft.rfft(samples) spectrum = self.scale * numpy.abs(fft) # normalized abs(FFT) between 0 and 1 length = numpy.float64(spectrum.shape[0]) # scale the db spectrum from [- spec_range db ... 0 db] > [0..1] db_spectrum = ((20*(numpy.log10(spectrum + 1e-60))).clip(-spec_range, 0.0) + spec_range)/spec_range energy = spectrum.sum() spectral_centroid = 0 if energy > 1e-60: # calculate the spectral centroid if self.spectrum_range == None: self.spectrum_range = numpy.arange(length) spectral_centroid = (spectrum * self.spectrum_range).sum() / (energy * (length - 1)) * self.audio_file.samplerate * 0.5 # clip > log10 > scale between 0 and 1 spectral_centroid = (math.log10(self.clip(spectral_centroid, self.lower, self.higher)) - self.lower_log) / (self.higher_log - self.lower_log) return (spectral_centroid, db_spectrum) def peaks(self, start_seek, end_seek): """ read all samples between start_seek and end_seek, then find the minimum and maximum peak in that range. Returns that pair in the order they were found. So if min was found first, it returns (min, max) else the other way around. """ # larger blocksizes are faster but take more mem... # Aha, Watson, a clue, a tradeof! block_size = 4096 max_index = -1 max_value = -1 min_index = -1 min_value = 1 if start_seek < 0: start_seek = 0 if end_seek > self.audio_file.nframes: end_seek = self.audio_file.nframes if end_seek <= start_seek: samples = self.read(start_seek, 1) return (samples[0], samples[0]) if block_size > end_seek - start_seek: block_size = end_seek - start_seek for i in range(start_seek, end_seek, block_size): samples = self.read(i, block_size) local_max_index = numpy.argmax(samples) local_max_value = samples[local_max_index] if local_max_value > max_value: max_value = local_max_value max_index = local_max_index local_min_index = numpy.argmin(samples) local_min_value = samples[local_min_index] if local_min_value < min_value: min_value = local_min_value min_index = local_min_index return (min_value, max_value) if min_index < max_index else (max_value, min_value) def interpolate_colors(colors, flat=False, num_colors=256): """ given a list of colors, create a larger list of colors interpolating the first one. If flatten is True a list of numers will be returned. If False, a list of (r,g,b) tuples. num_colors is the number of colors wanted in the final list """ palette = [] for i in range(num_colors): index = (i * (len(colors) - 1))/(num_colors - 1.0) index_int = int(index) alpha = index - float(index_int) if alpha > 0: r = (1.0 - alpha) * colors[index_int][0] + alpha * colors[index_int + 1][0] g = (1.0 - alpha) * colors[index_int][1] + alpha * colors[index_int + 1][1] b = (1.0 - alpha) * colors[index_int][2] + alpha * colors[index_int + 1][2] else: r = (1.0 - alpha) * colors[index_int][0] g = (1.0 - alpha) * colors[index_int][1] b = (1.0 - alpha) * colors[index_int][2] if flat: palette.extend((int(r), int(g), int(b))) else: palette.append((int(r), int(g), int(b))) return palette def desaturate(rgb, amount): """ desaturate colors by amount amount == 0, no change amount == 1, grey """ luminosity = sum(rgb) / 3.0 desat = lambda color: color - amount * (color - luminosity) return tuple(map(int, map(desat, rgb))) class WaveformImage(object): """ Given peaks and spectral centroids from the AudioProcessor, this class will construct a wavefile image which can be saved as PNG. """ def __init__(self, image_width, image_height, palette=1): if image_height % 2 == 0: raise AudioProcessingException, "Height should be uneven: images look much better at uneven height" if palette == 1: background_color = (0,0,0) colors = [ (50,0,200), (0,220,80), (255,224,0), (255,70,0), ] elif palette == 2: background_color = (0,0,0) colors = [self.color_from_value(value/29.0) for value in range(0,30)] elif palette == 3: background_color = (213, 217, 221) colors = map( partial(desaturate, amount=0.7), [ (50,0,200), (0,220,80), (255,224,0), ]) elif palette == 4: background_color = (213, 217, 221) colors = map( partial(desaturate, amount=0.8), [self.color_from_value(value/29.0) for value in range(0,30)]) self.image = Image.new("RGB", (image_width, image_height), background_color) self.image_width = image_width self.image_height = image_height self.draw = ImageDraw.Draw(self.image) self.previous_x, self.previous_y = None, None self.color_lookup = interpolate_colors(colors) self.pix = self.image.load() def color_from_value(self, value): """ given a value between 0 and 1, return an (r,g,b) tuple """ return ImageColor.getrgb("hsl(%d,%d%%,%d%%)" % (int( (1.0 - value) * 360 ), 80, 50)) def draw_peaks(self, x, peaks, spectral_centroid): """ draw 2 peaks at x using the spectral_centroid for color """ y1 = self.image_height * 0.5 - peaks[0] * (self.image_height - 4) * 0.5 y2 = self.image_height * 0.5 - peaks[1] * (self.image_height - 4) * 0.5 line_color = self.color_lookup[int(spectral_centroid*255.0)] if self.previous_y != None: self.draw.line([self.previous_x, self.previous_y, x, y1, x, y2], line_color) else: self.draw.line([x, y1, x, y2], line_color) self.previous_x, self.previous_y = x, y2 self.draw_anti_aliased_pixels(x, y1, y2, line_color) def draw_anti_aliased_pixels(self, x, y1, y2, color): """ vertical anti-aliasing at y1 and y2 """ y_max = max(y1, y2) y_max_int = int(y_max) alpha = y_max - y_max_int if alpha > 0.0 and alpha < 1.0 and y_max_int + 1 < self.image_height: current_pix = self.pix[x, y_max_int + 1] r = int((1-alpha)*current_pix[0] + alpha*color[0]) g = int((1-alpha)*current_pix[1] + alpha*color[1]) b = int((1-alpha)*current_pix[2] + alpha*color[2]) self.pix[x, y_max_int + 1] = (r,g,b) y_min = min(y1, y2) y_min_int = int(y_min) alpha = 1.0 - (y_min - y_min_int) if alpha > 0.0 and alpha < 1.0 and y_min_int - 1 >= 0: current_pix = self.pix[x, y_min_int - 1] r = int((1-alpha)*current_pix[0] + alpha*color[0]) g = int((1-alpha)*current_pix[1] + alpha*color[1]) b = int((1-alpha)*current_pix[2] + alpha*color[2]) self.pix[x, y_min_int - 1] = (r,g,b) def save(self, filename): # draw a zero "zero" line a = 25 for x in range(self.image_width): self.pix[x, self.image_height/2] = tuple(map(lambda p: p+a, self.pix[x, self.image_height/2])) self.image.save(filename) class SpectrogramImage(object): """ Given spectra from the AudioProcessor, this class will construct a wavefile image which can be saved as PNG. """ def __init__(self, image_width, image_height, fft_size): self.image_width = image_width self.image_height = image_height self.fft_size = fft_size self.image = Image.new("RGBA", (image_height, image_width)) colors = [ (0, 0, 0, 0), (58/4, 68/4, 65/4, 255), (80/2, 100/2, 153/2, 255), (90, 180, 100, 255), (224, 224, 44, 255), (255, 60, 30, 255), (255, 255, 255, 255) ] self.palette = interpolate_colors(colors) # generate the lookup which translates y-coordinate to fft-bin self.y_to_bin = [] f_min = 100.0 f_max = 22050.0 y_min = math.log10(f_min) y_max = math.log10(f_max) for y in range(self.image_height): freq = math.pow(10.0, y_min + y / (image_height - 1.0) *(y_max - y_min)) bin = freq / 22050.0 * (self.fft_size/2 + 1) if bin < self.fft_size/2: alpha = bin - int(bin) self.y_to_bin.append((int(bin), alpha * 255)) # this is a bit strange, but using image.load()[x,y] = ... is # a lot slower than using image.putadata and then rotating the image # so we store all the pixels in an array and then create the image when saving self.pixels = [] def draw_spectrum(self, x, spectrum): # for all frequencies, draw the pixels for (index, alpha) in self.y_to_bin: self.pixels.append( self.palette[int((255.0-alpha) * spectrum[index] + alpha * spectrum[index + 1])] ) # if the FFT is too small to fill up the image, fill with black to the top for y in range(len(self.y_to_bin), self.image_height): #@UnusedVariable self.pixels.append(self.palette[0]) def save(self, filename, quality=80): assert filename.lower().endswith(".jpg") self.image.putdata(self.pixels) self.image.transpose(Image.ROTATE_90).save(filename, quality=quality) def create_wave_images(input_filename, output_filename_w, output_filename_s, image_width, image_height, fft_size, progress_callback=None): """ Utility function for creating both wavefile and spectrum images from an audio input file. """ processor = AudioProcessor(input_filename, fft_size, numpy.hanning) samples_per_pixel = processor.audio_file.nframes / float(image_width) waveform = WaveformImage(image_width, image_height) spectrogram = SpectrogramImage(image_width, image_height, fft_size) for x in range(image_width): if progress_callback and x % (image_width/10) == 0: progress_callback((x*100)/image_width) seek_point = int(x * samples_per_pixel) next_seek_point = int((x + 1) * samples_per_pixel) (spectral_centroid, db_spectrum) = processor.spectral_centroid(seek_point) peaks = processor.peaks(seek_point, next_seek_point) waveform.draw_peaks(x, peaks, spectral_centroid) spectrogram.draw_spectrum(x, db_spectrum) if progress_callback: progress_callback(100) waveform.save(output_filename_w) spectrogram.save(output_filename_s) class NoSpaceLeftException(Exception): pass def convert_to_pcm(input_filename, output_filename): """ converts any audio file type to pcm audio """ if not os.path.exists(input_filename): raise AudioProcessingException, "file %s does not exist" % input_filename sound_type = get_sound_type(input_filename) if sound_type == "mp3": cmd = ["lame", "--decode", input_filename, output_filename] elif sound_type == "ogg": cmd = ["oggdec", input_filename, "-o", output_filename] elif sound_type == "flac": cmd = ["flac", "-f", "-d", "-s", "-o", output_filename, input_filename] else: return False process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = process.communicate() if process.returncode != 0 or not os.path.exists(output_filename): if "No space left on device" in stderr + " " + stdout: raise NoSpaceLeftException raise AudioProcessingException, "failed converting to pcm data:\n" + " ".join(cmd) + "\n" + stderr + "\n" + stdout return True def stereofy_and_find_info(stereofy_executble_path, input_filename, output_filename): """ converts a pcm wave file to two channel, 16 bit integer """ if not os.path.exists(input_filename): raise AudioProcessingException, "file %s does not exist" % input_filename cmd = [stereofy_executble_path, "--input", input_filename, "--output", output_filename] process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = process.communicate() if process.returncode != 0 or not os.path.exists(output_filename): if "No space left on device" in stderr + " " + stdout: raise NoSpaceLeftException raise AudioProcessingException, "failed calling stereofy data:\n" + " ".join(cmd) + "\n" + stderr + "\n" + stdout stdout = (stdout + " " + stderr).replace("\n", " ") duration = 0 m = re.match(r".*#duration (?P[\d\.]+).*", stdout) if m != None: duration = float(m.group("duration")) channels = 0 m = re.match(r".*#channels (?P\d+).*", stdout) if m != None: channels = float(m.group("channels")) samplerate = 0 m = re.match(r".*#samplerate (?P\d+).*", stdout) if m != None: samplerate = float(m.group("samplerate")) bitdepth = None m = re.match(r".*#bitdepth (?P\d+).*", stdout) if m != None: bitdepth = float(m.group("bitdepth")) bitrate = (os.path.getsize(input_filename) * 8.0) / 1024.0 / duration if duration > 0 else 0 return dict(duration=duration, channels=channels, samplerate=samplerate, bitrate=bitrate, bitdepth=bitdepth) def convert_to_mp3(input_filename, output_filename, quality=70): """ converts the incoming wave file to a mp3 file """ if not os.path.exists(input_filename): raise AudioProcessingException, "file %s does not exist" % input_filename command = ["lame", "--silent", "--abr", str(quality), input_filename, output_filename] process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = process.communicate() if process.returncode != 0 or not os.path.exists(output_filename): raise AudioProcessingException, stdout def convert_to_ogg(input_filename, output_filename, quality=1): """ converts the incoming wave file to n ogg file """ if not os.path.exists(input_filename): raise AudioProcessingException, "file %s does not exist" % input_filename command = ["oggenc", "-q", str(quality), input_filename, "-o", output_filename] process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = process.communicate() if process.returncode != 0 or not os.path.exists(output_filename): raise AudioProcessingException, stdout def convert_using_ffmpeg(input_filename, output_filename): """ converts the incoming wave file to stereo pcm using fffmpeg """ TIMEOUT = 3 * 60 def alarm_handler(signum, frame): raise AudioProcessingException, "timeout while waiting for ffmpeg" if not os.path.exists(input_filename): raise AudioProcessingException, "file %s does not exist" % input_filename command = ["ffmpeg", "-y", "-i", input_filename, "-ac","1","-acodec", "pcm_s16le", "-ar", "44100", output_filename] process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) signal.signal(signal.SIGALRM,alarm_handler) signal.alarm(TIMEOUT) (stdout, stderr) = process.communicate() signal.alarm(0) if process.returncode != 0 or not os.path.exists(output_filename): raise AudioProcessingException, stdout