/* $Cambridge: exim/src/src/pcre/pcre_printint.c,v 1.2 2005/08/08 10:22:14 ph10 Exp $ */ /************************************************* * Perl-Compatible Regular Expressions * *************************************************/ /* PCRE is a library of functions to support regular expressions whose syntax and semantics are as close as possible to those of the Perl 5 language. Written by Philip Hazel Copyright (c) 1997-2005 University of Cambridge ----------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of Cambridge nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ----------------------------------------------------------------------------- */ /* This module contains an PCRE private debugging function for printing out the internal form of a compiled regular expression, along with some supporting local functions. */ #include "pcre_internal.h" static const char *OP_names[] = { OP_NAME_LIST }; /************************************************* * Print single- or multi-byte character * *************************************************/ static int print_char(FILE *f, uschar *ptr, BOOL utf8) { int c = *ptr; if (!utf8 || (c & 0xc0) != 0xc0) { if (isprint(c)) fprintf(f, "%c", c); else fprintf(f, "\\x%02x", c); return 0; } else { int i; int a = _pcre_utf8_table4[c & 0x3f]; /* Number of additional bytes */ int s = 6*a; c = (c & _pcre_utf8_table3[a]) << s; for (i = 1; i <= a; i++) { /* This is a check for malformed UTF-8; it should only occur if the sanity check has been turned off. Rather than swallow random bytes, just stop if we hit a bad one. Print it with \X instead of \x as an indication. */ if ((ptr[i] & 0xc0) != 0x80) { fprintf(f, "\\X{%x}", c); return i - 1; } /* The byte is OK */ s -= 6; c |= (ptr[i] & 0x3f) << s; } if (c < 128) fprintf(f, "\\x%02x", c); else fprintf(f, "\\x{%x}", c); return a; } } /************************************************* * Find Unicode property name * *************************************************/ static const char * get_ucpname(int property) { #ifdef SUPPORT_UCP int i; for (i = _pcre_utt_size; i >= 0; i--) { if (property == _pcre_utt[i].value) break; } return (i >= 0)? _pcre_utt[i].name : "??"; #else return "??"; #endif } /************************************************* * Print compiled regex * *************************************************/ /* Make this function work for a regex with integers either byte order. However, we assume that what we are passed is a compiled regex. */ EXPORT void _pcre_printint(pcre *external_re, FILE *f) { real_pcre *re = (real_pcre *)external_re; uschar *codestart, *code; BOOL utf8; unsigned int options = re->options; int offset = re->name_table_offset; int count = re->name_count; int size = re->name_entry_size; if (re->magic_number != MAGIC_NUMBER) { offset = ((offset << 8) & 0xff00) | ((offset >> 8) & 0xff); count = ((count << 8) & 0xff00) | ((count >> 8) & 0xff); size = ((size << 8) & 0xff00) | ((size >> 8) & 0xff); options = ((options << 24) & 0xff000000) | ((options << 8) & 0x00ff0000) | ((options >> 8) & 0x0000ff00) | ((options >> 24) & 0x000000ff); } code = codestart = (uschar *)re + offset + count * size; utf8 = (options & PCRE_UTF8) != 0; for(;;) { uschar *ccode; int c; int extra = 0; fprintf(f, "%3d ", (int)(code - codestart)); if (*code >= OP_BRA) { if (*code - OP_BRA > EXTRACT_BASIC_MAX) fprintf(f, "%3d Bra extra\n", GET(code, 1)); else fprintf(f, "%3d Bra %d\n", GET(code, 1), *code - OP_BRA); code += _pcre_OP_lengths[OP_BRA]; continue; } switch(*code) { case OP_END: fprintf(f, " %s\n", OP_names[*code]); fprintf(f, "------------------------------------------------------------------\n"); return; case OP_OPT: fprintf(f, " %.2x %s", code[1], OP_names[*code]); break; case OP_CHAR: { fprintf(f, " "); do { code++; code += 1 + print_char(f, code, utf8); } while (*code == OP_CHAR); fprintf(f, "\n"); continue; } break; case OP_CHARNC: { fprintf(f, " NC "); do { code++; code += 1 + print_char(f, code, utf8); } while (*code == OP_CHARNC); fprintf(f, "\n"); continue; } break; case OP_KETRMAX: case OP_KETRMIN: case OP_ALT: case OP_KET: case OP_ASSERT: case OP_ASSERT_NOT: case OP_ASSERTBACK: case OP_ASSERTBACK_NOT: case OP_ONCE: case OP_COND: case OP_REVERSE: fprintf(f, "%3d %s", GET(code, 1), OP_names[*code]); break; case OP_BRANUMBER: printf("%3d %s", GET2(code, 1), OP_names[*code]); break; case OP_CREF: if (GET2(code, 1) == CREF_RECURSE) fprintf(f, " Cond recurse"); else fprintf(f, "%3d %s", GET2(code,1), OP_names[*code]); break; case OP_STAR: case OP_MINSTAR: case OP_PLUS: case OP_MINPLUS: case OP_QUERY: case OP_MINQUERY: case OP_TYPESTAR: case OP_TYPEMINSTAR: case OP_TYPEPLUS: case OP_TYPEMINPLUS: case OP_TYPEQUERY: case OP_TYPEMINQUERY: fprintf(f, " "); if (*code >= OP_TYPESTAR) { fprintf(f, "%s", OP_names[code[1]]); if (code[1] == OP_PROP || code[1] == OP_NOTPROP) { fprintf(f, " %s ", get_ucpname(code[2])); extra = 1; } } else extra = print_char(f, code+1, utf8); fprintf(f, "%s", OP_names[*code]); break; case OP_EXACT: case OP_UPTO: case OP_MINUPTO: fprintf(f, " "); extra = print_char(f, code+3, utf8); fprintf(f, "{"); if (*code != OP_EXACT) fprintf(f, ","); fprintf(f, "%d}", GET2(code,1)); if (*code == OP_MINUPTO) fprintf(f, "?"); break; case OP_TYPEEXACT: case OP_TYPEUPTO: case OP_TYPEMINUPTO: fprintf(f, " %s", OP_names[code[3]]); if (code[3] == OP_PROP || code[3] == OP_NOTPROP) { fprintf(f, " %s ", get_ucpname(code[4])); extra = 1; } fprintf(f, "{"); if (*code != OP_TYPEEXACT) fprintf(f, "0,"); fprintf(f, "%d}", GET2(code,1)); if (*code == OP_TYPEMINUPTO) fprintf(f, "?"); break; case OP_NOT: if (isprint(c = code[1])) fprintf(f, " [^%c]", c); else fprintf(f, " [^\\x%02x]", c); break; case OP_NOTSTAR: case OP_NOTMINSTAR: case OP_NOTPLUS: case OP_NOTMINPLUS: case OP_NOTQUERY: case OP_NOTMINQUERY: if (isprint(c = code[1])) fprintf(f, " [^%c]", c); else fprintf(f, " [^\\x%02x]", c); fprintf(f, "%s", OP_names[*code]); break; case OP_NOTEXACT: case OP_NOTUPTO: case OP_NOTMINUPTO: if (isprint(c = code[3])) fprintf(f, " [^%c]{", c); else fprintf(f, " [^\\x%02x]{", c); if (*code != OP_NOTEXACT) fprintf(f, "0,"); fprintf(f, "%d}", GET2(code,1)); if (*code == OP_NOTMINUPTO) fprintf(f, "?"); break; case OP_RECURSE: fprintf(f, "%3d %s", GET(code, 1), OP_names[*code]); break; case OP_REF: fprintf(f, " \\%d", GET2(code,1)); ccode = code + _pcre_OP_lengths[*code]; goto CLASS_REF_REPEAT; case OP_CALLOUT: fprintf(f, " %s %d %d %d", OP_names[*code], code[1], GET(code,2), GET(code, 2 + LINK_SIZE)); break; case OP_PROP: case OP_NOTPROP: fprintf(f, " %s %s", OP_names[*code], get_ucpname(code[1])); break; /* OP_XCLASS can only occur in UTF-8 mode. However, there's no harm in having this code always here, and it makes it less messy without all those #ifdefs. */ case OP_CLASS: case OP_NCLASS: case OP_XCLASS: { int i, min, max; BOOL printmap; fprintf(f, " ["); if (*code == OP_XCLASS) { extra = GET(code, 1); ccode = code + LINK_SIZE + 1; printmap = (*ccode & XCL_MAP) != 0; if ((*ccode++ & XCL_NOT) != 0) fprintf(f, "^"); } else { printmap = TRUE; ccode = code + 1; } /* Print a bit map */ if (printmap) { for (i = 0; i < 256; i++) { if ((ccode[i/8] & (1 << (i&7))) != 0) { int j; for (j = i+1; j < 256; j++) if ((ccode[j/8] & (1 << (j&7))) == 0) break; if (i == '-' || i == ']') fprintf(f, "\\"); if (isprint(i)) fprintf(f, "%c", i); else fprintf(f, "\\x%02x", i); if (--j > i) { if (j != i + 1) fprintf(f, "-"); if (j == '-' || j == ']') fprintf(f, "\\"); if (isprint(j)) fprintf(f, "%c", j); else fprintf(f, "\\x%02x", j); } i = j; } } ccode += 32; } /* For an XCLASS there is always some additional data */ if (*code == OP_XCLASS) { int ch; while ((ch = *ccode++) != XCL_END) { if (ch == XCL_PROP) { fprintf(f, "\\p{%s}", get_ucpname(*ccode++)); } else if (ch == XCL_NOTPROP) { fprintf(f, "\\P{%s}", get_ucpname(*ccode++)); } else { ccode += 1 + print_char(f, ccode, TRUE); if (ch == XCL_RANGE) { fprintf(f, "-"); ccode += 1 + print_char(f, ccode, TRUE); } } } } /* Indicate a non-UTF8 class which was created by negation */ fprintf(f, "]%s", (*code == OP_NCLASS)? " (neg)" : ""); /* Handle repeats after a class or a back reference */ CLASS_REF_REPEAT: switch(*ccode) { case OP_CRSTAR: case OP_CRMINSTAR: case OP_CRPLUS: case OP_CRMINPLUS: case OP_CRQUERY: case OP_CRMINQUERY: fprintf(f, "%s", OP_names[*ccode]); extra += _pcre_OP_lengths[*ccode]; break; case OP_CRRANGE: case OP_CRMINRANGE: min = GET2(ccode,1); max = GET2(ccode,3); if (max == 0) fprintf(f, "{%d,}", min); else fprintf(f, "{%d,%d}", min, max); if (*ccode == OP_CRMINRANGE) fprintf(f, "?"); extra += _pcre_OP_lengths[*ccode]; break; } } break; /* Anything else is just an item with no data*/ default: fprintf(f, " %s", OP_names[*code]); break; } code += _pcre_OP_lengths[*code] + extra; fprintf(f, "\n"); } } /* End of pcre_printint.c */