1 /*************************************************
2 * Exim - an Internet mail transport agent *
3 *************************************************/
5 /* Copyright (c) University of Cambridge 1995 - 2014 */
6 /* See the file NOTICE for conditions of use and distribution. */
8 /* The main code for delivering a message. */
14 /* Data block for keeping track of subprocesses for parallel remote
17 typedef struct pardata
{
18 address_item
*addrlist
; /* chain of addresses */
19 address_item
*addr
; /* next address data expected for */
20 pid_t pid
; /* subprocess pid */
21 int fd
; /* pipe fd for getting result from subprocess */
22 int transport_count
; /* returned transport count value */
23 BOOL done
; /* no more data needed */
24 uschar
*msg
; /* error message */
25 uschar
*return_path
; /* return_path for these addresses */
28 /* Values for the process_recipients variable */
30 enum { RECIP_ACCEPT
, RECIP_IGNORE
, RECIP_DEFER
,
31 RECIP_FAIL
, RECIP_FAIL_FILTER
, RECIP_FAIL_TIMEOUT
,
34 /* Mutually recursive functions for marking addresses done. */
36 static void child_done(address_item
*, uschar
*);
37 static void address_done(address_item
*, uschar
*);
39 /* Table for turning base-62 numbers into binary */
41 static uschar tab62
[] =
42 {0,1,2,3,4,5,6,7,8,9,0,0,0,0,0,0, /* 0-9 */
43 0,10,11,12,13,14,15,16,17,18,19,20, /* A-K */
44 21,22,23,24,25,26,27,28,29,30,31,32, /* L-W */
45 33,34,35, 0, 0, 0, 0, 0, /* X-Z */
46 0,36,37,38,39,40,41,42,43,44,45,46, /* a-k */
47 47,48,49,50,51,52,53,54,55,56,57,58, /* l-w */
51 /*************************************************
52 * Local static variables *
53 *************************************************/
55 /* addr_duplicate is global because it needs to be seen from the Envelope-To
58 static address_item
*addr_defer
= NULL
;
59 static address_item
*addr_failed
= NULL
;
60 static address_item
*addr_fallback
= NULL
;
61 static address_item
*addr_local
= NULL
;
62 static address_item
*addr_new
= NULL
;
63 static address_item
*addr_remote
= NULL
;
64 static address_item
*addr_route
= NULL
;
65 static address_item
*addr_succeed
= NULL
;
67 static FILE *message_log
= NULL
;
68 static BOOL update_spool
;
69 static BOOL remove_journal
;
70 static int parcount
= 0;
71 static pardata
*parlist
= NULL
;
72 static int return_count
;
73 static uschar
*frozen_info
= US
"";
74 static uschar
*used_return_path
= NULL
;
76 static uschar spoolname
[PATH_MAX
];
80 /*************************************************
81 * Make a new address item *
82 *************************************************/
84 /* This function gets the store and initializes with default values. The
85 transport_return value defaults to DEFER, so that any unexpected failure to
86 deliver does not wipe out the message. The default unique string is set to a
87 copy of the address, so that its domain can be lowercased.
90 address the RFC822 address string
91 copy force a copy of the address
93 Returns: a pointer to an initialized address_item
97 deliver_make_addr(uschar
*address
, BOOL copy
)
99 address_item
*addr
= store_get(sizeof(address_item
));
100 *addr
= address_defaults
;
101 if (copy
) address
= string_copy(address
);
102 addr
->address
= address
;
103 addr
->unique
= string_copy(address
);
110 /*************************************************
111 * Set expansion values for an address *
112 *************************************************/
114 /* Certain expansion variables are valid only when handling an address or
115 address list. This function sets them up or clears the values, according to its
119 addr the address in question, or NULL to clear values
124 deliver_set_expansions(address_item
*addr
)
128 uschar
***p
= address_expansions
;
129 while (*p
!= NULL
) **p
++ = NULL
;
133 /* Exactly what gets set depends on whether there is one or more addresses, and
134 what they contain. These first ones are always set, taking their values from
135 the first address. */
137 if (addr
->host_list
== NULL
)
139 deliver_host
= deliver_host_address
= US
"";
143 deliver_host
= addr
->host_list
->name
;
144 deliver_host_address
= addr
->host_list
->address
;
147 deliver_recipients
= addr
;
148 deliver_address_data
= addr
->p
.address_data
;
149 deliver_domain_data
= addr
->p
.domain_data
;
150 deliver_localpart_data
= addr
->p
.localpart_data
;
152 /* These may be unset for multiple addresses */
154 deliver_domain
= addr
->domain
;
155 self_hostname
= addr
->self_hostname
;
157 #ifdef EXPERIMENTAL_BRIGHTMAIL
158 bmi_deliver
= 1; /* deliver by default */
159 bmi_alt_location
= NULL
;
160 bmi_base64_verdict
= NULL
;
161 bmi_base64_tracker_verdict
= NULL
;
164 /* If there's only one address we can set everything. */
166 if (addr
->next
== NULL
)
168 address_item
*addr_orig
;
170 deliver_localpart
= addr
->local_part
;
171 deliver_localpart_prefix
= addr
->prefix
;
172 deliver_localpart_suffix
= addr
->suffix
;
174 for (addr_orig
= addr
; addr_orig
->parent
!= NULL
;
175 addr_orig
= addr_orig
->parent
);
176 deliver_domain_orig
= addr_orig
->domain
;
178 /* Re-instate any prefix and suffix in the original local part. In all
179 normal cases, the address will have a router associated with it, and we can
180 choose the caseful or caseless version accordingly. However, when a system
181 filter sets up a pipe, file, or autoreply delivery, no router is involved.
182 In this case, though, there won't be any prefix or suffix to worry about. */
184 deliver_localpart_orig
= (addr_orig
->router
== NULL
)? addr_orig
->local_part
:
185 addr_orig
->router
->caseful_local_part?
186 addr_orig
->cc_local_part
: addr_orig
->lc_local_part
;
188 /* If there's a parent, make its domain and local part available, and if
189 delivering to a pipe or file, or sending an autoreply, get the local
190 part from the parent. For pipes and files, put the pipe or file string
191 into address_pipe and address_file. */
193 if (addr
->parent
!= NULL
)
195 deliver_domain_parent
= addr
->parent
->domain
;
196 deliver_localpart_parent
= (addr
->parent
->router
== NULL
)?
197 addr
->parent
->local_part
:
198 addr
->parent
->router
->caseful_local_part?
199 addr
->parent
->cc_local_part
: addr
->parent
->lc_local_part
;
201 /* File deliveries have their own flag because they need to be picked out
202 as special more often. */
204 if (testflag(addr
, af_pfr
))
206 if (testflag(addr
, af_file
)) address_file
= addr
->local_part
;
207 else if (deliver_localpart
[0] == '|') address_pipe
= addr
->local_part
;
208 deliver_localpart
= addr
->parent
->local_part
;
209 deliver_localpart_prefix
= addr
->parent
->prefix
;
210 deliver_localpart_suffix
= addr
->parent
->suffix
;
214 #ifdef EXPERIMENTAL_BRIGHTMAIL
215 /* Set expansion variables related to Brightmail AntiSpam */
216 bmi_base64_verdict
= bmi_get_base64_verdict(deliver_localpart_orig
, deliver_domain_orig
);
217 bmi_base64_tracker_verdict
= bmi_get_base64_tracker_verdict(bmi_base64_verdict
);
218 /* get message delivery status (0 - don't deliver | 1 - deliver) */
219 bmi_deliver
= bmi_get_delivery_status(bmi_base64_verdict
);
220 /* if message is to be delivered, get eventual alternate location */
221 if (bmi_deliver
== 1) {
222 bmi_alt_location
= bmi_get_alt_location(bmi_base64_verdict
);
228 /* For multiple addresses, don't set local part, and leave the domain and
229 self_hostname set only if it is the same for all of them. It is possible to
230 have multiple pipe and file addresses, but only when all addresses have routed
231 to the same pipe or file. */
236 if (testflag(addr
, af_pfr
))
238 if (testflag(addr
, af_file
)) address_file
= addr
->local_part
;
239 else if (addr
->local_part
[0] == '|') address_pipe
= addr
->local_part
;
241 for (addr2
= addr
->next
; addr2
!= NULL
; addr2
= addr2
->next
)
243 if (deliver_domain
!= NULL
&&
244 Ustrcmp(deliver_domain
, addr2
->domain
) != 0)
245 deliver_domain
= NULL
;
246 if (self_hostname
!= NULL
&& (addr2
->self_hostname
== NULL
||
247 Ustrcmp(self_hostname
, addr2
->self_hostname
) != 0))
248 self_hostname
= NULL
;
249 if (deliver_domain
== NULL
&& self_hostname
== NULL
) break;
257 /*************************************************
258 * Open a msglog file *
259 *************************************************/
261 /* This function is used both for normal message logs, and for files in the
262 msglog directory that are used to catch output from pipes. Try to create the
263 directory if it does not exist. From release 4.21, normal message logs should
264 be created when the message is received.
267 filename the file name
268 mode the mode required
269 error used for saying what failed
271 Returns: a file descriptor, or -1 (with errno set)
275 open_msglog_file(uschar
*filename
, int mode
, uschar
**error
)
277 int fd
= Uopen(filename
, O_WRONLY
|O_APPEND
|O_CREAT
, mode
);
279 if (fd
< 0 && errno
== ENOENT
)
282 sprintf(CS temp
, "msglog/%s", message_subdir
);
283 if (message_subdir
[0] == 0) temp
[6] = 0;
284 (void)directory_make(spool_directory
, temp
, MSGLOG_DIRECTORY_MODE
, TRUE
);
285 fd
= Uopen(filename
, O_WRONLY
|O_APPEND
|O_CREAT
, mode
);
288 /* Set the close-on-exec flag and change the owner to the exim uid/gid (this
289 function is called as root). Double check the mode, because the group setting
290 doesn't always get set automatically. */
294 (void)fcntl(fd
, F_SETFD
, fcntl(fd
, F_GETFD
) | FD_CLOEXEC
);
295 if (fchown(fd
, exim_uid
, exim_gid
) < 0)
300 if (fchmod(fd
, mode
) < 0)
306 else *error
= US
"create";
314 /*************************************************
315 * Write to msglog if required *
316 *************************************************/
318 /* Write to the message log, if configured. This function may also be called
322 format a string format
328 deliver_msglog(const char *format
, ...)
331 if (!message_logs
) return;
332 va_start(ap
, format
);
333 vfprintf(message_log
, format
, ap
);
341 /*************************************************
342 * Replicate status for batch *
343 *************************************************/
345 /* When a transport handles a batch of addresses, it may treat them
346 individually, or it may just put the status in the first one, and return FALSE,
347 requesting that the status be copied to all the others externally. This is the
348 replication function. As well as the status, it copies the transport pointer,
349 which may have changed if appendfile passed the addresses on to a different
352 Argument: pointer to the first address in a chain
357 replicate_status(address_item
*addr
)
360 for (addr2
= addr
->next
; addr2
!= NULL
; addr2
= addr2
->next
)
362 addr2
->transport
= addr
->transport
;
363 addr2
->transport_return
= addr
->transport_return
;
364 addr2
->basic_errno
= addr
->basic_errno
;
365 addr2
->more_errno
= addr
->more_errno
;
366 addr2
->special_action
= addr
->special_action
;
367 addr2
->message
= addr
->message
;
368 addr2
->user_message
= addr
->user_message
;
374 /*************************************************
375 * Compare lists of hosts *
376 *************************************************/
378 /* This function is given two pointers to chains of host items, and it yields
379 TRUE if the lists refer to the same hosts in the same order, except that
381 (1) Multiple hosts with the same non-negative MX values are permitted to appear
382 in different orders. Round-robinning nameservers can cause this to happen.
384 (2) Multiple hosts with the same negative MX values less than MX_NONE are also
385 permitted to appear in different orders. This is caused by randomizing
388 This enables Exim to use a single SMTP transaction for sending to two entirely
389 different domains that happen to end up pointing at the same hosts.
392 one points to the first host list
393 two points to the second host list
395 Returns: TRUE if the lists refer to the same host set
399 same_hosts(host_item
*one
, host_item
*two
)
401 while (one
!= NULL
&& two
!= NULL
)
403 if (Ustrcmp(one
->name
, two
->name
) != 0)
406 host_item
*end_one
= one
;
407 host_item
*end_two
= two
;
409 /* Batch up only if there was no MX and the list was not randomized */
411 if (mx
== MX_NONE
) return FALSE
;
413 /* Find the ends of the shortest sequence of identical MX values */
415 while (end_one
->next
!= NULL
&& end_one
->next
->mx
== mx
&&
416 end_two
->next
!= NULL
&& end_two
->next
->mx
== mx
)
418 end_one
= end_one
->next
;
419 end_two
= end_two
->next
;
422 /* If there aren't any duplicates, there's no match. */
424 if (end_one
== one
) return FALSE
;
426 /* For each host in the 'one' sequence, check that it appears in the 'two'
427 sequence, returning FALSE if not. */
432 for (hi
= two
; hi
!= end_two
->next
; hi
= hi
->next
)
433 if (Ustrcmp(one
->name
, hi
->name
) == 0) break;
434 if (hi
== end_two
->next
) return FALSE
;
435 if (one
== end_one
) break;
439 /* All the hosts in the 'one' sequence were found in the 'two' sequence.
440 Ensure both are pointing at the last host, and carry on as for equality. */
451 /* True if both are NULL */
458 /*************************************************
459 * Compare header lines *
460 *************************************************/
462 /* This function is given two pointers to chains of header items, and it yields
463 TRUE if they are the same header texts in the same order.
466 one points to the first header list
467 two points to the second header list
469 Returns: TRUE if the lists refer to the same header set
473 same_headers(header_line
*one
, header_line
*two
)
477 if (one
== two
) return TRUE
; /* Includes the case where both NULL */
478 if (one
== NULL
|| two
== NULL
) return FALSE
;
479 if (Ustrcmp(one
->text
, two
->text
) != 0) return FALSE
;
487 /*************************************************
488 * Compare string settings *
489 *************************************************/
491 /* This function is given two pointers to strings, and it returns
492 TRUE if they are the same pointer, or if the two strings are the same.
495 one points to the first string
496 two points to the second string
498 Returns: TRUE or FALSE
502 same_strings(uschar
*one
, uschar
*two
)
504 if (one
== two
) return TRUE
; /* Includes the case where both NULL */
505 if (one
== NULL
|| two
== NULL
) return FALSE
;
506 return (Ustrcmp(one
, two
) == 0);
511 /*************************************************
512 * Compare uid/gid for addresses *
513 *************************************************/
515 /* This function is given a transport and two addresses. It yields TRUE if the
516 uid/gid/initgroups settings for the two addresses are going to be the same when
521 addr1 the first address
522 addr2 the second address
524 Returns: TRUE or FALSE
528 same_ugid(transport_instance
*tp
, address_item
*addr1
, address_item
*addr2
)
530 if (!tp
->uid_set
&& tp
->expand_uid
== NULL
&& !tp
->deliver_as_creator
)
532 if (testflag(addr1
, af_uid_set
) != testflag(addr2
, af_gid_set
) ||
533 (testflag(addr1
, af_uid_set
) &&
534 (addr1
->uid
!= addr2
->uid
||
535 testflag(addr1
, af_initgroups
) != testflag(addr2
, af_initgroups
))))
539 if (!tp
->gid_set
&& tp
->expand_gid
== NULL
)
541 if (testflag(addr1
, af_gid_set
) != testflag(addr2
, af_gid_set
) ||
542 (testflag(addr1
, af_gid_set
) && addr1
->gid
!= addr2
->gid
))
552 /*************************************************
553 * Record that an address is complete *
554 *************************************************/
556 /* This function records that an address is complete. This is straightforward
557 for most addresses, where the unique address is just the full address with the
558 domain lower cased. For homonyms (addresses that are the same as one of their
559 ancestors) their are complications. Their unique addresses have \x\ prepended
560 (where x = 0, 1, 2...), so that de-duplication works correctly for siblings and
563 Exim used to record the unique addresses of homonyms as "complete". This,
564 however, fails when the pattern of redirection varies over time (e.g. if taking
565 unseen copies at only some times of day) because the prepended numbers may vary
566 from one delivery run to the next. This problem is solved by never recording
567 prepended unique addresses as complete. Instead, when a homonymic address has
568 actually been delivered via a transport, we record its basic unique address
569 followed by the name of the transport. This is checked in subsequent delivery
570 runs whenever an address is routed to a transport.
572 If the completed address is a top-level one (has no parent, which means it
573 cannot be homonymic) we also add the original address to the non-recipients
574 tree, so that it gets recorded in the spool file and therefore appears as
575 "done" in any spool listings. The original address may differ from the unique
576 address in the case of the domain.
578 Finally, this function scans the list of duplicates, marks as done any that
579 match this address, and calls child_done() for their ancestors.
582 addr address item that has been completed
583 now current time as a string
589 address_done(address_item
*addr
, uschar
*now
)
593 update_spool
= TRUE
; /* Ensure spool gets updated */
595 /* Top-level address */
597 if (addr
->parent
== NULL
)
599 tree_add_nonrecipient(addr
->unique
);
600 tree_add_nonrecipient(addr
->address
);
603 /* Homonymous child address */
605 else if (testflag(addr
, af_homonym
))
607 if (addr
->transport
!= NULL
)
609 tree_add_nonrecipient(
610 string_sprintf("%s/%s", addr
->unique
+ 3, addr
->transport
->name
));
614 /* Non-homonymous child address */
616 else tree_add_nonrecipient(addr
->unique
);
618 /* Check the list of duplicate addresses and ensure they are now marked
621 for (dup
= addr_duplicate
; dup
!= NULL
; dup
= dup
->next
)
623 if (Ustrcmp(addr
->unique
, dup
->unique
) == 0)
625 tree_add_nonrecipient(dup
->unique
);
626 child_done(dup
, now
);
634 /*************************************************
635 * Decrease counts in parents and mark done *
636 *************************************************/
638 /* This function is called when an address is complete. If there is a parent
639 address, its count of children is decremented. If there are still other
640 children outstanding, the function exits. Otherwise, if the count has become
641 zero, address_done() is called to mark the parent and its duplicates complete.
642 Then loop for any earlier ancestors.
645 addr points to the completed address item
646 now the current time as a string, for writing to the message log
652 child_done(address_item
*addr
, uschar
*now
)
655 while (addr
->parent
!= NULL
)
658 if ((addr
->child_count
-= 1) > 0) return; /* Incomplete parent */
659 address_done(addr
, now
);
661 /* Log the completion of all descendents only when there is no ancestor with
662 the same original address. */
664 for (aa
= addr
->parent
; aa
!= NULL
; aa
= aa
->parent
)
665 if (Ustrcmp(aa
->address
, addr
->address
) == 0) break;
666 if (aa
!= NULL
) continue;
668 deliver_msglog("%s %s: children all complete\n", now
, addr
->address
);
669 DEBUG(D_deliver
) debug_printf("%s: children all complete\n", addr
->address
);
677 d_hostlog(uschar
* s
, int * sizep
, int * ptrp
, address_item
* addr
)
679 s
= string_append(s
, sizep
, ptrp
, 5, US
" H=", addr
->host_used
->name
,
680 US
" [", addr
->host_used
->address
, US
"]");
681 if ((log_extra_selector
& LX_outgoing_port
) != 0)
682 s
= string_append(s
, sizep
, ptrp
, 2, US
":", string_sprintf("%d",
683 addr
->host_used
->port
));
689 d_tlslog(uschar
* s
, int * sizep
, int * ptrp
, address_item
* addr
)
691 if ((log_extra_selector
& LX_tls_cipher
) != 0 && addr
->cipher
!= NULL
)
692 s
= string_append(s
, sizep
, ptrp
, 2, US
" X=", addr
->cipher
);
693 if ((log_extra_selector
& LX_tls_certificate_verified
) != 0 &&
694 addr
->cipher
!= NULL
)
695 s
= string_append(s
, sizep
, ptrp
, 2, US
" CV=",
696 testflag(addr
, af_cert_verified
)?
"yes":"no");
697 if ((log_extra_selector
& LX_tls_peerdn
) != 0 && addr
->peerdn
!= NULL
)
698 s
= string_append(s
, sizep
, ptrp
, 3, US
" DN=\"",
699 string_printing(addr
->peerdn
), US
"\"");
704 /* If msg is NULL this is a delivery log and logchar is used. Otherwise
705 this is a nonstandard call; no two-character delivery flag is written
706 but sender-host and sender are prefixed and "msg" is inserted in the log line.
709 flags passed to log_write()
712 delivery_log(int flags
, address_item
* addr
, int logchar
, uschar
* msg
)
715 int size
= 256; /* Used for a temporary, */
716 int ptr
= 0; /* expanding buffer, for */
717 uschar
*s
; /* building log lines; */
718 void *reset_point
; /* released afterwards. */
721 /* Log the delivery on the main log. We use an extensible string to build up
722 the log line, and reset the store afterwards. Remote deliveries should always
723 have a pointer to the host item that succeeded; local deliveries can have a
724 pointer to a single host item in their host list, for use by the transport. */
726 #ifdef EXPERIMENTAL_TPDA
727 tpda_delivery_ip
= NULL
; /* presume no successful remote delivery */
728 tpda_delivery_port
= 0;
729 tpda_delivery_fqdn
= NULL
;
730 tpda_delivery_local_part
= NULL
;
731 tpda_delivery_domain
= NULL
;
732 tpda_delivery_confirmation
= NULL
;
733 lookup_dnssec_authenticated
= NULL
;
736 s
= reset_point
= store_get(size
);
738 log_address
= string_log_address(addr
, (log_write_selector
& L_all_parents
) != 0, TRUE
);
740 s
= string_append(s
, &size
, &ptr
, 3, host_and_ident(TRUE
), US
" ", log_address
);
744 s
= string_append(s
, &size
, &ptr
, 2, US
"> ", log_address
);
747 if ((log_extra_selector
& LX_sender_on_delivery
) != 0 || msg
)
748 s
= string_append(s
, &size
, &ptr
, 3, US
" F=<", sender_address
, US
">");
750 #ifdef EXPERIMENTAL_SRS
751 if(addr
->p
.srs_sender
)
752 s
= string_append(s
, &size
, &ptr
, 3, US
" SRS=<", addr
->p
.srs_sender
, US
">");
755 /* You might think that the return path must always be set for a successful
756 delivery; indeed, I did for some time, until this statement crashed. The case
757 when it is not set is for a delivery to /dev/null which is optimised by not
760 if (used_return_path
!= NULL
&&
761 (log_extra_selector
& LX_return_path_on_delivery
) != 0)
762 s
= string_append(s
, &size
, &ptr
, 3, US
" P=<", used_return_path
, US
">");
765 s
= string_append(s
, &size
, &ptr
, 2, US
" ", msg
);
767 /* For a delivery from a system filter, there may not be a router */
768 if (addr
->router
!= NULL
)
769 s
= string_append(s
, &size
, &ptr
, 2, US
" R=", addr
->router
->name
);
771 s
= string_append(s
, &size
, &ptr
, 2, US
" T=", addr
->transport
->name
);
773 if ((log_extra_selector
& LX_delivery_size
) != 0)
774 s
= string_append(s
, &size
, &ptr
, 2, US
" S=",
775 string_sprintf("%d", transport_count
));
779 if (addr
->transport
->info
->local
)
781 if (addr
->host_list
!= NULL
)
783 s
= string_append(s
, &size
, &ptr
, 2, US
" H=", addr
->host_list
->name
);
784 #ifdef EXPERIMENTAL_TPDA
785 tpda_delivery_fqdn
= addr
->host_list
->name
;
788 if (addr
->shadow_message
!= NULL
)
789 s
= string_cat(s
, &size
, &ptr
, addr
->shadow_message
,
790 Ustrlen(addr
->shadow_message
));
793 /* Remote delivery */
799 s
= d_hostlog(s
, &size
, &ptr
, addr
);
800 if (continue_sequence
> 1)
801 s
= string_cat(s
, &size
, &ptr
, US
"*", 1);
803 #ifdef EXPERIMENTAL_TPDA
804 tpda_delivery_ip
= addr
->host_used
->address
;
805 tpda_delivery_port
= addr
->host_used
->port
;
806 tpda_delivery_fqdn
= addr
->host_used
->name
;
807 tpda_delivery_local_part
= addr
->local_part
;
808 tpda_delivery_domain
= addr
->domain
;
809 tpda_delivery_confirmation
= addr
->message
;
811 /* DNS lookup status */
812 lookup_dnssec_authenticated
= addr
->host_used
->dnssec
==DS_YES ? US
"yes"
813 : addr
->host_used
->dnssec
==DS_NO ? US
"no"
819 s
= d_tlslog(s
, &size
, &ptr
, addr
);
822 if (addr
->authenticator
)
824 s
= string_append(s
, &size
, &ptr
, 2, US
" A=", addr
->authenticator
);
827 s
= string_append(s
, &size
, &ptr
, 2, US
":", addr
->auth_id
);
828 if (log_extra_selector
& LX_smtp_mailauth
&& addr
->auth_sndr
)
829 s
= string_append(s
, &size
, &ptr
, 2, US
":", addr
->auth_sndr
);
834 if (addr
->flags
& af_prdr_used
)
835 s
= string_append(s
, &size
, &ptr
, 1, US
" PRDR");
839 /* confirmation message (SMTP (host_used) and LMTP (driver_name)) */
841 if ((log_extra_selector
& LX_smtp_confirmation
) != 0 &&
842 addr
->message
!= NULL
&&
843 ((addr
->host_used
!= NULL
) || (Ustrcmp(addr
->transport
->driver_name
, "lmtp") == 0)))
846 uschar
*p
= big_buffer
;
847 uschar
*ss
= addr
->message
;
849 for (i
= 0; i
< 100 && ss
[i
] != 0; i
++)
851 if (ss
[i
] == '\"' || ss
[i
] == '\\') *p
++ = '\\';
856 s
= string_append(s
, &size
, &ptr
, 2, US
" C=", big_buffer
);
859 /* Time on queue and actual time taken to deliver */
861 if ((log_extra_selector
& LX_queue_time
) != 0)
863 s
= string_append(s
, &size
, &ptr
, 2, US
" QT=",
864 readconf_printtime(time(NULL
) - received_time
));
867 if ((log_extra_selector
& LX_deliver_time
) != 0)
869 s
= string_append(s
, &size
, &ptr
, 2, US
" DT=",
870 readconf_printtime(addr
->more_errno
));
873 /* string_cat() always leaves room for the terminator. Release the
874 store we used to build the line after writing it. */
877 log_write(0, flags
, "%s", s
);
879 #ifdef EXPERIMENTAL_TPDA
880 if (addr
->transport
->tpda_delivery_action
)
883 debug_printf(" TPDA(Delivery): tpda_deliver_action=|%s| tpda_delivery_IP=%s\n",
884 addr
->transport
->tpda_delivery_action
, tpda_delivery_ip
);
886 router_name
= addr
->router
->name
;
887 transport_name
= addr
->transport
->name
;
888 if (!expand_string(addr
->transport
->tpda_delivery_action
) && *expand_string_message
)
889 log_write(0, LOG_MAIN
|LOG_PANIC
, "failed to expand tpda_deliver_action in %s: %s\n",
890 transport_name
, expand_string_message
);
892 transport_name
= NULL
;
895 store_reset(reset_point
);
901 /*************************************************
902 * Actions at the end of handling an address *
903 *************************************************/
905 /* This is a function for processing a single address when all that can be done
906 with it has been done.
909 addr points to the address block
910 result the result of the delivery attempt
911 logflags flags for log_write() (LOG_MAIN and/or LOG_PANIC)
912 driver_type indicates which type of driver (transport, or router) was last
913 to process the address
914 logchar '=' or '-' for use when logging deliveries with => or ->
920 post_process_one(address_item
*addr
, int result
, int logflags
, int driver_type
,
923 uschar
*now
= tod_stamp(tod_log
);
924 uschar
*driver_kind
= NULL
;
925 uschar
*driver_name
= NULL
;
928 int size
= 256; /* Used for a temporary, */
929 int ptr
= 0; /* expanding buffer, for */
930 uschar
*s
; /* building log lines; */
931 void *reset_point
; /* released afterwards. */
934 DEBUG(D_deliver
) debug_printf("post-process %s (%d)\n", addr
->address
, result
);
936 /* Set up driver kind and name for logging. Disable logging if the router or
937 transport has disabled it. */
939 if (driver_type
== DTYPE_TRANSPORT
)
941 if (addr
->transport
!= NULL
)
943 driver_name
= addr
->transport
->name
;
944 driver_kind
= US
" transport";
945 disable_logging
= addr
->transport
->disable_logging
;
947 else driver_kind
= US
"transporting";
949 else if (driver_type
== DTYPE_ROUTER
)
951 if (addr
->router
!= NULL
)
953 driver_name
= addr
->router
->name
;
954 driver_kind
= US
" router";
955 disable_logging
= addr
->router
->disable_logging
;
957 else driver_kind
= US
"routing";
960 /* If there's an error message set, ensure that it contains only printing
961 characters - it should, but occasionally things slip in and this at least
962 stops the log format from getting wrecked. We also scan the message for an LDAP
963 expansion item that has a password setting, and flatten the password. This is a
964 fudge, but I don't know a cleaner way of doing this. (If the item is badly
965 malformed, it won't ever have gone near LDAP.) */
967 if (addr
->message
!= NULL
)
969 addr
->message
= string_printing(addr
->message
);
970 if (((Ustrstr(addr
->message
, "failed to expand") != NULL
) || (Ustrstr(addr
->message
, "expansion of ") != NULL
)) &&
971 (Ustrstr(addr
->message
, "mysql") != NULL
||
972 Ustrstr(addr
->message
, "pgsql") != NULL
||
973 #ifdef EXPERIMENTAL_REDIS
974 Ustrstr(addr
->message
, "redis") != NULL
||
976 Ustrstr(addr
->message
, "sqlite") != NULL
||
977 Ustrstr(addr
->message
, "ldap:") != NULL
||
978 Ustrstr(addr
->message
, "ldapdn:") != NULL
||
979 Ustrstr(addr
->message
, "ldapm:") != NULL
))
981 addr
->message
= string_sprintf("Temporary internal error");
985 /* If we used a transport that has one of the "return_output" options set, and
986 if it did in fact generate some output, then for return_output we treat the
987 message as failed if it was not already set that way, so that the output gets
988 returned to the sender, provided there is a sender to send it to. For
989 return_fail_output, do this only if the delivery failed. Otherwise we just
990 unlink the file, and remove the name so that if the delivery failed, we don't
991 try to send back an empty or unwanted file. The log_output options operate only
994 In any case, we close the message file, because we cannot afford to leave a
995 file-descriptor for one address while processing (maybe very many) others. */
997 if (addr
->return_file
>= 0 && addr
->return_filename
!= NULL
)
999 BOOL return_output
= FALSE
;
1000 struct stat statbuf
;
1001 (void)EXIMfsync(addr
->return_file
);
1003 /* If there is no output, do nothing. */
1005 if (fstat(addr
->return_file
, &statbuf
) == 0 && statbuf
.st_size
> 0)
1007 transport_instance
*tb
= addr
->transport
;
1009 /* Handle logging options */
1011 if (tb
->log_output
|| (result
== FAIL
&& tb
->log_fail_output
) ||
1012 (result
== DEFER
&& tb
->log_defer_output
))
1015 FILE *f
= Ufopen(addr
->return_filename
, "rb");
1017 log_write(0, LOG_MAIN
|LOG_PANIC
, "failed to open %s to log output "
1018 "from %s transport: %s", addr
->return_filename
, tb
->name
,
1022 s
= US
Ufgets(big_buffer
, big_buffer_size
, f
);
1025 uschar
*p
= big_buffer
+ Ustrlen(big_buffer
);
1026 while (p
> big_buffer
&& isspace(p
[-1])) p
--;
1028 s
= string_printing(big_buffer
);
1029 log_write(0, LOG_MAIN
, "<%s>: %s transport output: %s",
1030 addr
->address
, tb
->name
, s
);
1036 /* Handle returning options, but only if there is an address to return
1039 if (sender_address
[0] != 0 || addr
->p
.errors_address
!= NULL
)
1041 if (tb
->return_output
)
1043 addr
->transport_return
= result
= FAIL
;
1044 if (addr
->basic_errno
== 0 && addr
->message
== NULL
)
1045 addr
->message
= US
"return message generated";
1046 return_output
= TRUE
;
1049 if (tb
->return_fail_output
&& result
== FAIL
) return_output
= TRUE
;
1053 /* Get rid of the file unless it might be returned, but close it in
1058 Uunlink(addr
->return_filename
);
1059 addr
->return_filename
= NULL
;
1060 addr
->return_file
= -1;
1063 (void)close(addr
->return_file
);
1066 /* The success case happens only after delivery by a transport. */
1070 addr
->next
= addr_succeed
;
1071 addr_succeed
= addr
;
1073 /* Call address_done() to ensure that we don't deliver to this address again,
1074 and write appropriate things to the message log. If it is a child address, we
1075 call child_done() to scan the ancestors and mark them complete if this is the
1076 last child to complete. */
1078 address_done(addr
, now
);
1079 DEBUG(D_deliver
) debug_printf("%s delivered\n", addr
->address
);
1081 if (addr
->parent
== NULL
)
1082 deliver_msglog("%s %s: %s%s succeeded\n", now
, addr
->address
,
1083 driver_name
, driver_kind
);
1086 deliver_msglog("%s %s <%s>: %s%s succeeded\n", now
, addr
->address
,
1087 addr
->parent
->address
, driver_name
, driver_kind
);
1088 child_done(addr
, now
);
1091 /* Certificates for logging (via TPDA) */
1093 tls_out
.ourcert
= addr
->ourcert
;
1094 addr
->ourcert
= NULL
;
1095 tls_out
.peercert
= addr
->peercert
;
1096 addr
->peercert
= NULL
;
1098 tls_out
.cipher
= addr
->cipher
;
1099 tls_out
.peerdn
= addr
->peerdn
;
1100 tls_out
.ocsp
= addr
->ocsp
;
1103 delivery_log(LOG_MAIN
, addr
, logchar
, NULL
);
1106 if (tls_out
.ourcert
)
1108 tls_free_cert(tls_out
.ourcert
);
1109 tls_out
.ourcert
= NULL
;
1111 if (tls_out
.peercert
)
1113 tls_free_cert(tls_out
.peercert
);
1114 tls_out
.peercert
= NULL
;
1116 tls_out
.cipher
= NULL
;
1117 tls_out
.peerdn
= NULL
;
1118 tls_out
.ocsp
= OCSP_NOT_REQ
;
1123 /* Soft failure, or local delivery process failed; freezing may be
1126 else if (result
== DEFER
|| result
== PANIC
)
1128 if (result
== PANIC
) logflags
|= LOG_PANIC
;
1130 /* This puts them on the chain in reverse order. Do not change this, because
1131 the code for handling retries assumes that the one with the retry
1132 information is last. */
1134 addr
->next
= addr_defer
;
1137 /* The only currently implemented special action is to freeze the
1138 message. Logging of this is done later, just before the -H file is
1141 if (addr
->special_action
== SPECIAL_FREEZE
)
1143 deliver_freeze
= TRUE
;
1144 deliver_frozen_at
= time(NULL
);
1145 update_spool
= TRUE
;
1148 /* If doing a 2-stage queue run, we skip writing to either the message
1149 log or the main log for SMTP defers. */
1151 if (!queue_2stage
|| addr
->basic_errno
!= 0)
1155 /* For errors of the type "retry time not reached" (also remotes skipped
1156 on queue run), logging is controlled by L_retry_defer. Note that this kind
1157 of error number is negative, and all the retry ones are less than any
1160 unsigned int use_log_selector
= (addr
->basic_errno
<= ERRNO_RETRY_BASE
)?
1163 /* Build up the line that is used for both the message log and the main
1166 s
= reset_point
= store_get(size
);
1168 /* Create the address string for logging. Must not do this earlier, because
1169 an OK result may be changed to FAIL when a pipe returns text. */
1171 log_address
= string_log_address(addr
,
1172 (log_write_selector
& L_all_parents
) != 0, result
== OK
);
1174 s
= string_cat(s
, &size
, &ptr
, log_address
, Ustrlen(log_address
));
1176 /* Either driver_name contains something and driver_kind contains
1177 " router" or " transport" (note the leading space), or driver_name is
1178 a null string and driver_kind contains "routing" without the leading
1179 space, if all routing has been deferred. When a domain has been held,
1180 so nothing has been done at all, both variables contain null strings. */
1182 if (driver_name
== NULL
)
1184 if (driver_kind
!= NULL
)
1185 s
= string_append(s
, &size
, &ptr
, 2, US
" ", driver_kind
);
1189 if (driver_kind
[1] == 't' && addr
->router
!= NULL
)
1190 s
= string_append(s
, &size
, &ptr
, 2, US
" R=", addr
->router
->name
);
1192 ss
[1] = toupper(driver_kind
[1]);
1193 s
= string_append(s
, &size
, &ptr
, 2, ss
, driver_name
);
1196 sprintf(CS ss
, " defer (%d)", addr
->basic_errno
);
1197 s
= string_cat(s
, &size
, &ptr
, ss
, Ustrlen(ss
));
1199 if (addr
->basic_errno
> 0)
1200 s
= string_append(s
, &size
, &ptr
, 2, US
": ",
1201 US
strerror(addr
->basic_errno
));
1203 if (addr
->message
!= NULL
)
1204 s
= string_append(s
, &size
, &ptr
, 2, US
": ", addr
->message
);
1208 /* Log the deferment in the message log, but don't clutter it
1209 up with retry-time defers after the first delivery attempt. */
1211 if (deliver_firsttime
|| addr
->basic_errno
> ERRNO_RETRY_BASE
)
1212 deliver_msglog("%s %s\n", now
, s
);
1214 /* Write the main log and reset the store */
1216 log_write(use_log_selector
, logflags
, "== %s", s
);
1217 store_reset(reset_point
);
1222 /* Hard failure. If there is an address to which an error message can be sent,
1223 put this address on the failed list. If not, put it on the deferred list and
1224 freeze the mail message for human attention. The latter action can also be
1225 explicitly requested by a router or transport. */
1229 /* If this is a delivery error, or a message for which no replies are
1230 wanted, and the message's age is greater than ignore_bounce_errors_after,
1231 force the af_ignore_error flag. This will cause the address to be discarded
1232 later (with a log entry). */
1234 if (sender_address
[0] == 0 && message_age
>= ignore_bounce_errors_after
)
1235 setflag(addr
, af_ignore_error
);
1237 /* Freeze the message if requested, or if this is a bounce message (or other
1238 message with null sender) and this address does not have its own errors
1239 address. However, don't freeze if errors are being ignored. The actual code
1240 to ignore occurs later, instead of sending a message. Logging of freezing
1241 occurs later, just before writing the -H file. */
1243 if (!testflag(addr
, af_ignore_error
) &&
1244 (addr
->special_action
== SPECIAL_FREEZE
||
1245 (sender_address
[0] == 0 && addr
->p
.errors_address
== NULL
)
1248 frozen_info
= (addr
->special_action
== SPECIAL_FREEZE
)? US
"" :
1249 (sender_local
&& !local_error_message
)?
1250 US
" (message created with -f <>)" : US
" (delivery error message)";
1251 deliver_freeze
= TRUE
;
1252 deliver_frozen_at
= time(NULL
);
1253 update_spool
= TRUE
;
1255 /* The address is put on the defer rather than the failed queue, because
1256 the message is being retained. */
1258 addr
->next
= addr_defer
;
1262 /* Don't put the address on the nonrecipients tree yet; wait until an
1263 error message has been successfully sent. */
1267 addr
->next
= addr_failed
;
1271 /* Build up the log line for the message and main logs */
1273 s
= reset_point
= store_get(size
);
1275 /* Create the address string for logging. Must not do this earlier, because
1276 an OK result may be changed to FAIL when a pipe returns text. */
1278 log_address
= string_log_address(addr
,
1279 (log_write_selector
& L_all_parents
) != 0, result
== OK
);
1281 s
= string_cat(s
, &size
, &ptr
, log_address
, Ustrlen(log_address
));
1283 if ((log_extra_selector
& LX_sender_on_delivery
) != 0)
1284 s
= string_append(s
, &size
, &ptr
, 3, US
" F=<", sender_address
, US
">");
1286 /* Return path may not be set if no delivery actually happened */
1288 if (used_return_path
!= NULL
&&
1289 (log_extra_selector
& LX_return_path_on_delivery
) != 0)
1290 s
= string_append(s
, &size
, &ptr
, 3, US
" P=<", used_return_path
, US
">");
1292 if (addr
->router
!= NULL
)
1293 s
= string_append(s
, &size
, &ptr
, 2, US
" R=", addr
->router
->name
);
1294 if (addr
->transport
!= NULL
)
1295 s
= string_append(s
, &size
, &ptr
, 2, US
" T=", addr
->transport
->name
);
1297 if (addr
->host_used
!= NULL
)
1298 s
= d_hostlog(s
, &size
, &ptr
, addr
);
1301 s
= d_tlslog(s
, &size
, &ptr
, addr
);
1304 if (addr
->basic_errno
> 0)
1305 s
= string_append(s
, &size
, &ptr
, 2, US
": ",
1306 US
strerror(addr
->basic_errno
));
1308 if (addr
->message
!= NULL
)
1309 s
= string_append(s
, &size
, &ptr
, 2, US
": ", addr
->message
);
1313 /* Do the logging. For the message log, "routing failed" for those cases,
1314 just to make it clearer. */
1316 if (driver_name
== NULL
)
1317 deliver_msglog("%s %s failed for %s\n", now
, driver_kind
, s
);
1319 deliver_msglog("%s %s\n", now
, s
);
1321 log_write(0, LOG_MAIN
, "** %s", s
);
1322 store_reset(reset_point
);
1325 /* Ensure logging is turned on again in all cases */
1327 disable_logging
= FALSE
;
1333 /*************************************************
1334 * Address-independent error *
1335 *************************************************/
1337 /* This function is called when there's an error that is not dependent on a
1338 particular address, such as an expansion string failure. It puts the error into
1339 all the addresses in a batch, logs the incident on the main and panic logs, and
1340 clears the expansions. It is mostly called from local_deliver(), but can be
1341 called for a remote delivery via findugid().
1344 logit TRUE if (MAIN+PANIC) logging required
1345 addr the first of the chain of addresses
1347 format format string for error message, or NULL if already set in addr
1348 ... arguments for the format
1354 common_error(BOOL logit
, address_item
*addr
, int code
, uschar
*format
, ...)
1356 address_item
*addr2
;
1357 addr
->basic_errno
= code
;
1363 va_start(ap
, format
);
1364 if (!string_vformat(buffer
, sizeof(buffer
), CS format
, ap
))
1365 log_write(0, LOG_MAIN
|LOG_PANIC_DIE
,
1366 "common_error expansion was longer than " SIZE_T_FMT
, sizeof(buffer
));
1368 addr
->message
= string_copy(buffer
);
1371 for (addr2
= addr
->next
; addr2
!= NULL
; addr2
= addr2
->next
)
1373 addr2
->basic_errno
= code
;
1374 addr2
->message
= addr
->message
;
1377 if (logit
) log_write(0, LOG_MAIN
|LOG_PANIC
, "%s", addr
->message
);
1378 deliver_set_expansions(NULL
);
1384 /*************************************************
1385 * Check a "never users" list *
1386 *************************************************/
1388 /* This function is called to check whether a uid is on one of the two "never
1392 uid the uid to be checked
1393 nusers the list to be scanned; the first item in the list is the count
1395 Returns: TRUE if the uid is on the list
1399 check_never_users(uid_t uid
, uid_t
*nusers
)
1402 if (nusers
== NULL
) return FALSE
;
1403 for (i
= 1; i
<= (int)(nusers
[0]); i
++) if (nusers
[i
] == uid
) return TRUE
;
1409 /*************************************************
1410 * Find uid and gid for a transport *
1411 *************************************************/
1413 /* This function is called for both local and remote deliveries, to find the
1414 uid/gid under which to run the delivery. The values are taken preferentially
1415 from the transport (either explicit or deliver_as_creator), then from the
1416 address (i.e. the router), and if nothing is set, the exim uid/gid are used. If
1417 the resulting uid is on the "never_users" or the "fixed_never_users" list, a
1418 panic error is logged, and the function fails (which normally leads to delivery
1422 addr the address (possibly a chain)
1424 uidp pointer to uid field
1425 gidp pointer to gid field
1426 igfp pointer to the use_initgroups field
1428 Returns: FALSE if failed - error has been set in address(es)
1432 findugid(address_item
*addr
, transport_instance
*tp
, uid_t
*uidp
, gid_t
*gidp
,
1435 uschar
*nuname
= NULL
;
1436 BOOL gid_set
= FALSE
;
1438 /* Default initgroups flag comes from the transport */
1440 *igfp
= tp
->initgroups
;
1442 /* First see if there's a gid on the transport, either fixed or expandable.
1443 The expanding function always logs failure itself. */
1450 else if (tp
->expand_gid
!= NULL
)
1452 if (route_find_expanded_group(tp
->expand_gid
, tp
->name
, US
"transport", gidp
,
1453 &(addr
->message
))) gid_set
= TRUE
;
1456 common_error(FALSE
, addr
, ERRNO_GIDFAIL
, NULL
);
1461 /* If the transport did not set a group, see if the router did. */
1463 if (!gid_set
&& testflag(addr
, af_gid_set
))
1469 /* Pick up a uid from the transport if one is set. */
1471 if (tp
->uid_set
) *uidp
= tp
->uid
;
1473 /* Otherwise, try for an expandable uid field. If it ends up as a numeric id,
1474 it does not provide a passwd value from which a gid can be taken. */
1476 else if (tp
->expand_uid
!= NULL
)
1479 if (!route_find_expanded_user(tp
->expand_uid
, tp
->name
, US
"transport", &pw
,
1480 uidp
, &(addr
->message
)))
1482 common_error(FALSE
, addr
, ERRNO_UIDFAIL
, NULL
);
1485 if (!gid_set
&& pw
!= NULL
)
1492 /* If the transport doesn't set the uid, test the deliver_as_creator flag. */
1494 else if (tp
->deliver_as_creator
)
1496 *uidp
= originator_uid
;
1499 *gidp
= originator_gid
;
1504 /* Otherwise see if the address specifies the uid and if so, take it and its
1507 else if (testflag(addr
, af_uid_set
))
1510 *igfp
= testflag(addr
, af_initgroups
);
1513 /* Nothing has specified the uid - default to the Exim user, and group if the
1526 /* If no gid is set, it is a disaster. We default to the Exim gid only if
1527 defaulting to the Exim uid. In other words, if the configuration has specified
1528 a uid, it must also provide a gid. */
1532 common_error(TRUE
, addr
, ERRNO_GIDFAIL
, US
"User set without group for "
1533 "%s transport", tp
->name
);
1537 /* Check that the uid is not on the lists of banned uids that may not be used
1538 for delivery processes. */
1540 if (check_never_users(*uidp
, never_users
))
1541 nuname
= US
"never_users";
1542 else if (check_never_users(*uidp
, fixed_never_users
))
1543 nuname
= US
"fixed_never_users";
1547 common_error(TRUE
, addr
, ERRNO_UIDFAIL
, US
"User %ld set for %s transport "
1548 "is on the %s list", (long int)(*uidp
), tp
->name
, nuname
);
1560 /*************************************************
1561 * Check the size of a message for a transport *
1562 *************************************************/
1564 /* Checks that the message isn't too big for the selected transport.
1565 This is called only when it is known that the limit is set.
1569 addr the (first) address being delivered
1572 DEFER expansion failed or did not yield an integer
1573 FAIL message too big
1577 check_message_size(transport_instance
*tp
, address_item
*addr
)
1582 deliver_set_expansions(addr
);
1583 size_limit
= expand_string_integer(tp
->message_size_limit
, TRUE
);
1584 deliver_set_expansions(NULL
);
1586 if (expand_string_message
!= NULL
)
1589 if (size_limit
== -1)
1590 addr
->message
= string_sprintf("failed to expand message_size_limit "
1591 "in %s transport: %s", tp
->name
, expand_string_message
);
1593 addr
->message
= string_sprintf("invalid message_size_limit "
1594 "in %s transport: %s", tp
->name
, expand_string_message
);
1596 else if (size_limit
> 0 && message_size
> size_limit
)
1600 string_sprintf("message is too big (transport limit = %d)",
1609 /*************************************************
1610 * Transport-time check for a previous delivery *
1611 *************************************************/
1613 /* Check that this base address hasn't previously been delivered to its routed
1614 transport. If it has been delivered, mark it done. The check is necessary at
1615 delivery time in order to handle homonymic addresses correctly in cases where
1616 the pattern of redirection changes between delivery attempts (so the unique
1617 fields change). Non-homonymic previous delivery is detected earlier, at routing
1618 time (which saves unnecessary routing).
1621 addr the address item
1622 testing TRUE if testing wanted only, without side effects
1624 Returns: TRUE if previously delivered by the transport
1628 previously_transported(address_item
*addr
, BOOL testing
)
1630 (void)string_format(big_buffer
, big_buffer_size
, "%s/%s",
1631 addr
->unique
+ (testflag(addr
, af_homonym
)?
3:0), addr
->transport
->name
);
1633 if (tree_search(tree_nonrecipients
, big_buffer
) != 0)
1635 DEBUG(D_deliver
|D_route
|D_transport
)
1636 debug_printf("%s was previously delivered (%s transport): discarded\n",
1637 addr
->address
, addr
->transport
->name
);
1638 if (!testing
) child_done(addr
, tod_stamp(tod_log
));
1647 /******************************************************
1648 * Check for a given header in a header string *
1649 ******************************************************/
1651 /* This function is used when generating quota warnings. The configuration may
1652 specify any header lines it likes in quota_warn_message. If certain of them are
1653 missing, defaults are inserted, so we need to be able to test for the presence
1657 hdr the required header name
1658 hstring the header string
1660 Returns: TRUE the header is in the string
1661 FALSE the header is not in the string
1665 contains_header(uschar
*hdr
, uschar
*hstring
)
1667 int len
= Ustrlen(hdr
);
1668 uschar
*p
= hstring
;
1671 if (strncmpic(p
, hdr
, len
) == 0)
1674 while (*p
== ' ' || *p
== '\t') p
++;
1675 if (*p
== ':') return TRUE
;
1677 while (*p
!= 0 && *p
!= '\n') p
++;
1678 if (*p
== '\n') p
++;
1686 /*************************************************
1687 * Perform a local delivery *
1688 *************************************************/
1690 /* Each local delivery is performed in a separate process which sets its
1691 uid and gid as specified. This is a safer way than simply changing and
1692 restoring using seteuid(); there is a body of opinion that seteuid() cannot be
1693 used safely. From release 4, Exim no longer makes any use of it. Besides, not
1694 all systems have seteuid().
1696 If the uid/gid are specified in the transport_instance, they are used; the
1697 transport initialization must ensure that either both or neither are set.
1698 Otherwise, the values associated with the address are used. If neither are set,
1699 it is a configuration error.
1701 The transport or the address may specify a home directory (transport over-
1702 rides), and if they do, this is set as $home. If neither have set a working
1703 directory, this value is used for that as well. Otherwise $home is left unset
1704 and the cwd is set to "/" - a directory that should be accessible to all users.
1706 Using a separate process makes it more complicated to get error information
1707 back. We use a pipe to pass the return code and also an error code and error
1708 text string back to the parent process.
1711 addr points to an address block for this delivery; for "normal" local
1712 deliveries this is the only address to be delivered, but for
1713 pseudo-remote deliveries (e.g. by batch SMTP to a file or pipe)
1714 a number of addresses can be handled simultaneously, and in this
1715 case addr will point to a chain of addresses with the same
1718 shadowing TRUE if running a shadow transport; this causes output from pipes
1725 deliver_local(address_item
*addr
, BOOL shadowing
)
1727 BOOL use_initgroups
;
1730 int status
, len
, rc
;
1733 uschar
*working_directory
;
1734 address_item
*addr2
;
1735 transport_instance
*tp
= addr
->transport
;
1737 /* Set up the return path from the errors or sender address. If the transport
1738 has its own return path setting, expand it and replace the existing value. */
1740 if(addr
->p
.errors_address
!= NULL
)
1741 return_path
= addr
->p
.errors_address
;
1742 #ifdef EXPERIMENTAL_SRS
1743 else if(addr
->p
.srs_sender
!= NULL
)
1744 return_path
= addr
->p
.srs_sender
;
1747 return_path
= sender_address
;
1749 if (tp
->return_path
!= NULL
)
1751 uschar
*new_return_path
= expand_string(tp
->return_path
);
1752 if (new_return_path
== NULL
)
1754 if (!expand_string_forcedfail
)
1756 common_error(TRUE
, addr
, ERRNO_EXPANDFAIL
,
1757 US
"Failed to expand return path \"%s\" in %s transport: %s",
1758 tp
->return_path
, tp
->name
, expand_string_message
);
1762 else return_path
= new_return_path
;
1765 /* For local deliveries, one at a time, the value used for logging can just be
1766 set directly, once and for all. */
1768 used_return_path
= return_path
;
1770 /* Sort out the uid, gid, and initgroups flag. If an error occurs, the message
1771 gets put into the address(es), and the expansions are unset, so we can just
1774 if (!findugid(addr
, tp
, &uid
, &gid
, &use_initgroups
)) return;
1776 /* See if either the transport or the address specifies a home directory. A
1777 home directory set in the address may already be expanded; a flag is set to
1778 indicate that. In other cases we must expand it. */
1780 if ((deliver_home
= tp
->home_dir
) != NULL
|| /* Set in transport, or */
1781 ((deliver_home
= addr
->home_dir
) != NULL
&& /* Set in address and */
1782 !testflag(addr
, af_home_expanded
))) /* not expanded */
1784 uschar
*rawhome
= deliver_home
;
1785 deliver_home
= NULL
; /* in case it contains $home */
1786 deliver_home
= expand_string(rawhome
);
1787 if (deliver_home
== NULL
)
1789 common_error(TRUE
, addr
, ERRNO_EXPANDFAIL
, US
"home directory \"%s\" failed "
1790 "to expand for %s transport: %s", rawhome
, tp
->name
,
1791 expand_string_message
);
1794 if (*deliver_home
!= '/')
1796 common_error(TRUE
, addr
, ERRNO_NOTABSOLUTE
, US
"home directory path \"%s\" "
1797 "is not absolute for %s transport", deliver_home
, tp
->name
);
1802 /* See if either the transport or the address specifies a current directory,
1803 and if so, expand it. If nothing is set, use the home directory, unless it is
1804 also unset in which case use "/", which is assumed to be a directory to which
1805 all users have access. It is necessary to be in a visible directory for some
1806 operating systems when running pipes, as some commands (e.g. "rm" under Solaris
1807 2.5) require this. */
1809 working_directory
= (tp
->current_dir
!= NULL
)?
1810 tp
->current_dir
: addr
->current_dir
;
1812 if (working_directory
!= NULL
)
1814 uschar
*raw
= working_directory
;
1815 working_directory
= expand_string(raw
);
1816 if (working_directory
== NULL
)
1818 common_error(TRUE
, addr
, ERRNO_EXPANDFAIL
, US
"current directory \"%s\" "
1819 "failed to expand for %s transport: %s", raw
, tp
->name
,
1820 expand_string_message
);
1823 if (*working_directory
!= '/')
1825 common_error(TRUE
, addr
, ERRNO_NOTABSOLUTE
, US
"current directory path "
1826 "\"%s\" is not absolute for %s transport", working_directory
, tp
->name
);
1830 else working_directory
= (deliver_home
== NULL
)? US
"/" : deliver_home
;
1832 /* If one of the return_output flags is set on the transport, create and open a
1833 file in the message log directory for the transport to write its output onto.
1834 This is mainly used by pipe transports. The file needs to be unique to the
1835 address. This feature is not available for shadow transports. */
1837 if (!shadowing
&& (tp
->return_output
|| tp
->return_fail_output
||
1838 tp
->log_output
|| tp
->log_fail_output
))
1841 addr
->return_filename
=
1842 string_sprintf("%s/msglog/%s/%s-%d-%d", spool_directory
, message_subdir
,
1843 message_id
, getpid(), return_count
++);
1844 addr
->return_file
= open_msglog_file(addr
->return_filename
, 0400, &error
);
1845 if (addr
->return_file
< 0)
1847 common_error(TRUE
, addr
, errno
, US
"Unable to %s file for %s transport "
1848 "to return message: %s", error
, tp
->name
, strerror(errno
));
1853 /* Create the pipe for inter-process communication. */
1857 common_error(TRUE
, addr
, ERRNO_PIPEFAIL
, US
"Creation of pipe failed: %s",
1862 /* Now fork the process to do the real work in the subprocess, but first
1863 ensure that all cached resources are freed so that the subprocess starts with
1864 a clean slate and doesn't interfere with the parent process. */
1868 if ((pid
= fork()) == 0)
1870 BOOL replicate
= TRUE
;
1872 /* Prevent core dumps, as we don't want them in users' home directories.
1873 HP-UX doesn't have RLIMIT_CORE; I don't know how to do this in that
1874 system. Some experimental/developing systems (e.g. GNU/Hurd) may define
1875 RLIMIT_CORE but not support it in setrlimit(). For such systems, do not
1876 complain if the error is "not supported".
1878 There are two scenarios where changing the max limit has an effect. In one,
1879 the user is using a .forward and invoking a command of their choice via pipe;
1880 for these, we do need the max limit to be 0 unless the admin chooses to
1881 permit an increased limit. In the other, the command is invoked directly by
1882 the transport and is under administrator control, thus being able to raise
1883 the limit aids in debugging. So there's no general always-right answer.
1885 Thus we inhibit core-dumps completely but let individual transports, while
1886 still root, re-raise the limits back up to aid debugging. We make the
1887 default be no core-dumps -- few enough people can use core dumps in
1888 diagnosis that it's reasonable to make them something that has to be explicitly requested.
1895 if (setrlimit(RLIMIT_CORE
, &rl
) < 0)
1897 #ifdef SETRLIMIT_NOT_SUPPORTED
1898 if (errno
!= ENOSYS
&& errno
!= ENOTSUP
)
1900 log_write(0, LOG_MAIN
|LOG_PANIC
, "setrlimit(RLIMIT_CORE) failed: %s",
1905 /* Reset the random number generator, so different processes don't all
1906 have the same sequence. */
1910 /* If the transport has a setup entry, call this first, while still
1911 privileged. (Appendfile uses this to expand quota, for example, while
1912 able to read private files.) */
1914 if (addr
->transport
->setup
!= NULL
)
1916 switch((addr
->transport
->setup
)(addr
->transport
, addr
, NULL
, uid
, gid
,
1920 addr
->transport_return
= DEFER
;
1924 addr
->transport_return
= PANIC
;
1929 /* Ignore SIGINT and SIGTERM during delivery. Also ignore SIGUSR1, as
1930 when the process becomes unprivileged, it won't be able to write to the
1931 process log. SIGHUP is ignored throughout exim, except when it is being
1934 signal(SIGINT
, SIG_IGN
);
1935 signal(SIGTERM
, SIG_IGN
);
1936 signal(SIGUSR1
, SIG_IGN
);
1938 /* Close the unwanted half of the pipe, and set close-on-exec for the other
1939 half - for transports that exec things (e.g. pipe). Then set the required
1942 (void)close(pfd
[pipe_read
]);
1943 (void)fcntl(pfd
[pipe_write
], F_SETFD
, fcntl(pfd
[pipe_write
], F_GETFD
) |
1945 exim_setugid(uid
, gid
, use_initgroups
,
1946 string_sprintf("local delivery to %s <%s> transport=%s", addr
->local_part
,
1947 addr
->address
, addr
->transport
->name
));
1951 address_item
*batched
;
1952 debug_printf(" home=%s current=%s\n", deliver_home
, working_directory
);
1953 for (batched
= addr
->next
; batched
!= NULL
; batched
= batched
->next
)
1954 debug_printf("additional batched address: %s\n", batched
->address
);
1957 /* Set an appropriate working directory. */
1959 if (Uchdir(working_directory
) < 0)
1961 addr
->transport_return
= DEFER
;
1962 addr
->basic_errno
= errno
;
1963 addr
->message
= string_sprintf("failed to chdir to %s", working_directory
);
1966 /* If successful, call the transport */
1971 set_process_info("delivering %s to %s using %s", message_id
,
1972 addr
->local_part
, addr
->transport
->name
);
1974 /* Setting this global in the subprocess means we need never clear it */
1975 transport_name
= addr
->transport
->name
;
1977 /* If a transport filter has been specified, set up its argument list.
1978 Any errors will get put into the address, and FALSE yielded. */
1980 if (addr
->transport
->filter_command
!= NULL
)
1982 ok
= transport_set_up_command(&transport_filter_argv
,
1983 addr
->transport
->filter_command
,
1984 TRUE
, PANIC
, addr
, US
"transport filter", NULL
);
1985 transport_filter_timeout
= addr
->transport
->filter_timeout
;
1987 else transport_filter_argv
= NULL
;
1991 debug_print_string(addr
->transport
->debug_string
);
1992 replicate
= !(addr
->transport
->info
->code
)(addr
->transport
, addr
);
1996 /* Pass the results back down the pipe. If necessary, first replicate the
1997 status in the top address to the others in the batch. The label is the
1998 subject of a goto when a call to the transport's setup function fails. We
1999 pass the pointer to the transport back in case it got changed as a result of
2000 file_format in appendfile. */
2004 if (replicate
) replicate_status(addr
);
2005 for (addr2
= addr
; addr2
!= NULL
; addr2
= addr2
->next
)
2008 int local_part_length
= Ustrlen(addr2
->local_part
);
2012 if( (ret
= write(pfd
[pipe_write
], (void *)&(addr2
->transport_return
), sizeof(int))) != sizeof(int)
2013 || (ret
= write(pfd
[pipe_write
], (void *)&transport_count
, sizeof(transport_count
))) != sizeof(transport_count
)
2014 || (ret
= write(pfd
[pipe_write
], (void *)&(addr2
->flags
), sizeof(addr2
->flags
))) != sizeof(addr2
->flags
)
2015 || (ret
= write(pfd
[pipe_write
], (void *)&(addr2
->basic_errno
), sizeof(int))) != sizeof(int)
2016 || (ret
= write(pfd
[pipe_write
], (void *)&(addr2
->more_errno
), sizeof(int))) != sizeof(int)
2017 || (ret
= write(pfd
[pipe_write
], (void *)&(addr2
->special_action
), sizeof(int))) != sizeof(int)
2018 || (ret
= write(pfd
[pipe_write
], (void *)&(addr2
->transport
),
2019 sizeof(transport_instance
*))) != sizeof(transport_instance
*)
2021 /* For a file delivery, pass back the local part, in case the original
2022 was only part of the final delivery path. This gives more complete
2025 || (testflag(addr2
, af_file
)
2026 && ( (ret
= write(pfd
[pipe_write
], (void *)&local_part_length
, sizeof(int))) != sizeof(int)
2027 || (ret
= write(pfd
[pipe_write
], addr2
->local_part
, local_part_length
)) != local_part_length
2031 log_write(0, LOG_MAIN
|LOG_PANIC
, "Failed writing transport results to pipe: %s\n",
2032 ret
== -1 ?
strerror(errno
) : "short write");
2034 /* Now any messages */
2036 for (i
= 0, s
= addr2
->message
; i
< 2; i
++, s
= addr2
->user_message
)
2038 int message_length
= (s
== NULL
)?
0 : Ustrlen(s
) + 1;
2039 if( (ret
= write(pfd
[pipe_write
], (void *)&message_length
, sizeof(int))) != sizeof(int)
2040 || (message_length
> 0 && (ret
= write(pfd
[pipe_write
], s
, message_length
)) != message_length
)
2042 log_write(0, LOG_MAIN
|LOG_PANIC
, "Failed writing transport results to pipe: %s\n",
2043 ret
== -1 ?
strerror(errno
) : "short write");
2047 /* OK, this process is now done. Free any cached resources that it opened,
2048 and close the pipe we were writing down before exiting. */
2050 (void)close(pfd
[pipe_write
]);
2055 /* Back in the main process: panic if the fork did not succeed. This seems
2056 better than returning an error - if forking is failing it is probably best
2057 not to try other deliveries for this message. */
2060 log_write(0, LOG_MAIN
|LOG_PANIC_DIE
, "Fork failed for local delivery to %s",
2063 /* Read the pipe to get the delivery status codes and error messages. Our copy
2064 of the writing end must be closed first, as otherwise read() won't return zero
2065 on an empty pipe. We check that a status exists for each address before
2066 overwriting the address structure. If data is missing, the default DEFER status
2067 will remain. Afterwards, close the reading end. */
2069 (void)close(pfd
[pipe_write
]);
2071 for (addr2
= addr
; addr2
!= NULL
; addr2
= addr2
->next
)
2073 len
= read(pfd
[pipe_read
], (void *)&status
, sizeof(int));
2079 addr2
->transport_return
= status
;
2080 len
= read(pfd
[pipe_read
], (void *)&transport_count
,
2081 sizeof(transport_count
));
2082 len
= read(pfd
[pipe_read
], (void *)&(addr2
->flags
), sizeof(addr2
->flags
));
2083 len
= read(pfd
[pipe_read
], (void *)&(addr2
->basic_errno
), sizeof(int));
2084 len
= read(pfd
[pipe_read
], (void *)&(addr2
->more_errno
), sizeof(int));
2085 len
= read(pfd
[pipe_read
], (void *)&(addr2
->special_action
), sizeof(int));
2086 len
= read(pfd
[pipe_read
], (void *)&(addr2
->transport
),
2087 sizeof(transport_instance
*));
2089 if (testflag(addr2
, af_file
))
2091 int local_part_length
;
2092 len
= read(pfd
[pipe_read
], (void *)&local_part_length
, sizeof(int));
2093 len
= read(pfd
[pipe_read
], (void *)big_buffer
, local_part_length
);
2094 big_buffer
[local_part_length
] = 0;
2095 addr2
->local_part
= string_copy(big_buffer
);
2098 for (i
= 0, sptr
= &(addr2
->message
); i
< 2;
2099 i
++, sptr
= &(addr2
->user_message
))
2102 len
= read(pfd
[pipe_read
], (void *)&message_length
, sizeof(int));
2103 if (message_length
> 0)
2105 len
= read(pfd
[pipe_read
], (void *)big_buffer
, message_length
);
2106 if (len
> 0) *sptr
= string_copy(big_buffer
);
2113 log_write(0, LOG_MAIN
|LOG_PANIC
, "failed to read delivery status for %s "
2114 "from delivery subprocess", addr2
->unique
);
2119 (void)close(pfd
[pipe_read
]);
2121 /* Unless shadowing, write all successful addresses immediately to the journal
2122 file, to ensure they are recorded asap. For homonymic addresses, use the base
2123 address plus the transport name. Failure to write the journal is panic-worthy,
2124 but don't stop, as it may prove possible subsequently to update the spool file
2125 in order to record the delivery. */
2129 for (addr2
= addr
; addr2
!= NULL
; addr2
= addr2
->next
)
2131 if (addr2
->transport_return
!= OK
) continue;
2133 if (testflag(addr2
, af_homonym
))
2134 sprintf(CS big_buffer
, "%.500s/%s\n", addr2
->unique
+ 3, tp
->name
);
2136 sprintf(CS big_buffer
, "%.500s\n", addr2
->unique
);
2138 /* In the test harness, wait just a bit to let the subprocess finish off
2139 any debug output etc first. */
2141 if (running_in_test_harness
) millisleep(300);
2143 DEBUG(D_deliver
) debug_printf("journalling %s", big_buffer
);
2144 len
= Ustrlen(big_buffer
);
2145 if (write(journal_fd
, big_buffer
, len
) != len
)
2146 log_write(0, LOG_MAIN
|LOG_PANIC
, "failed to update journal for %s: %s",
2147 big_buffer
, strerror(errno
));
2150 /* Ensure the journal file is pushed out to disk. */
2152 if (EXIMfsync(journal_fd
) < 0)
2153 log_write(0, LOG_MAIN
|LOG_PANIC
, "failed to fsync journal: %s",
2157 /* Wait for the process to finish. If it terminates with a non-zero code,
2158 freeze the message (except for SIGTERM, SIGKILL and SIGQUIT), but leave the
2159 status values of all the addresses as they are. Take care to handle the case
2160 when the subprocess doesn't seem to exist. This has been seen on one system
2161 when Exim was called from an MUA that set SIGCHLD to SIG_IGN. When that
2162 happens, wait() doesn't recognize the termination of child processes. Exim now
2163 resets SIGCHLD to SIG_DFL, but this code should still be robust. */
2165 while ((rc
= wait(&status
)) != pid
)
2167 if (rc
< 0 && errno
== ECHILD
) /* Process has vanished */
2169 log_write(0, LOG_MAIN
, "%s transport process vanished unexpectedly",
2170 addr
->transport
->driver_name
);
2176 if ((status
& 0xffff) != 0)
2178 int msb
= (status
>> 8) & 255;
2179 int lsb
= status
& 255;
2180 int code
= (msb
== 0)?
(lsb
& 0x7f) : msb
;
2181 if (msb
!= 0 || (code
!= SIGTERM
&& code
!= SIGKILL
&& code
!= SIGQUIT
))
2182 addr
->special_action
= SPECIAL_FREEZE
;
2183 log_write(0, LOG_MAIN
|LOG_PANIC
, "%s transport process returned non-zero "
2184 "status 0x%04x: %s %d",
2185 addr
->transport
->driver_name
,
2187 (msb
== 0)?
"terminated by signal" : "exit code",
2191 /* If SPECIAL_WARN is set in the top address, send a warning message. */
2193 if (addr
->special_action
== SPECIAL_WARN
&&
2194 addr
->transport
->warn_message
!= NULL
)
2197 uschar
*warn_message
;
2199 DEBUG(D_deliver
) debug_printf("Warning message requested by transport\n");
2201 warn_message
= expand_string(addr
->transport
->warn_message
);
2202 if (warn_message
== NULL
)
2203 log_write(0, LOG_MAIN
|LOG_PANIC
, "Failed to expand \"%s\" (warning "
2204 "message for %s transport): %s", addr
->transport
->warn_message
,
2205 addr
->transport
->name
, expand_string_message
);
2208 pid_t pid
= child_open_exim(&fd
);
2211 FILE *f
= fdopen(fd
, "wb");
2212 if (errors_reply_to
!= NULL
&&
2213 !contains_header(US
"Reply-To", warn_message
))
2214 fprintf(f
, "Reply-To: %s\n", errors_reply_to
);
2215 fprintf(f
, "Auto-Submitted: auto-replied\n");
2216 if (!contains_header(US
"From", warn_message
)) moan_write_from(f
);
2217 fprintf(f
, "%s", CS warn_message
);
2219 /* Close and wait for child process to complete, without a timeout. */
2222 (void)child_close(pid
, 0);
2226 addr
->special_action
= SPECIAL_NONE
;
2232 /*************************************************
2233 * Do local deliveries *
2234 *************************************************/
2236 /* This function processes the list of addresses in addr_local. True local
2237 deliveries are always done one address at a time. However, local deliveries can
2238 be batched up in some cases. Typically this is when writing batched SMTP output
2239 files for use by some external transport mechanism, or when running local
2240 deliveries over LMTP.
2247 do_local_deliveries(void)
2250 open_db
*dbm_file
= NULL
;
2251 time_t now
= time(NULL
);
2253 /* Loop until we have exhausted the supply of local deliveries */
2255 while (addr_local
!= NULL
)
2257 time_t delivery_start
;
2259 address_item
*addr2
, *addr3
, *nextaddr
;
2260 int logflags
= LOG_MAIN
;
2261 int logchar
= dont_deliver?
'*' : '=';
2262 transport_instance
*tp
;
2264 /* Pick the first undelivered address off the chain */
2266 address_item
*addr
= addr_local
;
2267 addr_local
= addr
->next
;
2270 DEBUG(D_deliver
|D_transport
)
2271 debug_printf("--------> %s <--------\n", addr
->address
);
2273 /* An internal disaster if there is no transport. Should not occur! */
2275 if ((tp
= addr
->transport
) == NULL
)
2277 logflags
|= LOG_PANIC
;
2278 disable_logging
= FALSE
; /* Jic */
2280 (addr
->router
!= NULL
)?
2281 string_sprintf("No transport set by %s router", addr
->router
->name
)
2283 string_sprintf("No transport set by system filter");
2284 post_process_one(addr
, DEFER
, logflags
, DTYPE_TRANSPORT
, 0);
2288 /* Check that this base address hasn't previously been delivered to this
2289 transport. The check is necessary at this point to handle homonymic addresses
2290 correctly in cases where the pattern of redirection changes between delivery
2291 attempts. Non-homonymic previous delivery is detected earlier, at routing
2294 if (previously_transported(addr
, FALSE
)) continue;
2296 /* There are weird cases where logging is disabled */
2298 disable_logging
= tp
->disable_logging
;
2300 /* Check for batched addresses and possible amalgamation. Skip all the work
2301 if either batch_max <= 1 or there aren't any other addresses for local
2304 if (tp
->batch_max
> 1 && addr_local
!= NULL
)
2306 int batch_count
= 1;
2307 BOOL uses_dom
= readconf_depends((driver_instance
*)tp
, US
"domain");
2308 BOOL uses_lp
= (testflag(addr
, af_pfr
) &&
2309 (testflag(addr
, af_file
) || addr
->local_part
[0] == '|')) ||
2310 readconf_depends((driver_instance
*)tp
, US
"local_part");
2311 uschar
*batch_id
= NULL
;
2312 address_item
**anchor
= &addr_local
;
2313 address_item
*last
= addr
;
2316 /* Expand the batch_id string for comparison with other addresses.
2317 Expansion failure suppresses batching. */
2319 if (tp
->batch_id
!= NULL
)
2321 deliver_set_expansions(addr
);
2322 batch_id
= expand_string(tp
->batch_id
);
2323 deliver_set_expansions(NULL
);
2324 if (batch_id
== NULL
)
2326 log_write(0, LOG_MAIN
|LOG_PANIC
, "Failed to expand batch_id option "
2327 "in %s transport (%s): %s", tp
->name
, addr
->address
,
2328 expand_string_message
);
2329 batch_count
= tp
->batch_max
;
2333 /* Until we reach the batch_max limit, pick off addresses which have the
2334 same characteristics. These are:
2337 not previously delivered (see comment about 50 lines above)
2338 same local part if the transport's configuration contains $local_part
2339 or if this is a file or pipe delivery from a redirection
2340 same domain if the transport's configuration contains $domain
2342 same additional headers
2343 same headers to be removed
2344 same uid/gid for running the transport
2345 same first host if a host list is set
2348 while ((next
= *anchor
) != NULL
&& batch_count
< tp
->batch_max
)
2351 tp
== next
->transport
&&
2352 !previously_transported(next
, TRUE
) &&
2353 (addr
->flags
& (af_pfr
|af_file
)) == (next
->flags
& (af_pfr
|af_file
)) &&
2354 (!uses_lp
|| Ustrcmp(next
->local_part
, addr
->local_part
) == 0) &&
2355 (!uses_dom
|| Ustrcmp(next
->domain
, addr
->domain
) == 0) &&
2356 same_strings(next
->p
.errors_address
, addr
->p
.errors_address
) &&
2357 same_headers(next
->p
.extra_headers
, addr
->p
.extra_headers
) &&
2358 same_strings(next
->p
.remove_headers
, addr
->p
.remove_headers
) &&
2359 same_ugid(tp
, addr
, next
) &&
2360 ((addr
->host_list
== NULL
&& next
->host_list
== NULL
) ||
2361 (addr
->host_list
!= NULL
&& next
->host_list
!= NULL
&&
2362 Ustrcmp(addr
->host_list
->name
, next
->host_list
->name
) == 0));
2364 /* If the transport has a batch_id setting, batch_id will be non-NULL
2365 from the expansion outside the loop. Expand for this address and compare.
2366 Expansion failure makes this address ineligible for batching. */
2368 if (ok
&& batch_id
!= NULL
)
2371 address_item
*save_nextnext
= next
->next
;
2372 next
->next
= NULL
; /* Expansion for a single address */
2373 deliver_set_expansions(next
);
2374 next
->next
= save_nextnext
;
2375 bid
= expand_string(tp
->batch_id
);
2376 deliver_set_expansions(NULL
);
2379 log_write(0, LOG_MAIN
|LOG_PANIC
, "Failed to expand batch_id option "
2380 "in %s transport (%s): %s", tp
->name
, next
->address
,
2381 expand_string_message
);
2384 else ok
= (Ustrcmp(batch_id
, bid
) == 0);
2387 /* Take address into batch if OK. */
2391 *anchor
= next
->next
; /* Include the address */
2397 else anchor
= &(next
->next
); /* Skip the address */
2401 /* We now have one or more addresses that can be delivered in a batch. Check
2402 whether the transport is prepared to accept a message of this size. If not,
2403 fail them all forthwith. If the expansion fails, or does not yield an
2404 integer, defer delivery. */
2406 if (tp
->message_size_limit
!= NULL
)
2408 int rc
= check_message_size(tp
, addr
);
2411 replicate_status(addr
);
2412 while (addr
!= NULL
)
2415 post_process_one(addr
, rc
, logflags
, DTYPE_TRANSPORT
, 0);
2418 continue; /* With next batch of addresses */
2422 /* If we are not running the queue, or if forcing, all deliveries will be
2423 attempted. Otherwise, we must respect the retry times for each address. Even
2424 when not doing this, we need to set up the retry key string, and determine
2425 whether a retry record exists, because after a successful delivery, a delete
2426 retry item must be set up. Keep the retry database open only for the duration
2427 of these checks, rather than for all local deliveries, because some local
2428 deliveries (e.g. to pipes) can take a substantial time. */
2430 dbm_file
= dbfn_open(US
"retry", O_RDONLY
, &dbblock
, FALSE
);
2431 if (dbm_file
== NULL
)
2433 DEBUG(D_deliver
|D_retry
|D_hints_lookup
)
2434 debug_printf("no retry data available\n");
2439 while (addr2
!= NULL
)
2441 BOOL ok
= TRUE
; /* to deliver this address */
2444 /* Set up the retry key to include the domain or not, and change its
2445 leading character from "R" to "T". Must make a copy before doing this,
2446 because the old key may be pointed to from a "delete" retry item after
2449 retry_key
= string_copy(
2450 (tp
->retry_use_local_part
)? addr2
->address_retry_key
:
2451 addr2
->domain_retry_key
);
2454 /* Inspect the retry data. If there is no hints file, delivery happens. */
2456 if (dbm_file
!= NULL
)
2458 dbdata_retry
*retry_record
= dbfn_read(dbm_file
, retry_key
);
2460 /* If there is no retry record, delivery happens. If there is,
2461 remember it exists so it can be deleted after a successful delivery. */
2463 if (retry_record
!= NULL
)
2465 setflag(addr2
, af_lt_retry_exists
);
2467 /* A retry record exists for this address. If queue running and not
2468 forcing, inspect its contents. If the record is too old, or if its
2469 retry time has come, or if it has passed its cutoff time, delivery
2474 debug_printf("retry record exists: age=%s ",
2475 readconf_printtime(now
- retry_record
->time_stamp
));
2476 debug_printf("(max %s)\n", readconf_printtime(retry_data_expire
));
2477 debug_printf(" time to retry = %s expired = %d\n",
2478 readconf_printtime(retry_record
->next_try
- now
),
2479 retry_record
->expired
);
2482 if (queue_running
&& !deliver_force
)
2484 ok
= (now
- retry_record
->time_stamp
> retry_data_expire
) ||
2485 (now
>= retry_record
->next_try
) ||
2486 retry_record
->expired
;
2488 /* If we haven't reached the retry time, there is one more check
2489 to do, which is for the ultimate address timeout. */
2492 ok
= retry_ultimate_address_timeout(retry_key
, addr2
->domain
,
2496 else DEBUG(D_retry
) debug_printf("no retry record exists\n");
2499 /* This address is to be delivered. Leave it on the chain. */
2504 addr2
= addr2
->next
;
2507 /* This address is to be deferred. Take it out of the chain, and
2508 post-process it as complete. Must take it out of the chain first,
2509 because post processing puts it on another chain. */
2513 address_item
*this = addr2
;
2514 this->message
= US
"Retry time not yet reached";
2515 this->basic_errno
= ERRNO_LRETRY
;
2516 if (addr3
== NULL
) addr2
= addr
= addr2
->next
;
2517 else addr2
= addr3
->next
= addr2
->next
;
2518 post_process_one(this, DEFER
, logflags
, DTYPE_TRANSPORT
, 0);
2522 if (dbm_file
!= NULL
) dbfn_close(dbm_file
);
2524 /* If there are no addresses left on the chain, they all deferred. Loop
2525 for the next set of addresses. */
2527 if (addr
== NULL
) continue;
2529 /* So, finally, we do have some addresses that can be passed to the
2530 transport. Before doing so, set up variables that are relevant to a
2533 deliver_set_expansions(addr
);
2534 delivery_start
= time(NULL
);
2535 deliver_local(addr
, FALSE
);
2536 deliver_time
= (int)(time(NULL
) - delivery_start
);
2538 /* If a shadow transport (which must perforce be another local transport), is
2539 defined, and its condition is met, we must pass the message to the shadow
2540 too, but only those addresses that succeeded. We do this by making a new
2541 chain of addresses - also to keep the original chain uncontaminated. We must
2542 use a chain rather than doing it one by one, because the shadow transport may
2545 NOTE: if the condition fails because of a lookup defer, there is nothing we
2548 if (tp
->shadow
!= NULL
&&
2549 (tp
->shadow_condition
== NULL
||
2550 expand_check_condition(tp
->shadow_condition
, tp
->name
, US
"transport")))
2552 transport_instance
*stp
;
2553 address_item
*shadow_addr
= NULL
;
2554 address_item
**last
= &shadow_addr
;
2556 for (stp
= transports
; stp
!= NULL
; stp
= stp
->next
)
2557 if (Ustrcmp(stp
->name
, tp
->shadow
) == 0) break;
2560 log_write(0, LOG_MAIN
|LOG_PANIC
, "shadow transport \"%s\" not found ",
2563 /* Pick off the addresses that have succeeded, and make clones. Put into
2564 the shadow_message field a pointer to the shadow_message field of the real
2567 else for (addr2
= addr
; addr2
!= NULL
; addr2
= addr2
->next
)
2569 if (addr2
->transport_return
!= OK
) continue;
2570 addr3
= store_get(sizeof(address_item
));
2573 addr3
->shadow_message
= (uschar
*)(&(addr2
->shadow_message
));
2574 addr3
->transport
= stp
;
2575 addr3
->transport_return
= DEFER
;
2576 addr3
->return_filename
= NULL
;
2577 addr3
->return_file
= -1;
2579 last
= &(addr3
->next
);
2582 /* If we found any addresses to shadow, run the delivery, and stick any
2583 message back into the shadow_message field in the original. */
2585 if (shadow_addr
!= NULL
)
2587 int save_count
= transport_count
;
2589 DEBUG(D_deliver
|D_transport
)
2590 debug_printf(">>>>>>>>>>>>>>>> Shadow delivery >>>>>>>>>>>>>>>>\n");
2591 deliver_local(shadow_addr
, TRUE
);
2593 for(; shadow_addr
!= NULL
; shadow_addr
= shadow_addr
->next
)
2595 int sresult
= shadow_addr
->transport_return
;
2596 *((uschar
**)(shadow_addr
->shadow_message
)) = (sresult
== OK
)?
2597 string_sprintf(" ST=%s", stp
->name
) :
2598 string_sprintf(" ST=%s (%s%s%s)", stp
->name
,
2599 (shadow_addr
->basic_errno
<= 0)?
2600 US
"" : US
strerror(shadow_addr
->basic_errno
),
2601 (shadow_addr
->basic_errno
<= 0 || shadow_addr
->message
== NULL
)?
2603 (shadow_addr
->message
!= NULL
)? shadow_addr
->message
:
2604 (shadow_addr
->basic_errno
<= 0)? US
"unknown error" : US
"");
2606 DEBUG(D_deliver
|D_transport
)
2607 debug_printf("%s shadow transport returned %s for %s\n",
2609 (sresult
== OK
)?
"OK" :
2610 (sresult
== DEFER
)?
"DEFER" :
2611 (sresult
== FAIL
)?
"FAIL" :
2612 (sresult
== PANIC
)?
"PANIC" : "?",
2613 shadow_addr
->address
);
2616 DEBUG(D_deliver
|D_transport
)
2617 debug_printf(">>>>>>>>>>>>>>>> End shadow delivery >>>>>>>>>>>>>>>>\n");
2619 transport_count
= save_count
; /* Restore original transport count */
2623 /* Cancel the expansions that were set up for the delivery. */
2625 deliver_set_expansions(NULL
);
2627 /* Now we can process the results of the real transport. We must take each
2628 address off the chain first, because post_process_one() puts it on another
2631 for (addr2
= addr
; addr2
!= NULL
; addr2
= nextaddr
)
2633 int result
= addr2
->transport_return
;
2634 nextaddr
= addr2
->next
;
2636 DEBUG(D_deliver
|D_transport
)
2637 debug_printf("%s transport returned %s for %s\n",
2639 (result
== OK
)?
"OK" :
2640 (result
== DEFER
)?
"DEFER" :
2641 (result
== FAIL
)?
"FAIL" :
2642 (result
== PANIC
)?
"PANIC" : "?",
2645 /* If there is a retry_record, or if delivery is deferred, build a retry
2646 item for setting a new retry time or deleting the old retry record from
2647 the database. These items are handled all together after all addresses
2648 have been handled (so the database is open just for a short time for
2651 if (result
== DEFER
|| testflag(addr2
, af_lt_retry_exists
))
2653 int flags
= (result
== DEFER
)?
0 : rf_delete
;
2654 uschar
*retry_key
= string_copy((tp
->retry_use_local_part
)?
2655 addr2
->address_retry_key
: addr2
->domain_retry_key
);
2657 retry_add_item(addr2
, retry_key
, flags
);
2660 /* Done with this address */
2662 if (result
== OK
) addr2
->more_errno
= deliver_time
;
2663 post_process_one(addr2
, result
, logflags
, DTYPE_TRANSPORT
, logchar
);
2665 /* If a pipe delivery generated text to be sent back, the result may be
2666 changed to FAIL, and we must copy this for subsequent addresses in the
2669 if (addr2
->transport_return
!= result
)
2671 for (addr3
= nextaddr
; addr3
!= NULL
; addr3
= addr3
->next
)
2673 addr3
->transport_return
= addr2
->transport_return
;
2674 addr3
->basic_errno
= addr2
->basic_errno
;
2675 addr3
->message
= addr2
->message
;
2677 result
= addr2
->transport_return
;
2680 /* Whether or not the result was changed to FAIL, we need to copy the
2681 return_file value from the first address into all the addresses of the
2682 batch, so they are all listed in the error message. */
2684 addr2
->return_file
= addr
->return_file
;
2686 /* Change log character for recording successful deliveries. */
2688 if (result
== OK
) logchar
= '-';
2690 } /* Loop back for next batch of addresses */
2696 /*************************************************
2697 * Sort remote deliveries *
2698 *************************************************/
2700 /* This function is called if remote_sort_domains is set. It arranges that the
2701 chain of addresses for remote deliveries is ordered according to the strings
2702 specified. Try to make this shuffling reasonably efficient by handling
2703 sequences of addresses rather than just single ones.
2710 sort_remote_deliveries(void)
2713 address_item
**aptr
= &addr_remote
;
2714 uschar
*listptr
= remote_sort_domains
;
2718 while (*aptr
!= NULL
&&
2719 (pattern
= string_nextinlist(&listptr
, &sep
, patbuf
, sizeof(patbuf
)))
2722 address_item
*moved
= NULL
;
2723 address_item
**bptr
= &moved
;
2725 while (*aptr
!= NULL
)
2727 address_item
**next
;
2728 deliver_domain
= (*aptr
)->domain
; /* set $domain */
2729 if (match_isinlist(deliver_domain
, &pattern
, UCHAR_MAX
+1,
2730 &domainlist_anchor
, NULL
, MCL_DOMAIN
, TRUE
, NULL
) == OK
)
2732 aptr
= &((*aptr
)->next
);
2736 next
= &((*aptr
)->next
);
2737 while (*next
!= NULL
&&
2738 (deliver_domain
= (*next
)->domain
, /* Set $domain */
2739 match_isinlist(deliver_domain
, &pattern
, UCHAR_MAX
+1,
2740 &domainlist_anchor
, NULL
, MCL_DOMAIN
, TRUE
, NULL
)) != OK
)
2741 next
= &((*next
)->next
);
2743 /* If the batch of non-matchers is at the end, add on any that were
2744 extracted further up the chain, and end this iteration. Otherwise,
2745 extract them from the chain and hang on the moved chain. */
2757 aptr
= &((*aptr
)->next
);
2760 /* If the loop ended because the final address matched, *aptr will
2761 be NULL. Add on to the end any extracted non-matching addresses. If
2762 *aptr is not NULL, the loop ended via "break" when *next is null, that
2763 is, there was a string of non-matching addresses at the end. In this
2764 case the extracted addresses have already been added on the end. */
2766 if (*aptr
== NULL
) *aptr
= moved
;
2772 debug_printf("remote addresses after sorting:\n");
2773 for (addr
= addr_remote
; addr
!= NULL
; addr
= addr
->next
)
2774 debug_printf(" %s\n", addr
->address
);
2780 /*************************************************
2781 * Read from pipe for remote delivery subprocess *
2782 *************************************************/
2784 /* This function is called when the subprocess is complete, but can also be
2785 called before it is complete, in order to empty a pipe that is full (to prevent
2786 deadlock). It must therefore keep track of its progress in the parlist data
2789 We read the pipe to get the delivery status codes and a possible error message
2790 for each address, optionally preceded by unusability data for the hosts and
2791 also by optional retry data.
2793 Read in large chunks into the big buffer and then scan through, interpreting
2794 the data therein. In most cases, only a single read will be necessary. No
2795 individual item will ever be anywhere near 2500 bytes in length, so by ensuring
2796 that we read the next chunk when there is less than 2500 bytes left in the
2797 non-final chunk, we can assume each item is complete in the buffer before
2798 handling it. Each item is written using a single write(), which is atomic for
2799 small items (less than PIPE_BUF, which seems to be at least 512 in any Unix and
2800 often bigger) so even if we are reading while the subprocess is still going, we
2801 should never have only a partial item in the buffer.
2804 poffset the offset of the parlist item
2805 eop TRUE if the process has completed
2807 Returns: TRUE if the terminating 'Z' item has been read,
2808 or there has been a disaster (i.e. no more data needed);
2813 par_read_pipe(int poffset
, BOOL eop
)
2816 pardata
*p
= parlist
+ poffset
;
2817 address_item
*addrlist
= p
->addrlist
;
2818 address_item
*addr
= p
->addr
;
2821 uschar
*endptr
= big_buffer
;
2822 uschar
*ptr
= endptr
;
2823 uschar
*msg
= p
->msg
;
2824 BOOL done
= p
->done
;
2825 BOOL unfinished
= TRUE
;
2827 /* Loop through all items, reading from the pipe when necessary. The pipe
2828 is set up to be non-blocking, but there are two different Unix mechanisms in
2829 use. Exim uses O_NONBLOCK if it is defined. This returns 0 for end of file,
2830 and EAGAIN for no more data. If O_NONBLOCK is not defined, Exim uses O_NDELAY,
2831 which returns 0 for both end of file and no more data. We distinguish the
2832 two cases by taking 0 as end of file only when we know the process has
2835 Each separate item is written to the pipe in a single write(), and as they are
2836 all short items, the writes will all be atomic and we should never find
2837 ourselves in the position of having read an incomplete item. "Short" in this
2838 case can mean up to about 1K in the case when there is a long error message
2839 associated with an address. */
2841 DEBUG(D_deliver
) debug_printf("reading pipe for subprocess %d (%s)\n",
2842 (int)p
->pid
, eop?
"ended" : "not ended");
2846 retry_item
*r
, **rp
;
2847 int remaining
= endptr
- ptr
;
2849 /* Read (first time) or top up the chars in the buffer if necessary.
2850 There will be only one read if we get all the available data (i.e. don't
2851 fill the buffer completely). */
2853 if (remaining
< 2500 && unfinished
)
2856 int available
= big_buffer_size
- remaining
;
2858 if (remaining
> 0) memmove(big_buffer
, ptr
, remaining
);
2861 endptr
= big_buffer
+ remaining
;
2862 len
= read(fd
, endptr
, available
);
2864 DEBUG(D_deliver
) debug_printf("read() yielded %d\n", len
);
2866 /* If the result is EAGAIN and the process is not complete, just
2867 stop reading any more and process what we have already. */
2871 if (!eop
&& errno
== EAGAIN
) len
= 0; else
2873 msg
= string_sprintf("failed to read pipe from transport process "
2874 "%d for transport %s: %s", pid
, addr
->transport
->driver_name
,
2880 /* If the length is zero (eof or no-more-data), just process what we
2881 already have. Note that if the process is still running and we have
2882 read all the data in the pipe (but less that "available") then we
2883 won't read any more, as "unfinished" will get set FALSE. */
2886 unfinished
= len
== available
;
2889 /* If we are at the end of the available data, exit the loop. */
2891 if (ptr
>= endptr
) break;
2893 /* Handle each possible type of item, assuming the complete item is
2894 available in store. */
2898 /* Host items exist only if any hosts were marked unusable. Match
2899 up by checking the IP address. */
2902 for (h
= addrlist
->host_list
; h
!= NULL
; h
= h
->next
)
2904 if (h
->address
== NULL
|| Ustrcmp(h
->address
, ptr
+2) != 0) continue;
2912 /* Retry items are sent in a preceding R item for each address. This is
2913 kept separate to keep each message short enough to guarantee it won't
2914 be split in the pipe. Hopefully, in the majority of cases, there won't in
2915 fact be any retry items at all.
2917 The complete set of retry items might include an item to delete a
2918 routing retry if there was a previous routing delay. However, routing
2919 retries are also used when a remote transport identifies an address error.
2920 In that case, there may also be an "add" item for the same key. Arrange
2921 that a "delete" item is dropped in favour of an "add" item. */
2924 if (addr
== NULL
) goto ADDR_MISMATCH
;
2926 DEBUG(D_deliver
|D_retry
)
2927 debug_printf("reading retry information for %s from subprocess\n",
2930 /* Cut out any "delete" items on the list. */
2932 for (rp
= &(addr
->retries
); (r
= *rp
) != NULL
; rp
= &(r
->next
))
2934 if (Ustrcmp(r
->key
, ptr
+1) == 0) /* Found item with same key */
2936 if ((r
->flags
& rf_delete
) == 0) break; /* It was not "delete" */
2937 *rp
= r
->next
; /* Excise a delete item */
2938 DEBUG(D_deliver
|D_retry
)
2939 debug_printf(" existing delete item dropped\n");
2943 /* We want to add a delete item only if there is no non-delete item;
2944 however we still have to step ptr through the data. */
2946 if (r
== NULL
|| (*ptr
& rf_delete
) == 0)
2948 r
= store_get(sizeof(retry_item
));
2949 r
->next
= addr
->retries
;
2952 r
->key
= string_copy(ptr
);
2954 memcpy(&(r
->basic_errno
), ptr
, sizeof(r
->basic_errno
));
2955 ptr
+= sizeof(r
->basic_errno
);
2956 memcpy(&(r
->more_errno
), ptr
, sizeof(r
->more_errno
));
2957 ptr
+= sizeof(r
->more_errno
);
2958 r
->message
= (*ptr
)?
string_copy(ptr
) : NULL
;
2959 DEBUG(D_deliver
|D_retry
)
2960 debug_printf(" added %s item\n",
2961 ((r
->flags
& rf_delete
) == 0)?
"retry" : "delete");
2966 DEBUG(D_deliver
|D_retry
)
2967 debug_printf(" delete item not added: non-delete item exists\n");
2970 ptr
+= sizeof(r
->basic_errno
) + sizeof(r
->more_errno
);
2976 /* Put the amount of data written into the parlist block */
2979 memcpy(&(p
->transport_count
), ptr
, sizeof(transport_count
));
2980 ptr
+= sizeof(transport_count
);
2983 /* Address items are in the order of items on the address chain. We
2984 remember the current address value in case this function is called
2985 several times to empty the pipe in stages. Information about delivery
2986 over TLS is sent in a preceding X item for each address. We don't put
2987 it in with the other info, in order to keep each message short enough to
2988 guarantee it won't be split in the pipe. */
2992 if (addr
== NULL
) goto ADDR_MISMATCH
; /* Below, in 'A' handler */
2996 addr
->cipher
= NULL
;
2997 addr
->peerdn
= NULL
;
3000 addr
->cipher
= string_copy(ptr
);
3003 addr
->peerdn
= string_copy(ptr
);
3007 addr
->peercert
= NULL
;
3009 (void) tls_import_cert(ptr
, &addr
->peercert
);
3013 addr
->ourcert
= NULL
;
3015 (void) tls_import_cert(ptr
, &addr
->ourcert
);
3018 #ifdef EXPERIMENTAL_OCSP
3020 addr
->ocsp
= OCSP_NOT_REQ
;
3022 addr
->ocsp
= *ptr
- '0';
3028 #endif /*SUPPORT_TLS*/
3030 case 'C': /* client authenticator information */
3034 addr
->authenticator
= (*ptr
)?
string_copy(ptr
) : NULL
;
3037 addr
->auth_id
= (*ptr
)?
string_copy(ptr
) : NULL
;
3040 addr
->auth_sndr
= (*ptr
)?
string_copy(ptr
) : NULL
;
3046 #ifndef DISABLE_PRDR
3048 addr
->flags
|= af_prdr_used
;
3056 msg
= string_sprintf("address count mismatch for data read from pipe "
3057 "for transport process %d for transport %s", pid
,
3058 addrlist
->transport
->driver_name
);
3063 addr
->transport_return
= *ptr
++;
3064 addr
->special_action
= *ptr
++;
3065 memcpy(&(addr
->basic_errno
), ptr
, sizeof(addr
->basic_errno
));
3066 ptr
+= sizeof(addr
->basic_errno
);
3067 memcpy(&(addr
->more_errno
), ptr
, sizeof(addr
->more_errno
));
3068 ptr
+= sizeof(addr
->more_errno
);
3069 memcpy(&(addr
->flags
), ptr
, sizeof(addr
->flags
));
3070 ptr
+= sizeof(addr
->flags
);
3071 addr
->message
= (*ptr
)?
string_copy(ptr
) : NULL
;
3073 addr
->user_message
= (*ptr
)?
string_copy(ptr
) : NULL
;
3076 /* Always two strings for host information, followed by the port number and DNSSEC mark */
3080 h
= store_get(sizeof(host_item
));
3081 h
->name
= string_copy(ptr
);
3083 h
->address
= string_copy(ptr
);
3085 memcpy(&(h
->port
), ptr
, sizeof(h
->port
));
3086 ptr
+= sizeof(h
->port
);
3087 h
->dnssec
= *ptr
== '2' ? DS_YES
3088 : *ptr
== '1' ? DS_NO
3091 addr
->host_used
= h
;
3095 /* Finished with this address */
3100 /* Z marks the logical end of the data. It is followed by '0' if
3101 continue_transport was NULL at the end of transporting, otherwise '1'.
3102 We need to know when it becomes NULL during a delivery down a passed SMTP
3103 channel so that we don't try to pass anything more down it. Of course, for
3104 most normal messages it will remain NULL all the time. */
3109 continue_transport
= NULL
;
3110 continue_hostname
= NULL
;
3113 DEBUG(D_deliver
) debug_printf("Z%c item read\n", *ptr
);
3116 /* Anything else is a disaster. */
3119 msg
= string_sprintf("malformed data (%d) read from pipe for transport "
3120 "process %d for transport %s", ptr
[-1], pid
,
3121 addr
->transport
->driver_name
);
3127 /* The done flag is inspected externally, to determine whether or not to
3128 call the function again when the process finishes. */
3132 /* If the process hadn't finished, and we haven't seen the end of the data
3133 or suffered a disaster, update the rest of the state, and return FALSE to
3134 indicate "not finished". */
3143 /* Close our end of the pipe, to prevent deadlock if the far end is still
3144 pushing stuff into it. */
3149 /* If we have finished without error, but haven't had data for every address,
3150 something is wrong. */
3152 if (msg
== NULL
&& addr
!= NULL
)
3153 msg
= string_sprintf("insufficient address data read from pipe "
3154 "for transport process %d for transport %s", pid
,
3155 addr
->transport
->driver_name
);
3157 /* If an error message is set, something has gone wrong in getting back
3158 the delivery data. Put the message into each address and freeze it. */
3162 for (addr
= addrlist
; addr
!= NULL
; addr
= addr
->next
)
3164 addr
->transport_return
= DEFER
;
3165 addr
->special_action
= SPECIAL_FREEZE
;
3166 addr
->message
= msg
;
3170 /* Return TRUE to indicate we have got all we need from this process, even
3171 if it hasn't actually finished yet. */
3178 /*************************************************
3179 * Post-process a set of remote addresses *
3180 *************************************************/
3182 /* Do what has to be done immediately after a remote delivery for each set of
3183 addresses, then re-write the spool if necessary. Note that post_process_one
3184 puts the address on an appropriate queue; hence we must fish off the next
3185 one first. This function is also called if there is a problem with setting
3186 up a subprocess to do a remote delivery in parallel. In this case, the final
3187 argument contains a message, and the action must be forced to DEFER.
3190 addr pointer to chain of address items
3191 logflags flags for logging
3192 msg NULL for normal cases; -> error message for unexpected problems
3193 fallback TRUE if processing fallback hosts
3199 remote_post_process(address_item
*addr
, int logflags
, uschar
*msg
,
3204 /* If any host addresses were found to be unusable, add them to the unusable
3205 tree so that subsequent deliveries don't try them. */
3207 for (h
= addr
->host_list
; h
!= NULL
; h
= h
->next
)
3209 if (h
->address
== NULL
) continue;
3210 if (h
->status
>= hstatus_unusable
) tree_add_unusable(h
);
3213 /* Now handle each address on the chain. The transport has placed '=' or '-'
3214 into the special_action field for each successful delivery. */
3216 while (addr
!= NULL
)
3218 address_item
*next
= addr
->next
;
3220 /* If msg == NULL (normal processing) and the result is DEFER and we are
3221 processing the main hosts and there are fallback hosts available, put the
3222 address on the list for fallback delivery. */
3224 if (addr
->transport_return
== DEFER
&&
3225 addr
->fallback_hosts
!= NULL
&&
3229 addr
->host_list
= addr
->fallback_hosts
;
3230 addr
->next
= addr_fallback
;
3231 addr_fallback
= addr
;
3232 DEBUG(D_deliver
) debug_printf("%s queued for fallback host(s)\n", addr
->address
);
3235 /* If msg is set (=> unexpected problem), set it in the address before
3236 doing the ordinary post processing. */
3242 addr
->message
= msg
;
3243 addr
->transport_return
= DEFER
;
3245 (void)post_process_one(addr
, addr
->transport_return
, logflags
,
3246 DTYPE_TRANSPORT
, addr
->special_action
);
3254 /* If we have just delivered down a passed SMTP channel, and that was
3255 the last address, the channel will have been closed down. Now that
3256 we have logged that delivery, set continue_sequence to 1 so that
3257 any subsequent deliveries don't get "*" incorrectly logged. */
3259 if (continue_transport
== NULL
) continue_sequence
= 1;
3264 /*************************************************
3265 * Wait for one remote delivery subprocess *
3266 *************************************************/
3268 /* This function is called while doing remote deliveries when either the
3269 maximum number of processes exist and we need one to complete so that another
3270 can be created, or when waiting for the last ones to complete. It must wait for
3271 the completion of one subprocess, empty the control block slot, and return a
3272 pointer to the address chain.
3275 Returns: pointer to the chain of addresses handled by the process;
3276 NULL if no subprocess found - this is an unexpected error
3279 static address_item
*
3282 int poffset
, status
;
3283 address_item
*addr
, *addrlist
;
3286 set_process_info("delivering %s: waiting for a remote delivery subprocess "
3287 "to finish", message_id
);
3289 /* Loop until either a subprocess completes, or there are no subprocesses in
3290 existence - in which case give an error return. We cannot proceed just by
3291 waiting for a completion, because a subprocess may have filled up its pipe, and
3292 be waiting for it to be emptied. Therefore, if no processes have finished, we
3293 wait for one of the pipes to acquire some data by calling select(), with a
3294 timeout just in case.
3296 The simple approach is just to iterate after reading data from a ready pipe.
3297 This leads to non-ideal behaviour when the subprocess has written its final Z
3298 item, closed the pipe, and is in the process of exiting (the common case). A
3299 call to waitpid() yields nothing completed, but select() shows the pipe ready -
3300 reading it yields EOF, so you end up with busy-waiting until the subprocess has
3303 To avoid this, if all the data that is needed has been read from a subprocess
3304 after select(), an explicit wait() for it is done. We know that all it is doing
3305 is writing to the pipe and then exiting, so the wait should not be long.
3307 The non-blocking waitpid() is to some extent just insurance; if we could
3308 reliably detect end-of-file on the pipe, we could always know when to do a
3309 blocking wait() for a completed process. However, because some systems use
3310 NDELAY, which doesn't distinguish between EOF and pipe empty, it is easier to
3311 use code that functions without the need to recognize EOF.
3313 There's a double loop here just in case we end up with a process that is not in
3314 the list of remote delivery processes. Something has obviously gone wrong if
3315 this is the case. (For example, a process that is incorrectly left over from
3316 routing or local deliveries might be found.) The damage can be minimized by
3317 looping back and looking for another process. If there aren't any, the error
3318 return will happen. */
3320 for (;;) /* Normally we do not repeat this loop */
3322 while ((pid
= waitpid(-1, &status
, WNOHANG
)) <= 0)
3325 fd_set select_pipes
;
3326 int maxpipe
, readycount
;
3328 /* A return value of -1 can mean several things. If errno != ECHILD, it
3329 either means invalid options (which we discount), or that this process was
3330 interrupted by a signal. Just loop to try the waitpid() again.
3332 If errno == ECHILD, waitpid() is telling us that there are no subprocesses
3333 in existence. This should never happen, and is an unexpected error.
3334 However, there is a nasty complication when running under Linux. If "strace
3335 -f" is being used under Linux to trace this process and its children,
3336 subprocesses are "stolen" from their parents and become the children of the
3337 tracing process. A general wait such as the one we've just obeyed returns
3338 as if there are no children while subprocesses are running. Once a
3339 subprocess completes, it is restored to the parent, and waitpid(-1) finds
3340 it. Thanks to Joachim Wieland for finding all this out and suggesting a
3343 This does not happen using "truss" on Solaris, nor (I think) with other
3344 tracing facilities on other OS. It seems to be specific to Linux.
3346 What we do to get round this is to use kill() to see if any of our
3347 subprocesses are still in existence. If kill() gives an OK return, we know
3348 it must be for one of our processes - it can't be for a re-use of the pid,
3349 because if our process had finished, waitpid() would have found it. If any
3350 of our subprocesses are in existence, we proceed to use select() as if
3351 waitpid() had returned zero. I think this is safe. */
3355 if (errno
!= ECHILD
) continue; /* Repeats the waitpid() */
3358 debug_printf("waitpid() returned -1/ECHILD: checking explicitly "
3359 "for process existence\n");
3361 for (poffset
= 0; poffset
< remote_max_parallel
; poffset
++)
3363 if ((pid
= parlist
[poffset
].pid
) != 0 && kill(pid
, 0) == 0)
3365 DEBUG(D_deliver
) debug_printf("process %d still exists: assume "
3366 "stolen by strace\n", (int)pid
);
3367 break; /* With poffset set */
3371 if (poffset
>= remote_max_parallel
)
3373 DEBUG(D_deliver
) debug_printf("*** no delivery children found\n");
3374 return NULL
; /* This is the error return */
3378 /* A pid value greater than 0 breaks the "while" loop. A negative value has
3379 been handled above. A return value of zero means that there is at least one
3380 subprocess, but there are no completed subprocesses. See if any pipes are
3381 ready with any data for reading. */
3383 DEBUG(D_deliver
) debug_printf("selecting on subprocess pipes\n");
3386 FD_ZERO(&select_pipes
);
3387 for (poffset
= 0; poffset
< remote_max_parallel
; poffset
++)
3389 if (parlist
[poffset
].pid
!= 0)
3391 int fd
= parlist
[poffset
].fd
;
3392 FD_SET(fd
, &select_pipes
);
3393 if (fd
> maxpipe
) maxpipe
= fd
;
3397 /* Stick in a 60-second timeout, just in case. */
3402 readycount
= select(maxpipe
+ 1, (SELECT_ARG2_TYPE
*)&select_pipes
,
3405 /* Scan through the pipes and read any that are ready; use the count
3406 returned by select() to stop when there are no more. Select() can return
3407 with no processes (e.g. if interrupted). This shouldn't matter.
3409 If par_read_pipe() returns TRUE, it means that either the terminating Z was
3410 read, or there was a disaster. In either case, we are finished with this
3411 process. Do an explicit wait() for the process and break the main loop if
3414 It turns out that we have to deal with the case of an interrupted system
3415 call, which can happen on some operating systems if the signal handling is
3416 set up to do that by default. */
3419 readycount
> 0 && poffset
< remote_max_parallel
;
3422 if ((pid
= parlist
[poffset
].pid
) != 0 &&
3423 FD_ISSET(parlist
[poffset
].fd
, &select_pipes
))
3426 if (par_read_pipe(poffset
, FALSE
)) /* Finished with this pipe */
3428 for (;;) /* Loop for signals */
3430 pid_t endedpid
= waitpid(pid
, &status
, 0);
3431 if (endedpid
== pid
) goto PROCESS_DONE
;
3432 if (endedpid
!= (pid_t
)(-1) || errno
!= EINTR
)
3433 log_write(0, LOG_MAIN
|LOG_PANIC_DIE
, "Unexpected error return "
3434 "%d (errno = %d) from waitpid() for process %d",
3435 (int)endedpid
, errno
, (int)pid
);
3441 /* Now go back and look for a completed subprocess again. */
3444 /* A completed process was detected by the non-blocking waitpid(). Find the
3445 data block that corresponds to this subprocess. */
3447 for (poffset
= 0; poffset
< remote_max_parallel
; poffset
++)
3448 if (pid
== parlist
[poffset
].pid
) break;
3450 /* Found the data block; this is a known remote delivery process. We don't
3451 need to repeat the outer loop. This should be what normally happens. */
3453 if (poffset
< remote_max_parallel
) break;
3455 /* This situation is an error, but it's probably better to carry on looking
3456 for another process than to give up (as we used to do). */
3458 log_write(0, LOG_MAIN
|LOG_PANIC
, "Process %d finished: not found in remote "
3459 "transport process list", pid
);
3460 } /* End of the "for" loop */
3462 /* Come here when all the data was completely read after a select(), and
3463 the process in pid has been wait()ed for. */
3470 debug_printf("remote delivery process %d ended\n", (int)pid
);
3472 debug_printf("remote delivery process %d ended: status=%04x\n", (int)pid
,
3476 set_process_info("delivering %s", message_id
);
3478 /* Get the chain of processed addresses */
3480 addrlist
= parlist
[poffset
].addrlist
;
3482 /* If the process did not finish cleanly, record an error and freeze (except
3483 for SIGTERM, SIGKILL and SIGQUIT), and also ensure the journal is not removed,
3484 in case the delivery did actually happen. */
3486 if ((status
& 0xffff) != 0)
3489 int msb
= (status
>> 8) & 255;
3490 int lsb
= status
& 255;
3491 int code
= (msb
== 0)?
(lsb
& 0x7f) : msb
;
3493 msg
= string_sprintf("%s transport process returned non-zero status 0x%04x: "
3495 addrlist
->transport
->driver_name
,
3497 (msb
== 0)?
"terminated by signal" : "exit code",
3500 if (msb
!= 0 || (code
!= SIGTERM
&& code
!= SIGKILL
&& code
!= SIGQUIT
))
3501 addrlist
->special_action
= SPECIAL_FREEZE
;
3503 for (addr
= addrlist
; addr
!= NULL
; addr
= addr
->next
)
3505 addr
->transport_return
= DEFER
;
3506 addr
->message
= msg
;
3509 remove_journal
= FALSE
;
3512 /* Else complete reading the pipe to get the result of the delivery, if all
3513 the data has not yet been obtained. */
3515 else if (!parlist
[poffset
].done
) (void)par_read_pipe(poffset
, TRUE
);
3517 /* Put the data count and return path into globals, mark the data slot unused,
3518 decrement the count of subprocesses, and return the address chain. */
3520 transport_count
= parlist
[poffset
].transport_count
;
3521 used_return_path
= parlist
[poffset
].return_path
;
3522 parlist
[poffset
].pid
= 0;
3529 /*************************************************
3530 * Wait for subprocesses and post-process *
3531 *************************************************/
3533 /* This function waits for subprocesses until the number that are still running
3534 is below a given threshold. For each complete subprocess, the addresses are
3535 post-processed. If we can't find a running process, there is some shambles.
3536 Better not bomb out, as that might lead to multiple copies of the message. Just
3537 log and proceed as if all done.
3540 max maximum number of subprocesses to leave running
3541 fallback TRUE if processing fallback hosts
3547 par_reduce(int max
, BOOL fallback
)
3549 while (parcount
> max
)
3551 address_item
*doneaddr
= par_wait();
3552 if (doneaddr
== NULL
)
3554 log_write(0, LOG_MAIN
|LOG_PANIC
,
3555 "remote delivery process count got out of step");
3558 else remote_post_process(doneaddr
, LOG_MAIN
, NULL
, fallback
);
3566 rmt_dlv_checked_write(int fd
, void * buf
, int size
)
3568 int ret
= write(fd
, buf
, size
);
3570 log_write(0, LOG_MAIN
|LOG_PANIC_DIE
, "Failed writing transport result to pipe: %s\n",
3571 ret
== -1 ?
strerror(errno
) : "short write");
3574 /*************************************************
3575 * Do remote deliveries *
3576 *************************************************/
3578 /* This function is called to process the addresses in addr_remote. We must
3579 pick off the queue all addresses that have the same transport, remote
3580 destination, and errors address, and hand them to the transport in one go,
3581 subject to some configured limitations. If this is a run to continue delivering
3582 to an existing delivery channel, skip all but those addresses that can go to
3583 that channel. The skipped addresses just get deferred.
3585 If mua_wrapper is set, all addresses must be able to be sent in a single
3586 transaction. If not, this function yields FALSE.
3588 In Exim 4, remote deliveries are always done in separate processes, even
3589 if remote_max_parallel = 1 or if there's only one delivery to do. The reason
3590 is so that the base process can retain privilege. This makes the
3591 implementation of fallback transports feasible (though not initially done.)
3593 We create up to the configured number of subprocesses, each of which passes
3594 back the delivery state via a pipe. (However, when sending down an existing
3595 connection, remote_max_parallel is forced to 1.)
3598 fallback TRUE if processing fallback hosts
3600 Returns: TRUE normally
3601 FALSE if mua_wrapper is set and the addresses cannot all be sent
3606 do_remote_deliveries(BOOL fallback
)
3612 parcount
= 0; /* Number of executing subprocesses */
3614 /* When sending down an existing channel, only do one delivery at a time.
3615 We use a local variable (parmax) to hold the maximum number of processes;
3616 this gets reduced from remote_max_parallel if we can't create enough pipes. */
3618 if (continue_transport
!= NULL
) remote_max_parallel
= 1;
3619 parmax
= remote_max_parallel
;
3621 /* If the data for keeping a list of processes hasn't yet been
3624 if (parlist
== NULL
)
3626 parlist
= store_get(remote_max_parallel
* sizeof(pardata
));
3627 for (poffset
= 0; poffset
< remote_max_parallel
; poffset
++)
3628 parlist
[poffset
].pid
= 0;
3631 /* Now loop for each remote delivery */
3633 for (delivery_count
= 0; addr_remote
!= NULL
; delivery_count
++)
3639 int address_count
= 1;
3640 int address_count_max
;
3642 BOOL use_initgroups
;
3643 BOOL pipe_done
= FALSE
;
3644 transport_instance
*tp
;
3645 address_item
**anchor
= &addr_remote
;
3646 address_item
*addr
= addr_remote
;
3647 address_item
*last
= addr
;
3650 /* Pull the first address right off the list. */
3652 addr_remote
= addr
->next
;
3655 DEBUG(D_deliver
|D_transport
)
3656 debug_printf("--------> %s <--------\n", addr
->address
);
3658 /* If no transport has been set, there has been a big screw-up somewhere. */
3660 if ((tp
= addr
->transport
) == NULL
)
3662 disable_logging
= FALSE
; /* Jic */
3663 remote_post_process(addr
, LOG_MAIN
|LOG_PANIC
,
3664 US
"No transport set by router", fallback
);
3668 /* Check that this base address hasn't previously been delivered to this
3669 transport. The check is necessary at this point to handle homonymic addresses
3670 correctly in cases where the pattern of redirection changes between delivery
3671 attempts. Non-homonymic previous delivery is detected earlier, at routing
3674 if (previously_transported(addr
, FALSE
)) continue;
3676 /* Force failure if the message is too big. */
3678 if (tp
->message_size_limit
!= NULL
)
3680 int rc
= check_message_size(tp
, addr
);
3683 addr
->transport_return
= rc
;
3684 remote_post_process(addr
, LOG_MAIN
, NULL
, fallback
);
3689 /* Get the flag which specifies whether the transport can handle different
3690 domains that nevertheless resolve to the same set of hosts. */
3692 multi_domain
= tp
->multi_domain
;
3694 /* Get the maximum it can handle in one envelope, with zero meaning
3695 unlimited, which is forced for the MUA wrapper case. */
3697 address_count_max
= tp
->max_addresses
;
3698 if (address_count_max
== 0 || mua_wrapper
) address_count_max
= 999999;
3701 /************************************************************************/
3702 /***** This is slightly experimental code, but should be safe. *****/
3704 /* The address_count_max value is the maximum number of addresses that the
3705 transport can send in one envelope. However, the transport must be capable of
3706 dealing with any number of addresses. If the number it gets exceeds its
3707 envelope limitation, it must send multiple copies of the message. This can be
3708 done over a single connection for SMTP, so uses less resources than making
3709 multiple connections. On the other hand, if remote_max_parallel is greater
3710 than one, it is perhaps a good idea to use parallel processing to move the
3711 message faster, even if that results in multiple simultaneous connections to
3714 How can we come to some compromise between these two ideals? What we do is to
3715 limit the number of addresses passed to a single instance of a transport to
3716 the greater of (a) its address limit (rcpt_max for SMTP) and (b) the total
3717 number of addresses routed to remote transports divided by
3718 remote_max_parallel. For example, if the message has 100 remote recipients,
3719 remote max parallel is 2, and rcpt_max is 10, we'd never send more than 50 at
3720 once. But if rcpt_max is 100, we could send up to 100.
3722 Of course, not all the remotely addresses in a message are going to go to the
3723 same set of hosts (except in smarthost configurations), so this is just a
3724 heuristic way of dividing up the work.
3726 Furthermore (1), because this may not be wanted in some cases, and also to
3727 cope with really pathological cases, there is also a limit to the number of
3728 messages that are sent over one connection. This is the same limit that is
3729 used when sending several different messages over the same connection.
3730 Continue_sequence is set when in this situation, to the number sent so
3731 far, including this message.
3733 Furthermore (2), when somebody explicitly sets the maximum value to 1, it
3734 is probably because they are using VERP, in which case they want to pass only
3735 one address at a time to the transport, in order to be able to use
3736 $local_part and $domain in constructing a new return path. We could test for
3737 the use of these variables, but as it is so likely they will be used when the
3738 maximum is 1, we don't bother. Just leave the value alone. */
3740 if (address_count_max
!= 1 &&
3741 address_count_max
< remote_delivery_count
/remote_max_parallel
)
3743 int new_max
= remote_delivery_count
/remote_max_parallel
;
3744 int message_max
= tp
->connection_max_messages
;
3745 if (connection_max_messages
>= 0) message_max
= connection_max_messages
;
3746 message_max
-= continue_sequence
- 1;
3747 if (message_max
> 0 && new_max
> address_count_max
* message_max
)
3748 new_max
= address_count_max
* message_max
;
3749 address_count_max
= new_max
;
3752 /************************************************************************/
3755 /* Pick off all addresses which have the same transport, errors address,
3756 destination, and extra headers. In some cases they point to the same host
3757 list, but we also need to check for identical host lists generated from
3758 entirely different domains. The host list pointers can be NULL in the case
3759 where the hosts are defined in the transport. There is also a configured
3760 maximum limit of addresses that can be handled at once (see comments above
3761 for how it is computed). */
3763 while ((next
= *anchor
) != NULL
&& address_count
< address_count_max
)
3765 if ((multi_domain
|| Ustrcmp(next
->domain
, addr
->domain
) == 0)
3767 tp
== next
->transport
3769 same_hosts(next
->host_list
, addr
->host_list
)
3771 same_strings(next
->p
.errors_address
, addr
->p
.errors_address
)
3773 same_headers(next
->p
.extra_headers
, addr
->p
.extra_headers
)
3775 same_ugid(tp
, next
, addr
)
3777 (next
->p
.remove_headers
== addr
->p
.remove_headers
||
3778 (next
->p
.remove_headers
!= NULL
&&
3779 addr
->p
.remove_headers
!= NULL
&&
3780 Ustrcmp(next
->p
.remove_headers
, addr
->p
.remove_headers
) == 0)))
3782 *anchor
= next
->next
;
3784 next
->first
= addr
; /* remember top one (for retry processing) */
3789 else anchor
= &(next
->next
);
3792 /* If we are acting as an MUA wrapper, all addresses must go in a single
3793 transaction. If not, put them back on the chain and yield FALSE. */
3795 if (mua_wrapper
&& addr_remote
!= NULL
)
3797 last
->next
= addr_remote
;
3802 /* Set up the expansion variables for this set of addresses */
3804 deliver_set_expansions(addr
);
3806 /* Ensure any transport-set auth info is fresh */
3807 addr
->authenticator
= addr
->auth_id
= addr
->auth_sndr
= NULL
;
3809 /* Compute the return path, expanding a new one if required. The old one
3810 must be set first, as it might be referred to in the expansion. */
3812 if(addr
->p
.errors_address
!= NULL
)
3813 return_path
= addr
->p
.errors_address
;
3814 #ifdef EXPERIMENTAL_SRS
3815 else if(addr
->p
.srs_sender
!= NULL
)
3816 return_path
= addr
->p
.srs_sender
;
3819 return_path
= sender_address
;
3821 if (tp
->return_path
!= NULL
)
3823 uschar
*new_return_path
= expand_string(tp
->return_path
);
3824 if (new_return_path
== NULL
)
3826 if (!expand_string_forcedfail
)
3828 remote_post_process(addr
, LOG_MAIN
|LOG_PANIC
,
3829 string_sprintf("Failed to expand return path \"%s\": %s",
3830 tp
->return_path
, expand_string_message
), fallback
);
3834 else return_path
= new_return_path
;
3837 /* Find the uid, gid, and use_initgroups setting for this transport. Failure
3838 logs and sets up error messages, so we just post-process and continue with
3839 the next address. */
3841 if (!findugid(addr
, tp
, &uid
, &gid
, &use_initgroups
))
3843 remote_post_process(addr
, LOG_MAIN
|LOG_PANIC
, NULL
, fallback
);
3847 /* If this transport has a setup function, call it now so that it gets
3848 run in this process and not in any subprocess. That way, the results of
3849 any setup that are retained by the transport can be reusable. One of the
3850 things the setup does is to set the fallback host lists in the addresses.
3851 That is why it is called at this point, before the continue delivery
3852 processing, because that might use the fallback hosts. */
3854 if (tp
->setup
!= NULL
)
3855 (void)((tp
->setup
)(addr
->transport
, addr
, NULL
, uid
, gid
, NULL
));
3857 /* If this is a run to continue delivery down an already-established
3858 channel, check that this set of addresses matches the transport and
3859 the channel. If it does not, defer the addresses. If a host list exists,
3860 we must check that the continue host is on the list. Otherwise, the
3861 host is set in the transport. */
3863 continue_more
= FALSE
; /* In case got set for the last lot */
3864 if (continue_transport
!= NULL
)
3866 BOOL ok
= Ustrcmp(continue_transport
, tp
->name
) == 0;
3867 if (ok
&& addr
->host_list
!= NULL
)
3871 for (h
= addr
->host_list
; h
!= NULL
; h
= h
->next
)
3873 if (Ustrcmp(h
->name
, continue_hostname
) == 0)
3874 { ok
= TRUE
; break; }
3878 /* Addresses not suitable; defer or queue for fallback hosts (which
3879 might be the continue host) and skip to next address. */
3883 DEBUG(D_deliver
) debug_printf("not suitable for continue_transport\n");
3886 if (addr
->fallback_hosts
!= NULL
&& !fallback
)
3890 next
->host_list
= next
->fallback_hosts
;
3891 DEBUG(D_deliver
) debug_printf("%s queued for fallback host(s)\n", next
->address
);
3892 if (next
->next
== NULL
) break;
3895 next
->next
= addr_fallback
;
3896 addr_fallback
= addr
;
3901 while (next
->next
!= NULL
) next
= next
->next
;
3902 next
->next
= addr_defer
;
3909 /* Set a flag indicating whether there are further addresses that list
3910 the continued host. This tells the transport to leave the channel open,
3911 but not to pass it to another delivery process. */
3913 for (next
= addr_remote
; next
!= NULL
; next
= next
->next
)
3916 for (h
= next
->host_list
; h
!= NULL
; h
= h
->next
)
3918 if (Ustrcmp(h
->name
, continue_hostname
) == 0)
3919 { continue_more
= TRUE
; break; }
3924 /* The transports set up the process info themselves as they may connect
3925 to more than one remote machine. They also have to set up the filter
3926 arguments, if required, so that the host name and address are available
3929 transport_filter_argv
= NULL
;
3931 /* Create the pipe for inter-process communication. If pipe creation
3932 fails, it is probably because the value of remote_max_parallel is so
3933 large that too many file descriptors for pipes have been created. Arrange
3934 to wait for a process to finish, and then try again. If we still can't
3935 create a pipe when all processes have finished, break the retry loop. */
3939 if (pipe(pfd
) == 0) pipe_done
= TRUE
;
3940 else if (parcount
> 0) parmax
= parcount
;
3943 /* We need to make the reading end of the pipe non-blocking. There are
3944 two different options for this. Exim is cunningly (I hope!) coded so
3945 that it can use either of them, though it prefers O_NONBLOCK, which
3946 distinguishes between EOF and no-more-data. */
3949 (void)fcntl(pfd
[pipe_read
], F_SETFL
, O_NONBLOCK
);
3951 (void)fcntl(pfd
[pipe_read
], F_SETFL
, O_NDELAY
);
3954 /* If the maximum number of subprocesses already exist, wait for a process
3955 to finish. If we ran out of file descriptors, parmax will have been reduced
3956 from its initial value of remote_max_parallel. */
3958 par_reduce(parmax
- 1, fallback
);
3961 /* If we failed to create a pipe and there were no processes to wait
3962 for, we have to give up on this one. Do this outside the above loop
3963 so that we can continue the main loop. */
3967 remote_post_process(addr
, LOG_MAIN
|LOG_PANIC
,
3968 string_sprintf("unable to create pipe: %s", strerror(errno
)), fallback
);
3972 /* Find a free slot in the pardata list. Must do this after the possible
3973 waiting for processes to finish, because a terminating process will free
3976 for (poffset
= 0; poffset
< remote_max_parallel
; poffset
++)
3977 if (parlist
[poffset
].pid
== 0) break;
3979 /* If there isn't one, there has been a horrible disaster. */
3981 if (poffset
>= remote_max_parallel
)
3983 (void)close(pfd
[pipe_write
]);
3984 (void)close(pfd
[pipe_read
]);
3985 remote_post_process(addr
, LOG_MAIN
|LOG_PANIC
,
3986 US
"Unexpectedly no free subprocess slot", fallback
);
3990 /* Now fork a subprocess to do the remote delivery, but before doing so,
3991 ensure that any cached resourses are released so as not to interfere with
3992 what happens in the subprocess. */
3996 if ((pid
= fork()) == 0)
3998 int fd
= pfd
[pipe_write
];
4001 /* Setting this global in the subprocess means we need never clear it */
4002 transport_name
= tp
->name
;
4004 /* There are weird circumstances in which logging is disabled */
4005 disable_logging
= tp
->disable_logging
;
4007 /* Show pids on debug output if parallelism possible */
4009 if (parmax
> 1 && (parcount
> 0 || addr_remote
!= NULL
))
4011 DEBUG(D_any
|D_v
) debug_selector
|= D_pid
;
4012 DEBUG(D_deliver
) debug_printf("Remote delivery process started\n");
4015 /* Reset the random number generator, so different processes don't all
4016 have the same sequence. In the test harness we want different, but
4017 predictable settings for each delivery process, so do s