Stylesheet version number changed.
[exim.git] / doc / doc-docbook / spec.ascd
CommitLineData
168e428f
PH
1////////////////////////////////////////////////////////////////////////////
2$Cambridge: exim/doc/doc-docbook/spec.ascd,v 1.1 2005/06/16 10:32:31 ph10 Exp $
3
4This is the primary source of the Exim Manual. It is an AsciiDoc document
5that is converted into DocBook XML for subsequent conversion into printing
6and online formats. The markup used herein is traditional AsciiDoc markup,
7with some extras. The markup is summarized in a file called AdMarkup.txt. A
8private AsciiDoc configuration file specifies how the extra markup is to be
9translated into DocBook XML. You MUST use this private AsciiDoc markup if you
10want to get sensible results from processing this document.
11////////////////////////////////////////////////////////////////////////////
12
13
14
15////////////////////////////////////////////////////////////////////////////
16I am abusing the <abstract> DocBook element as the only trivial way of getting
17this information onto the title verso page in the printed renditions. A better
18title page would be a useful improvement. The <abstract> element is removed by
19preprocessing for the HTML renditions, and the whole <docbookinfo> element is
20removed for ascii output formats.
21////////////////////////////////////////////////////////////////////////////
22
23Specification of the Exim Mail Transfer Agent
24=============================================
25:abstract: University of Cambridge Computing Service, New Museums Site, Pembroke Street, Cambridge CB2 3QH, England
26:author: Philip Hazel
27:copyright: University of Cambridge
28:cpyear: 2005
29:date: 13 May 2005
30:doctitleabbrev: The Exim MTA
31:revision: 4.50
32
33
34//////////////////////////////////////////////////////////////////////////////
35***WARNING*** Do not put anything, not even a titleabbrev, setting before
36the first chapter (luckily it does not need one) because if you do, AsciiDoc
37creates an empty <preface> element, which we do not want.
38//////////////////////////////////////////////////////////////////////////////
39
40Introduction
41------------
42
43////////////////////////////////////////////////////////////////////////////
44These are definitions of AsciiDoc "attributes" that are in effect "variables"
45whose values can be substituted. The first makes index entries shorter. The
46second avoids problems with literal asterisks getting tangled up with bold
47emphasis quotes. The others are here for convenience of editing.
48
49***WARNING*** The positioning of these definitions, after the first Chapter
50title, seems to be important. If they are placed earlier, they give rise to
51incorrect XML.
52////////////////////////////////////////////////////////////////////////////
53
54:ACL: access control lists (ACLs)
55:star: *
56:previousversion: 4.40
57:version: 4.50
58
59
60////////////////////////////////////////////////////////////////////////////
61This chunk of literal XML implements index entries of the form "x, see y" and
62"x, see also y". It didn't seem worth inventing AsciiDoc markup for this,
63because is it not something that is likely to change often.
64////////////////////////////////////////////////////////////////////////////
65
66++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
67<indexterm role="concept">
68 <primary>$1, $2, etc.</primary>
69 <see><emphasis>numerical variables</emphasis></see>
70</indexterm>
71<indexterm role="concept">
72 <primary>address</primary>
73 <secondary>rewriting</secondary>
74 <see><emphasis>rewriting</emphasis></see>
75</indexterm>
76<indexterm role="concept">
77 <primary>CR character</primary>
78 <see><emphasis>carriage return</emphasis></see>
79</indexterm>
80<indexterm role="concept">
81 <primary>CRL</primary>
82 <see><emphasis>certificate revocation list</emphasis></see>
83</indexterm>
84<indexterm role="concept">
85 <primary>delivery</primary>
86 <secondary>failure report</secondary>
87 <see><emphasis>bounce message</emphasis></see>
88</indexterm>
89<indexterm role="concept">
90 <primary>dialup</primary>
91 <see><emphasis>intermittently connected hosts</emphasis></see>
92</indexterm>
93<indexterm role="concept">
94 <primary>exiscan</primary>
95 <see><emphasis>content scanning</emphasis></see>
96</indexterm>
97<indexterm role="concept">
98 <primary>failover</primary>
99 <see><emphasis>fallback</emphasis></see>
100</indexterm>
101<indexterm role="concept">
102 <primary>fallover</primary>
103 <see><emphasis>fallback</emphasis></see>
104</indexterm>
105<indexterm role="concept">
106 <primary>filter</primary>
107 <secondary>Sieve</secondary>
108 <see><emphasis>Sieve filter</emphasis></see>
109</indexterm>
110<indexterm role="concept">
111 <primary>ident</primary>
112 <see><emphasis>RFC 1413</emphasis></see>
113</indexterm>
114<indexterm role="concept">
115 <primary>LF character</primary>
116 <see><emphasis>linefeed</emphasis></see>
117</indexterm>
118<indexterm role="concept">
119 <primary>maximum</primary>
120 <see><emphasis>limit</emphasis></see>
121</indexterm>
122<indexterm role="concept">
123 <primary>no_<emphasis>xxx</emphasis></primary>
124 <see>entry for xxx</see>
125</indexterm>
126<indexterm role="concept">
127 <primary>NUL</primary>
128 <see><emphasis>binary zero</emphasis></see>
129</indexterm>
130<indexterm role="concept">
131 <primary>passwd file</primary>
132 <see><emphasis>/etc/passwd</emphasis></see>
133</indexterm>
134<indexterm role="concept">
135 <primary>process id</primary>
136 <see><emphasis>pid</emphasis></see>
137</indexterm>
138<indexterm role="concept">
139 <primary>RBL</primary>
140 <see><emphasis>DNS list</emphasis></see>
141</indexterm>
142<indexterm role="concept">
143 <primary>redirection</primary>
144 <see><emphasis>address redirection</emphasis></see>
145</indexterm>
146<indexterm role="concept">
147 <primary>return path</primary>
148 <seealso><emphasis>envelope sender</emphasis></seealso>
149</indexterm>
150<indexterm role="concept">
151 <primary>scanning</primary>
152 <see><emphasis>content scanning</emphasis></see>
153</indexterm>
154<indexterm role="concept">
155 <primary>SSL</primary>
156 <see><emphasis>TLS</emphasis></see>
157</indexterm>
158<indexterm role="concept">
159 <primary>string</primary>
160 <secondary>expansion</secondary>
161 <see><emphasis>expansion</emphasis></see>
162</indexterm>
163<indexterm role="concept">
164 <primary>top bit</primary>
165 <see><emphasis>8-bit characters</emphasis></see>
166</indexterm>
167<indexterm role="concept">
168 <primary>variables</primary>
169 <see><emphasis>expansion, variables</emphasis></see>
170</indexterm>
171<indexterm role="concept">
172 <primary>zero, binary</primary>
173 <see><emphasis>binary zero</emphasis></see>
174</indexterm>
175++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
176
177
178////////////////////////////////////////////////////////////////////////////
179OK, now we start with the real data for this first chapter.
180////////////////////////////////////////////////////////////////////////////
181
182Exim is a mail transfer agent (MTA) for hosts that are running Unix or
183Unix-like operating systems. It was designed on the assumption that it would be
184run on hosts that are permanently connected to the Internet. However, it can be
185used on intermittently connected hosts with suitable configuration adjustments.
186
187Configuration files currently exist for the following operating systems: AIX,
188BSD/OS (aka BSDI), Darwin (Mac OS X), DGUX, FreeBSD, GNU/Hurd, GNU/Linux,
189HI-OSF (Hitachi), HP-UX, IRIX, MIPS RISCOS, NetBSD, OpenBSD, QNX, SCO, SCO
190SVR4.2 (aka UNIX-SV), Solaris (aka SunOS5), SunOS4, Tru64-Unix (formerly
191Digital UNIX, formerly DEC-OSF1), Ultrix, and Unixware. Some of these operating
192systems are no longer current and cannot easily be tested, so the configuration
193files may no longer work in practice.
194
195There are also configuration files for compiling Exim in the Cygwin environment
196that can be installed on systems running Windows. However, this document does
197not contain any information about running Exim in the Cygwin environment.
198
199The terms and conditions for the use and distribution of Exim are contained in
200the file _NOTICE_. Exim is distributed under the terms of the GNU General
201Public Licence, a copy of which may be found in the file _LICENCE_.
202
203The use, supply or promotion of Exim for the purpose of sending bulk,
204unsolicited electronic mail is incompatible with the basic aims of the program,
205which revolve around the free provision of a service that enhances the quality
206of personal communications. The author of Exim regards indiscriminate
207mass-mailing as an antisocial, irresponsible abuse of the Internet.
208
209Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the
210experience of running and working on the Smail 3 code, I could never have
211contemplated starting to write a new MTA. Many of the ideas and user interfaces
212were originally taken from Smail 3, though the actual code of Exim is entirely
213new, and has developed far beyond the initial concept.
214
215Many people, both in Cambridge and around the world, have contributed to the
216development and the testing of Exim, and to porting it to various operating
217systems. I am grateful to them all. The distribution now contains a file called
218_ACKNOWLEDGMENTS_, in which I have started recording the names of
219contributors.
220
221
222
223Exim documentation
224~~~~~~~~~~~~~~~~~~
225[revisionflag="changed"]
226cindex:[documentation]
227This edition of the Exim specification applies to version {version} of Exim.
228Substantive changes from the {previousversion} edition are marked in some
229renditions of the document; this paragraph is so marked if the rendition is
230capable of showing a change indicator.
231
232This document is very much a reference manual; it is not a tutorial. The reader
233is expected to have some familiarity with the SMTP mail transfer protocol and
234with general Unix system administration. Although there are some discussions
235and examples in places, the information is mostly organized in a way that makes
236it easy to look up, rather than in a natural order for sequential reading.
237Furthermore, the manual aims to cover every aspect of Exim in detail, including
238a number of rarely-used, special-purpose features that are unlikely to be of
239very wide interest.
240
241cindex:[books about Exim]
242An ``easier'' discussion of Exim which provides more in-depth explanatory,
243introductory, and tutorial material can be found in a book entitled
244'The Exim SMTP Mail Server', published by UIT Cambridge
245(*http://www.uit.co.uk/exim-book/[]*).
246
247This book also contains a chapter that gives a general introduction to SMTP and
248Internet mail. Inevitably, however, the book is unlikely to be fully up-to-date
249with the latest release of Exim. (Note that the earlier book about Exim,
250published by O'Reilly, covers Exim 3, and many things have changed in Exim 4.)
251
252cindex:[_doc/NewStuff_]
253cindex:[_doc/ChangeLog_]
254cindex:[change log]
255As the program develops, there may be features in newer versions that have not
256yet made it into this document, which is updated only when the most significant
257digit of the fractional part of the version number changes. Specifications of
258new features that are not yet in this manual are placed in the file
259_doc/NewStuff_ in the Exim distribution.
260
261Some features may be classified as ``experimental''. These may change
262incompatibly while they are developing, or even be withdrawn. For this reason,
263they are not documented in this manual. Information about experimental features
264can be found in the file _doc/experimental.txt_.
265
266All changes to the program (whether new features, bug fixes, or other kinds of
267change) are noted briefly in the file called _doc/ChangeLog_.
268
269cindex:[_doc/spec.txt_]
270This specification itself is available as an ASCII file in _doc/spec.txt_ so
271that it can easily be searched with a text editor. Other files in the _doc_
272directory are:
273
274[frame="none"]
275`--------------------`------------------------------------------
276_OptionLists.txt_ list of all options in alphabetical order
277_dbm.discuss.txt_ discussion about DBM libraries
278_exim.8_ a man page of Exim's command line options
279_experimental.txt_ documentation of experimental features
280_filter.txt_ specification of the filter language
281_pcrepattern.txt_ specification of PCRE regular expressions
282_pcretest.txt_ specification of the PCRE testing program
283_Exim3.upgrade_ upgrade notes from release 2 to release 3
284_Exim4.upgrade_ upgrade notes from release 3 to release 4
285----------------------------------------------------------------
286
287The main specification and the specification of the filtering language are also
288available in other formats (HTML, PostScript, PDF, and Texinfo). Section
289<<SECTavail>> below tells you how to get hold of these.
290
291
292
293FTP and web sites
294~~~~~~~~~~~~~~~~~
295cindex:[web site]
296cindex:[FTP site]
297The primary distribution site for Exim is currently the University of
298Cambridge's FTP site, whose contents are described in 'Where to find the Exim
299distribution' below. In addition, there is a web site and an FTP site at
300%exim.org%. These are now also hosted at the University of Cambridge. The
301%exim.org% site was previously hosted for a number of years by Energis Squared,
302formerly Planet Online Ltd, whose support I gratefully acknowledge.
303
304As well as Exim distribution tar files, the Exim web site contains a number of
305differently formatted versions of the documentation, including the
306cindex:[FAQ] FAQ in both text and HTML formats. The HTML version comes with
307a keyword-in-context index. A recent addition to the online information is the
308cindex:[wiki]
309Exim wiki (*http://www.exim.org/eximwiki/[]*).
310We hope that this will make it easier for Exim users to contribute examples,
311tips, and know-how for the benefit of others.
312
313
314
315Mailing lists
316~~~~~~~~~~~~~
317cindex:[mailing lists,for Exim users]
318The following are the three main Exim mailing lists:
319
320[frame="none"]
321`-------------------------------`----------------------------------------
322'exim-users@exim.org' general discussion list
323'exim-dev@exim.org' discussion of bugs, enhancements, etc.
324'exim-announce@exim.org' moderated, low volume announcements list
325-------------------------------------------------------------------------
326
327You can subscribe to these lists, change your existing subscriptions, and view
328or search the archives via the mailing lists link on the Exim home page. The
329'exim-users' mailing list is also forwarded to
330*http://www.egroups.com/list/exim-users[]*, an archiving system with searching
331capabilities.
332
333
334Exim training
335~~~~~~~~~~~~~
336cindex:[training courses]
337From time to time (approximately annually at the time of writing),
338lecture-based training courses are run by the author of Exim in Cambridge, UK.
339Details can be found on the web site
340*http://www-tus.csx.cam.ac.uk/courses/exim/[]*.
341
342
343Bug reports
344~~~~~~~~~~~
345cindex:[bug reports]
346cindex:[reporting bugs]
347Reports of obvious bugs should be emailed to 'bugs@exim.org'. However, if
348you are unsure whether some behaviour is a bug or not, the best thing to do is
349to post a message to the 'exim-users' mailing list and have it discussed.
350
351
352
353[[SECTavail]]
354Where to find the Exim distribution
355~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
356cindex:[FTP site]
357cindex:[distribution,ftp site]
358The master ftp site for the Exim distribution is
359
360&&&
361*ftp://ftp.csx.cam.ac.uk/pub/software/email/exim[]*
362&&&
363
364This is mirrored by
365
366&&&
367*ftp://ftp.exim.org/pub/exim[]*
368&&&
369
370The file references that follow are relative to the _exim_ directories at these
371sites. There are now quite a number of independent mirror sites around the
372world. Those that I know about are listed in the file called _Mirrors_.
373
374Within the _exim_ directory there are subdirectories called _exim3_ (for
375previous Exim 3 distributions), _exim4_ (for the latest Exim 4
376distributions), and _Testing_ for testing versions. In the _exim4_
377subdirectory, the current release can always be found in files called
378
379&&&
380_exim-n.nn.tar.gz_
381_exim-n.nn.tar.bz2_
382&&&
383
384where 'n.nn' is the highest such version number in the directory. The two
385files contain identical data; the only difference is the type of compression.
386The _.bz2_ file is usually a lot smaller than the _.gz_ file.
387
388cindex:[distribution,signing details]
389cindex:[distribution,public key]
390cindex:[public key for signed distribution]
391The distributions are currently signed with Philip Hazel's GPG key. The
392corresponding public key is available from a number of keyservers, and there is
393also a copy in the file _Public-Key_. The signatures for the tar bundles are
394in:
395
396&&&
397_exim-n.nn.tar.gz.sig_
398_exim-n.nn.tar.bz2.sig_
399&&&
400
401For each released version, the log of changes is made separately available in a
402separate file in the directory _ChangeLogs_ so that it is possible to
403find out what has changed without having to download the entire distribution.
404
405cindex:[documentation,available formats]
406The main distribution contains ASCII versions of this specification and other
407documentation; other formats of the documents are available in separate files
408inside the _exim4_ directory of the FTP site:
409
410&&&
411_exim-html-n.nn.tar.gz_
412_exim-pdf-n.nn.tar.gz_
413_exim-postscript-n.nn.tar.gz_
414_exim-texinfo-n.nn.tar.gz_
415&&&
416
417These tar files contain only the _doc_ directory, not the complete
418distribution, and are also available in _.bz2_ as well as _.gz_ forms.
419cindex:[FAQ]
420The FAQ is available for downloading in two different formats in these files:
421
422&&&
423_exim4/FAQ.txt.gz_
424_exim4/FAQ.html.tar.gz_
425&&&
426
427The first of these is a single ASCII file that can be searched with a text
428editor. The second is a directory of HTML files, normally accessed by starting
429at _index.html_. The HTML version of the FAQ (which is also included in the
430HTML documentation tarbundle) includes a keyword-in-context index, which is
431often the most convenient way of finding your way around.
432
433
434Wish list
435~~~~~~~~~
436cindex:[wish list]
437A wish list is maintained, containing ideas for new features that have been
438submitted. From time to time the file is exported to the ftp site into the file
439_exim4/WishList_. Items are removed from the list if they get implemented.
440
441
442
443Contributed material
444~~~~~~~~~~~~~~~~~~~~
445cindex:[contributed material]
446At the ftp site, there is a directory called _Contrib_ that contains
447miscellaneous files contributed to the Exim community by Exim users. There is
448also a collection of contributed configuration examples in
449_exim4/config.samples.tar.gz_. These samples are referenced from the FAQ.
450
451
452
453Limitations
454~~~~~~~~~~~
455- cindex:[limitations of Exim]
456Exim is designed for use as an Internet MTA, and therefore handles addresses
457in RFC 2822 domain format only.
458cindex:[bang paths,not handled by Exim]
459It cannot handle UUCP ``bang paths'', though simple two-component bang paths can
460be converted by a straightforward rewriting configuration. This restriction
461does not prevent Exim from being interfaced to UUCP as a transport mechanism,
462provided that domain addresses are used.
463
464- cindex:[domainless addresses]
465cindex:[address,without domain]
466Exim insists that every address it handles has a domain attached. For incoming
467local messages, domainless addresses are automatically qualified with a
468configured domain value. Configuration options specify from which remote
469systems unqualified addresses are acceptable. These are then qualified on
470arrival.
471
472- cindex:[transport,external]
473cindex:[external transports]
474The only external transport currently implemented is an SMTP transport over a
475TCP/IP network (using sockets, including support for IPv6). However, a pipe
476transport is available, and there are facilities for writing messages to files
477and pipes, optionally in 'batched SMTP' format; these facilities can be used
478to send messages to some other transport mechanism such as UUCP, provided it
479can handle domain-style addresses. Batched SMTP input is also catered for.
480
481- Exim is not designed for storing mail for dial-in hosts. When the volumes of
482such mail are large, it is better to get the messages ``delivered'' into files
483(that is, off Exim's queue) and subsequently passed on to the dial-in hosts by
484other means.
485
486- Although Exim does have basic facilities for scanning incoming messages, these
487are not comprehensive enough to do full virus or spam scanning. Such operations
488are best carried out using additional specialized software packages. If you
489compile Exim with the content-scanning extension, straightforward interfaces to
490a number of common scanners are provided.
491
492
493
494
495
496Run time configuration
497~~~~~~~~~~~~~~~~~~~~~~
498Exim's run time configuration is held in a single text file that is divided
499into a number of sections. The entries in this file consist of keywords and
500values, in the style of Smail 3 configuration files. A default configuration
501file which is suitable for simple online installations is provided in the
502distribution, and is described in chapter <<CHAPdefconfil>> below.
503
504
505
506Calling interface
507~~~~~~~~~~~~~~~~~
508cindex:[Sendmail compatibility,command line interface]
509Like many MTAs, Exim has adopted the Sendmail command line interface so that it
510can be a straight replacement for _/usr/lib/sendmail_ or
511_/usr/sbin/sendmail_ when sending mail, but you do not need to know anything
512about Sendmail in order to run Exim. For actions other than sending messages,
513Sendmail-compatible options also exist, but those that produce output (for
514example, %-bp%, which lists the messages on the queue) do so in Exim's own
515format. There are also some additional options that are compatible with Smail
5163, and some further options that are new to Exim. Chapter <<CHAPcommandline>>
517documents all Exim's command line options. This information is automatically
518made into the man page that forms part of the Exim distribution.
519
520Control of messages on the queue can be done via certain privileged command
521line options. There is also an optional monitor program called 'eximon', which
522displays current information in an X window, and which contains a menu
523interface to Exim's command line administration options.
524
525
526
527Terminology
528~~~~~~~~~~~
529cindex:[terminology definitions]
530cindex:[body of message,definition of]
531The 'body' of a message is the actual data that the sender wants to transmit.
532It is the last part of a message, and is separated from the 'header' (see
533below) by a blank line.
534
535cindex:[bounce message,definition of]
536When a message cannot be delivered, it is normally returned to the sender in a
537delivery failure message or a ``non-delivery report'' (NDR). The term 'bounce'
538is commonly used for this action, and the error reports are often called
539'bounce messages'. This is a convenient shorthand for ``delivery failure error
540report''. Such messages have an empty sender address in the message's
541'envelope' (see below) to ensure that they cannot themselves give rise to
542further bounce messages.
543
544The term 'default' appears frequently in this manual. It is used to qualify a
545value which is used in the absence of any setting in the configuration. It may
546also qualify an action which is taken unless a configuration setting specifies
547otherwise.
548
549The term 'defer' is used when the delivery of a message to a specific
550destination cannot immediately take place for some reason (a remote host may be
551down, or a user's local mailbox may be full). Such deliveries are 'deferred'
552until a later time.
553
554The word 'domain' is sometimes used to mean all but the first component of a
555host's name. It is 'not' used in that sense here, where it normally
556refers to the part of an email address following the @ sign.
557
558cindex:[envelope, definition of]
559cindex:[sender,definition of]
560A message in transit has an associated 'envelope', as well as a header and a
561body. The envelope contains a sender address (to which bounce messages should
562be delivered), and any number of recipient addresses. References to the
563sender or the recipients of a message usually mean the addresses in the
564envelope. An MTA uses these addresses for delivery, and for returning bounce
565messages, not the addresses that appear in the header lines.
566
567cindex:[message header, definition of]
568cindex:[header section,definition of]
569The 'header' of a message is the first part of a message's text, consisting
570of a number of lines, each of which has a name such as 'From:', 'To:',
571'Subject:', etc. Long header lines can be split over several text lines by
572indenting the continuations. The header is separated from the body by a blank
573line.
574
575cindex:[local part,definition of]
576cindex:[domain,definition of]
577The term 'local part', which is taken from RFC 2822, is used to refer to that
578part of an email address that precedes the @ sign. The part that follows the
579@ sign is called the 'domain' or 'mail domain'.
580
581cindex:[local delivery,definition of]
582cindex:[remote delivery, definition of]
583The terms 'local delivery' and 'remote delivery' are used to distinguish
584delivery to a file or a pipe on the local host from delivery by SMTP over
585TCP/IP to a remote host.
586
587cindex:[return path,definition of]
588'Return path' is another name that is used for the sender address in a
589message's envelope.
590
591cindex:[queue,definition of]
592The term 'queue' is used to refer to the set of messages awaiting delivery,
593because this term is in widespread use in the context of MTAs. However, in
594Exim's case the reality is more like a pool than a queue, because there is
595normally no ordering of waiting messages.
596
597cindex:[queue runner,definition of]
598The term 'queue runner' is used to describe a process that scans the queue
599and attempts to deliver those messages whose retry times have come. This term
600is used by other MTAs, and also relates to the command %runq%, but in Exim
601the waiting messages are normally processed in an unpredictable order.
602
603cindex:[spool directory,definition of]
604The term 'spool directory' is used for a directory in which Exim keeps the
605messages on its queue -- that is, those that it is in the process of
606delivering. This should not be confused with the directory in which local
607mailboxes are stored, which is called a ``spool directory'' by some people. In
608the Exim documentation, ``spool'' is always used in the first sense.
609
610
611
612
613
614
615////////////////////////////////////////////////////////////////////////////
616////////////////////////////////////////////////////////////////////////////
617
618Incorporated code
619-----------------
620cindex:[incorporated code]
621cindex:[regular expressions,library]
622cindex:[PCRE]
623A number of pieces of external code are included in the Exim distribution.
624
625- Regular expressions are supported in the main Exim program and in the Exim
626monitor using the freely-distributable PCRE library, copyright (c) University
627of Cambridge. The source is distributed in the directory _src/pcre_. However,
628this is a cut-down version of PCRE. If you want to use the PCRE library in
629other programs, you should obtain and install the full version from
630*ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre[]*.
631
632- cindex:[cdb,acknowledgement]
633Support for the cdb (Constant DataBase) lookup method is provided by code
634contributed by Nigel Metheringham of (at the time he contributed it) Planet
635Online Ltd. which contains the following statements:
636+
637Copyright (c) 1998 Nigel Metheringham, Planet Online Ltd
638+
639This program is free software; you can redistribute it and/or modify it under
640the terms of the GNU General Public License as published by the Free Software
641Foundation; either version 2 of the License, or (at your option) any later
642version.
643+
644This code implements Dan Bernstein's Constant DataBase (cdb) spec. Information,
645the spec and sample code for cdb can be obtained from
646*http://www.pobox.com/{tl}djb/cdb.html[]*. This implementation borrows some code
647from Dan Bernstein's implementation (which has no license restrictions applied
648to it).
649+
650The implementation is completely contained within the code of Exim.
651It does not link against an external cdb library.
652
653- cindex:[SPA authentication]
654cindex:[Samba project]
655cindex:[Microsoft Secure Password Authentication]
656Client support for Microsoft's 'Secure Password Authentication' is provided
657by code contributed by Marc Prud'hommeaux. Server support was contributed by
658Tom Kistner. This includes code taken from the Samba project, which is released
659under the Gnu GPL.
660
661- cindex:[Cyrus]
662cindex:['pwcheck' daemon]
663cindex:['pwauthd' daemon]
664Support for calling the Cyrus 'pwcheck' and 'saslauthd' daemons is provided
665by code taken from the Cyrus-SASL library and adapted by Alexander S.
666Sabourenkov. The permission notice appears below, in accordance with the
667conditions expressed therein.
668+
669Copyright (c) 2001 Carnegie Mellon University. All rights reserved.
670+
671Redistribution and use in source and binary forms, with or without
672modification, are permitted provided that the following conditions
673are met:
674+
675. Redistributions of source code must retain the above copyright
676notice, this list of conditions and the following disclaimer.
677
678. Redistributions in binary form must reproduce the above copyright
679notice, this list of conditions and the following disclaimer in
680the documentation and/or other materials provided with the
681distribution.
682
683. The name ``Carnegie Mellon University'' must not be used to
684endorse or promote products derived from this software without
685prior written permission. For permission or any other legal
686details, please contact
687+
688&&&
689Office of Technology Transfer
690Carnegie Mellon University
6915000 Forbes Avenue
692Pittsburgh, PA 15213-3890
693(412) 268-4387, fax: (412) 268-7395
694tech-transfer@andrew.cmu.edu
695&&&
696
697. Redistributions of any form whatsoever must retain the following
698acknowledgment:
699+
700'This product includes software developed by Computing Services
701at Carnegie Mellon University (*http://www.cmu.edu/computing/[]*).'
702+
703CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO
704THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
705AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
706FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
707WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
708AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
709OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
710
711. cindex:[monitor]
712cindex:[X-windows]
713cindex:[Athena]
714The Exim Monitor program, which is an X-Window application, includes
715modified versions of the Athena StripChart and TextPop widgets.
716This code is copyright by DEC and MIT, and their permission notice appears
717below, in accordance with the conditions expressed therein.
718+
719Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts,
720and the Massachusetts Institute of Technology, Cambridge, Massachusetts.
721+
722All Rights Reserved
723+
724Permission to use, copy, modify, and distribute this software and its
725documentation for any purpose and without fee is hereby granted,
726provided that the above copyright notice appear in all copies and that
727both that copyright notice and this permission notice appear in
728supporting documentation, and that the names of Digital or MIT not be
729used in advertising or publicity pertaining to distribution of the
730software without specific, written prior permission.
731+
732DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
733ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
734DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
735ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
736WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
737ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
738SOFTWARE.
739
740. Many people have contributed code fragments, some large, some small, that were
741not covered by any specific licence requirements. It is assumed that the
742contributors are happy to see their code incoporated into Exim under the GPL.
743
744
745
746
747
748////////////////////////////////////////////////////////////////////////////
749////////////////////////////////////////////////////////////////////////////
750
751[titleabbrev="Receiving and delivering mail"]
752How Exim receives and delivers mail
753-----------------------------------
754
755
756Overall philosophy
757~~~~~~~~~~~~~~~~~~
758cindex:[design philosophy]
759Exim is designed to work efficiently on systems that are permanently connected
760to the Internet and are handling a general mix of mail. In such circumstances,
761most messages can be delivered immediately. Consequently, Exim does not
762maintain independent queues of messages for specific domains or hosts, though
763it does try to send several messages in a single SMTP connection after a host
764has been down, and it also maintains per-host retry information.
765
766
767
768Policy control
769~~~~~~~~~~~~~~
770cindex:[policy control,overview]
771Policy controls are now an important feature of MTAs that are connected to the
772Internet. Perhaps their most important job is to stop MTAs being abused as
773``open relays'' by misguided individuals who send out vast amounts of unsolicited
774junk, and want to disguise its source. Exim provides flexible facilities for
775specifying policy controls on incoming mail:
776
777- cindex:[{ACL},introduction]
778Exim 4 (unlike previous versions of Exim) implements policy controls on
779incoming mail by means of 'Access Control Lists' (ACLs). Each list is a
780series of statements that may either grant or deny access. ACLs can be used at
781several places in the SMTP dialogue while receiving a message from a remote
782host. However, the most common places are after each RCPT command, and at
783the very end of the message. The sysadmin can specify conditions for accepting
784or rejecting individual recipients or the entire message, respectively, at
785these two points (see chapter <<CHAPACL>>). Denial of access results in an SMTP
786error code.
787
788- An ACL is also available for locally generated, non-SMTP messages. In this
789case, the only available actions are to accept or deny the entire message.
790
791- When Exim is compiled with the content-scanning extension, facilities are
792provided in the ACL mechanism for passing the message to external virus and/or
793spam scanning software. The result of such a scan is passed back to the ACL,
794which can then use it to decide what to do with the message.
795
796- When a message has been received, either from a remote host or from the local
797host, but before the final acknowledgement has been sent, a locally supplied C
798function called 'local_scan()' can be run to inspect the message and decide
799whether to accept it or not (see chapter <<CHAPlocalscan>>). If the message is
800accepted, the list of recipients can be modified by the function.
801
802- Using the 'local_scan()' mechanism is another way of calling external
803scanner software. The %SA-Exim% add-on package works this way. It does not
804require Exim to be compiled with the content-scanning extension.
805
806- After a message has been accepted, a further checking mechanism is available in
807the form of the 'system filter' (see chapter <<CHAPsystemfilter>>). This runs
808at the start of every delivery process.
809
810
811
812User filters
813~~~~~~~~~~~~
814cindex:[filter,introduction]
815cindex:[Sieve filter]
816In a conventional Exim configuration, users are able to run private filters by
817setting up appropriate _.forward_ files in their home directories. See
818chapter <<CHAPredirect>> (about the ^redirect^ router) for the configuration
819needed to support this, and the separate document entitled 'Exim's interfaces
820to mail filtering' for user details. Two different kinds of filtering are
821available:
822
823- Sieve filters are written in the standard filtering language that is defined
824by RFC 3028.
825
826- Exim filters are written in a syntax that is unique to Exim, but which is more
827powerful than Sieve, which it pre-dates.
828
829User filters are run as part of the routing process, described below.
830
831
832
833[[SECTmessiden]]
834Message identification
835~~~~~~~~~~~~~~~~~~~~~~
836cindex:[message ids, details of format]
837cindex:[format,of message id]
838cindex:[id of message]
839cindex:[base62]
840cindex:[base36]
841cindex:[Darwin]
842cindex:[Cygwin]
843Every message handled by Exim is given a 'message id' which is sixteen
844characters long. It is divided into three parts, separated by hyphens, for
845example `16VDhn-0001bo-D3`. Each part is a sequence of letters and digits,
846normally encoding numbers in base 62. However, in the Darwin operating
847system (Mac OS X) and when Exim is compiled to run under Cygwin, base 36
848(avoiding the use of lower case letters) is used instead, because the message
849id is used to construct file names, and the names of files in those systems are
850not case-sensitive.
851
852cindex:[pid (process id),re-use of]
853The detail of the contents of the message id have changed as Exim has evolved.
854Earlier versions relied on the operating system not re-using a process id (pid)
855within one second. On modern operating systems, this assumption can no longer
856be made, so the algorithm had to be changed. To retain backward compatibility,
857the format of the message id was retained, which is why the following rules are
858somewhat eccentric:
859
860- The first six characters of the message id are the time at which the message
861started to be received, to a granularity of one second. That is, this field
862contains the number of seconds since the start of the epoch (the normal Unix
863way of representing the date and time of day).
864
865- After the first hyphen, the next six characters are the id of the process that
866received the message.
867
868- There are two different possibilities for the final two characters:
869
870. cindex:[%localhost_number%]
871If %localhost_number% is not set, this value is the fractional part of the
872time of reception, normally in units of 1/2000 of a second, but for systems
873that must use base 36 instead of base 62 (because of case-insensitive file
874systems), the units are 1/1000 of a second.
875
876. If %localhost_number% is set, it is multiplied by 200 (100) and added to
877the fractional part of the time, which in this case is in units of 1/200
878(1/100) of a second.
879
880After a message has been received, Exim waits for the clock to tick at the
881appropriate resolution before proceeding, so that if another message is
882received by the same process, or by another process with the same (re-used)
883pid, it is guaranteed that the time will be different. In most cases, the clock
884will already have ticked while the message was being received.
885
886
887Receiving mail
888~~~~~~~~~~~~~~
889cindex:[receiving mail]
890cindex:[message,reception]
891The only way Exim can receive mail from a remote host is using SMTP over
892TCP/IP, in which case the sender and recipient addresses are tranferred using
893SMTP commands. However, from a locally running process (such as a user's MUA),
894there are several possibilities:
895
896- If the process runs Exim with the %-bm% option, the message is read
897non-interactively (usually via a pipe), with the recipients taken from the
898command line, or from the body of the message if %-t% is also used.
899
900- If the process runs Exim with the %-bS% option, the message is also read
901non-interactively, but in this case the recipients are listed at the start of
902the message in a series of SMTP RCPT commands, terminated by a DATA
903command. This is so-called ``batch SMTP'' format,
904but it isn't really SMTP. The SMTP commands are just another way of passing
905envelope addresses in a non-interactive submission.
906
907- If the process runs Exim with the %-bs% option, the message is read
908interactively, using the SMTP protocol. A two-way pipe is normally used for
909passing data between the local process and the Exim process.
910This is ``real'' SMTP and is handled in the same way as SMTP over TCP/IP. For
911example, the ACLs for SMTP commands are used for this form of submission.
912
913- A local process may also make a TCP/IP call to the host's loopback address
914(127.0.0.1) or any other of its IP addresses. When receiving messages, Exim
915does not treat the loopback address specially. It treats all such connections
916in the same way as connections from other hosts.
917
918
919cindex:[message sender, constructed by Exim]
920cindex:[sender,constructed by Exim]
921In the three cases that do not involve TCP/IP, the sender address is
922constructed from the login name of the user that called Exim and a default
923qualification domain (which can be set by the %qualify_domain% configuration
924option). For local or batch SMTP, a sender address that is passed using the
925SMTP MAIL command is ignored. However, the system administrator may allow
926certain users (``trusted users'') to specify a different sender address
927unconditionally, or all users to specify certain forms of different sender
928address. The %-f% option or the SMTP MAIL command is used to specify these
929different addresses. See section <<SECTtrustedadmin>> for details of trusted
930users, and the %untrusted_set_sender% option for a way of allowing untrusted
931users to change sender addresses.
932
933Messages received by either of the non-interactive mechanisms are subject to
934checking by the non-SMTP ACL, if one is defined. Messages received using SMTP
935(either over TCP/IP, or interacting with a local process) can be checked by a
936number of ACLs that operate at different times during the SMTP session. Either
937individual recipients, or the entire message, can be rejected if local policy
938requirements are not met. The 'local_scan()' function (see chapter
939<<CHAPlocalscan>>) is run for all incoming messages.
940
941Exim can be configured not to start a delivery process when a message is
942received; this can be unconditional, or depend on the number of incoming SMTP
943connections or the system load. In these situations, new messages wait on the
944queue until a queue runner process picks them up. However, in standard
945configurations under normal conditions, delivery is started as soon as a
946message is received.
947
948
949
950
951
952Handling an incoming message
953~~~~~~~~~~~~~~~~~~~~~~~~~~~~
954cindex:[spool directory,files that hold a message]
955cindex:[file,how a message is held]
956When Exim accepts a message, it writes two files in its spool directory. The
957first contains the envelope information, the current status of the message, and
958the header lines, and the second contains the body of the message. The names of
959the two spool files consist of the message id, followed by `-H` for the
960file containing the envelope and header, and `-D` for the data file.
961
962cindex:[spool directory,_input_ sub-directory]
963By default all these message files are held in a single directory called
964_input_ inside the general Exim spool directory. Some operating systems do
965not perform very well if the number of files in a directory gets very large; to
966improve performance in such cases, the %split_spool_directory% option can be
967used. This causes Exim to split up the input files into 62 sub-directories
968whose names are single letters or digits.
969
970The envelope information consists of the address of the message's sender and
971the addresses of the recipients. This information is entirely separate from
972any addresses contained in the header lines. The status of the message includes
973a list of recipients who have already received the message. The format of the
974first spool file is described in chapter <<CHAPspool>>.
975
976cindex:[rewriting,addresses]
977Address rewriting that is specified in the rewrite section of the configuration
978(see chapter <<CHAPrewrite>>) is done once and for all on incoming addresses,
979both in the header lines and the envelope, at the time the message is accepted.
980If during the course of delivery additional addresses are generated (for
981example, via aliasing), these new addresses are rewritten as soon as they are
982generated. At the time a message is actually delivered (transported) further
983rewriting can take place; because this is a transport option, it can be
984different for different forms of delivery. It is also possible to specify the
985addition or removal of certain header lines at the time the message is
986delivered (see chapters <<CHAProutergeneric>> and <<CHAPtransportgeneric>>).
987
988
989
990Life of a message
991~~~~~~~~~~~~~~~~~
992cindex:[message,life of]
993cindex:[message,frozen]
994A message remains in the spool directory until it is completely delivered to
995its recipients or to an error address, or until it is deleted by an
996administrator or by the user who originally created it. In cases when delivery
997cannot proceed -- for example, when a message can neither be delivered to its
998recipients nor returned to its sender, the message is marked ``frozen'' on the
999spool, and no more deliveries are attempted.
1000
1001cindex:[frozen messages,thawing]
1002cindex:[message,thawing frozen]
1003An administrator can ``thaw'' such messages when the problem has been corrected,
1004and can also freeze individual messages by hand if necessary. In addition, an
1005administrator can force a delivery error, causing a bounce message to be sent.
1006
1007cindex:[%auto_thaw%]
1008There is an option called %auto_thaw%, which can be used to cause Exim to
1009retry frozen messages after a certain time. When this is set, no message will
1010remain on the queue for ever, because the delivery timeout will eventually be
1011reached. Delivery failure reports (bounce messages) that reach this timeout are
1012discarded.
1013
1014cindex:[%timeout_frozen_after%]
1015There is also an option called %timeout_frozen_after%, which discards frozen
1016messages after a certain time.
1017
1018cindex:[message,log file for]
1019cindex:[log,file for each message]
1020While Exim is working on a message, it writes information about each delivery
1021attempt to the main log file. This includes successful, unsuccessful, and
1022delayed deliveries for each recipient (see chapter <<CHAPlog>>). The log lines
1023are also written to a separate 'message log' file for each message. These
1024logs are solely for the benefit of the administrator, and are normally deleted
1025along with the spool files when processing of a message is complete.
1026The use of individual message logs can be disabled by setting
1027%no_message_logs%; this might give an improvement in performance on very
1028busy systems.
1029
1030cindex:[journal file]
1031cindex:[file,journal]
1032All the information Exim itself needs to set up a delivery is kept in the first
1033spool file, along with the header lines. When a successful delivery occurs, the
1034address is immediately written at the end of a journal file, whose name is the
1035message id followed by `-J`. At the end of a delivery run, if there are some
1036addresses left to be tried again later, the first spool file (the `-H` file)
1037is updated to indicate which these are, and the journal file is then deleted.
1038Updating the spool file is done by writing a new file and renaming it, to
1039minimize the possibility of data loss.
1040
1041Should the system or the program crash after a successful delivery but before
1042the spool file has been updated, the journal is left lying around. The next
1043time Exim attempts to deliver the message, it reads the journal file and
1044updates the spool file before proceeding. This minimizes the chances of double
1045deliveries caused by crashes.
1046
1047
1048
1049[[SECTprocaddress]]
1050Processing an address for delivery
1051~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1052cindex:[drivers,definition of]
1053cindex:[router,definition of]
1054cindex:[transport,definition of]
1055The main delivery processing elements of Exim are called 'routers' and
1056'transports', and collectively these are known as 'drivers'. Code for a
1057number of them is provided in the source distribution, and compile-time options
1058specify which ones are included in the binary. Run time options specify which
1059ones are actually used for delivering messages.
1060
1061cindex:[drivers,instance definition]
1062Each driver that is specified in the run time configuration is an 'instance'
1063of that particular driver type. Multiple instances are allowed; for example,
1064you can set up several different ^smtp^ transports, each with different
1065option values that might specify different ports or different timeouts. Each
1066instance has its own identifying name. In what follows we will normally use the
1067instance name when discussing one particular instance (that is, one specific
1068configuration of the driver), and the generic driver name when discussing
1069the driver's features in general.
1070
1071A 'router' is a driver that operates on an address, either determining how
1072its delivery should happen, by routing it to a specific transport, or
1073converting the address into one or more new addresses (for example, via an
1074alias file). A router may also explicitly choose to fail an address, causing it
1075to be bounced.
1076
1077A 'transport' is a driver that transmits a copy of the message from Exim's
1078spool to some destination. There are two kinds of transport: for a 'local'
1079transport, the destination is a file or a pipe on the local host, whereas for a
1080'remote' transport the destination is some other host. A message is passed
1081to a specific transport as a result of successful routing. If a message has
1082several recipients, it may be passed to a number of different transports.
1083
1084cindex:[preconditions,definition of]
1085An address is processed by passing it to each configured router instance in
1086turn, subject to certain preconditions, until a router accepts the address or
1087specifies that it should be bounced. We will describe this process in more
1088detail shortly. As a simple example, the diagram below illustrates how each
1089recipient address in a message is processed in a small configuration of three
1090routers that are configured in various ways.
1091
1092To make this a more concrete example, we'll describe it in terms of some actual
1093routers, but remember, this is only an example. You can configure Exim's
1094routers in many different ways, and there may be any number of routers in a
1095configuration.
1096
1097The first router that is specified in a configuration is often one that handles
1098addresses in domains that are not recognized specially by the local host. These
1099are typically addresses for arbitrary domains on the Internet. A precondition
1100is set up which looks for the special domains known to the host (for example,
1101its own domain name), and the router is run for addresses that do 'not'
1102match. Typically, this is a router that looks up domains in the DNS in order to
1103find the hosts to which this address routes. If it succeeds, the address is
1104queued for a suitable SMTP transport; if it does not succeed, the router is
1105configured to fail the address.
1106
1107///
1108The example pictured could be a configuration of this type. The second and
1109third routers can only be run for addresses for which the preconditions for
1110the first router are not met. If one of these preconditions checks the
1111domain, the second and third routers are run only for domains that are somehow
1112special to the local host.
1113///
1114
1115The second router does redirection -- also known as aliasing and forwarding.
1116When it generates one or more new addresses from the original, each of them is
1117routed independently from the start. Otherwise, the router may cause an address
1118to fail, or it may simply decline to handle the address, in which case the
1119address is passed to the next router.
1120
1121The final router in many configurations is one that checks to see if the
1122address belongs to a local mailbox. The precondition may involve a check to
1123see if the local part is the name of a login account, or it may look up the
1124local part in a file or a database. If its preconditions are not met, or if
1125the router declines, we have reached the end of the routers. When this happens,
1126the address is bounced.
1127
1128
1129
1130Processing an address for verification
1131~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1132cindex:[router,for verification]
1133cindex:[verifying address, overview]
1134As well as being used to decide how to deliver to an address, Exim's routers
1135are also used for 'address verification'. Verification can be requested as
1136one of the checks to be performed in an ACL for incoming messages, on both
1137sender and recipient addresses, and it can be tested using the %-bv% and
1138%-bvs% command line options.
1139
1140When an address is being verified, the routers are run in ``verify mode''. This
1141does not affect the way the routers work, but it is a state that can be
1142detected. By this means, a router can be skipped or made to behave differently
1143when verifying. A common example is a configuration in which the first router
1144sends all messages to a message-scanning program, unless they have been
1145previously scanned. Thus, the first router accepts all addresses without any
1146checking, making it useless for verifying. Normally, the %no_verify% option
1147would be set for such a router, causing it to be skipped in verify mode.
1148
1149
1150
1151
1152[[SECTrunindrou]]
1153Running an individual router
1154~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1155cindex:[router,running details]
1156cindex:[preconditions,checking]
1157cindex:[router,result of running]
1158As explained in the example above, a number of preconditions are checked before
1159running a router. If any are not met, the router is skipped, and the address is
1160passed to the next router. When all the preconditions on a router 'are' met,
1161the router is run. What happens next depends on the outcome, which is one of
1162the following:
1163
1164- 'accept': The router accepts the address, and either queues it for a
1165transport, or generates one or more ``child'' addresses. Processing the original
1166address ceases,
1167cindex:[%unseen% option]
1168unless the %unseen% option is set on the router. This option
1169can be used to set up multiple deliveries with different routing (for example,
1170for keeping archive copies of messages). When %unseen% is set, the address is
1171passed to the next router. Normally, however, an 'accept' return marks the
1172end of routing.
1173+
1174cindex:[case of local parts]
1175cindex:[address duplicate, discarding]
1176If child addresses are generated, Exim checks to see whether they are
1177duplicates of any existing recipient addresses. During this check, local parts
1178are treated as case-sensitive. Duplicate addresses are discarded. Each of the
1179remaining child addresses is then processed independently, starting with the
1180first router by default. It is possible to change this by setting the
1181%redirect_router% option to specify which router to start at for child
1182addresses. Unlike %pass_router% (see below) the router specified by
1183%redirect_router% may be anywhere in the router configuration.
1184
1185- 'pass': The router recognizes the address, but cannot handle it itself. It
1186requests that the address be passed to another router. By default the address
1187is passed to the next router, but this can be changed by setting the
1188%pass_router% option. However, (unlike %redirect_router%) the named router
1189must be below the current router (to avoid loops).
1190
1191- 'decline': The router declines to accept the address because it does not
1192recognize it at all. By default, the address is passed to the next router, but
1193this can be prevented by setting the %no_more% option. When %no_more% is set,
1194all the remaining routers are skipped.
1195
1196- 'fail': The router determines that the address should fail, and queues it for
1197the generation of a bounce message. There is no further processing of the
1198original address unless %unseen% is set on the router.
1199
1200- 'defer': The router cannot handle the address at the present time. (A database
1201may be offline, or a DNS lookup may have timed out.) No further processing of
1202the address happens in this delivery attempt. It is tried again next time the
1203message is considered for delivery.
1204
1205- 'error': There is some error in the router (for example, a syntax error in
1206its configuration). The action is as for defer.
1207
1208If an address reaches the end of the routers without having been accepted by
1209any of them, it is bounced as unrouteable.
1210The default error message in this situation is ``unrouteable address'', but you
1211can set your own message by making use of the %cannot_route_message% option.
1212This can be set for any router; the value from the last router that ``saw''
1213the address is used.
1214
1215Sometimes while routing you want to fail a delivery when some conditions are
1216met but others are not, instead of passing the address on for further routing.
1217You can do this by having a second router that explicitly fails the delivery
1218when the relevant conditions are met. The ^redirect^ router has a ``fail''
1219facility for this purpose.
1220
1221
1222
1223
1224[[SECTrouprecon]]
1225Router preconditions
1226~~~~~~~~~~~~~~~~~~~~
1227cindex:[router preconditions, order of processing]
1228cindex:[preconditions,order of processing]
1229The preconditions that are tested for each router are listed below, in the
1230order in which they are tested. The individual configuration options are
1231described in more detail in chapter <<CHAProutergeneric>>.
1232
1233- The %local_part_prefix% and %local_part_suffix% options can specify that
1234the local parts handled by the router may or must have certain prefixes and/or
1235suffixes. If a mandatory affix (prefix or suffix) is not present, the router is
1236skipped. These conditions are tested first. When an affix is present, it is
1237removed from the local part before further processing, including the evaluation
1238of any other conditions.
1239
1240- Routers can be designated for use only when not verifying an address, that is,
1241only when routing it for delivery (or testing its delivery routing). If the
1242%verify% option is set false, the router is skipped when Exim is verifying an
1243address.
1244Setting the %verify% option actually sets two options, %verify_sender% and
1245%verify_recipient%, which independently control the use of the router for
1246sender and recipient verification. You can set these options directly if
1247you want a router to be used for only one type of verification.
1248
1249- If the %address_test% option is set false, the router is skipped when Exim is
1250run with the %-bt% option to test an address routing. This can be helpful when
1251the first router sends all new messages to a scanner of some sort; it makes it
1252possible to use %-bt% to test subsequent delivery routing without having to
1253simulate the effect of the scanner.
1254
1255- Routers can be designated for use only when verifying an address, as
1256opposed to routing it for delivery. The %verify_only% option controls this.
1257
1258- Certain routers can be explicitly skipped when running the routers to check an
1259address given in the SMTP EXPN command (see the %expn% option).
1260
1261- If the %domains% option is set, the domain of the address must be in the set of
1262domains that it defines.
1263
1264- If the %local_parts% option is set, the local part of the address must be in
1265the set of local parts that it defines. If %local_part_prefix% or
1266%local_part_suffix% is in use, the prefix or suffix is removed from the local
1267part before this check. If you want to do precondition tests on local parts
1268that include affixes, you can do so by using a %condition% option (see below)
1269that uses the variables $local_part$, $local_part_prefix$, and
1270$local_part_suffix$ as necessary.
1271
1272- If the %check_local_user% option is set, the local part must be the name of
1273an account on the local host.
1274If this check succeeds, the uid and gid of the local user are placed in
1275$local_user_uid$ and $local_user_gid$; these values can be used in the
1276remaining preconditions.
1277
1278- If the %router_home_directory% option is set, it is expanded at this point,
1279because it overrides the value of $home$. If this expansion were left till
1280later, the value of $home$ as set by %check_local_user% would be used in
1281subsequent tests. Having two different values of $home$ in the same router
1282could lead to confusion.
1283
1284- If the %senders% option is set, the envelope sender address must be in the set
1285of addresses that it defines.
1286
1287- If the %require_files% option is set, the existence or non-existence of
1288specified files is tested.
1289
1290- cindex:[customizing,precondition]
1291If the %condition% option is set, it is evaluated and tested. This option uses
1292an expanded string to allow you to set up your own custom preconditions.
1293Expanded strings are described in chapter <<CHAPexpand>>.
1294
1295
1296Note that %require_files% comes near the end of the list, so you cannot use it
1297to check for the existence of a file in which to lookup up a domain, local
1298part, or sender. However, as these options are all expanded, you can use the
1299%exists% expansion condition to make such tests within each condition. The
1300%require_files% option is intended for checking files that the router may be
1301going to use internally, or which are needed by a specific transport (for
1302example, _.procmailrc_).
1303
1304
1305
1306Delivery in detail
1307~~~~~~~~~~~~~~~~~~
1308cindex:[delivery,in detail]
1309When a message is to be delivered, the sequence of events is as follows:
1310
1311- If a system-wide filter file is specified, the message is passed to it. The
1312filter may add recipients to the message, replace the recipients, discard the
1313message, cause a new message to be generated, or cause the message delivery to
1314fail. The format of the system filter file is the same as for Exim user filter
1315files, described in the separate document entitled
1316'Exim's interfaces to mail filtering'.
1317cindex:[Sieve filter,not available for system filter]
1318(*Note*: Sieve cannot be used for system filter files.)
1319+
1320Some additional features are available in system filters -- see chapter
1321<<CHAPsystemfilter>> for details. Note that a message is passed to the system
1322filter only once per delivery attempt, however many recipients it has. However,
1323if there are several delivery attempts because one or more addresses could not
1324be immediately delivered, the system filter is run each time. The filter
1325condition %first_delivery% can be used to detect the first run of the system
1326filter.
1327
1328- Each recipient address is offered to each configured router in turn, subject
1329to its preconditions, until one is able to handle it. If no router can handle
1330the address, that is, if they all decline, the address is failed. Because
1331routers can be targeted at particular domains, several locally handled domains
1332can be processed entirely independently of each other.
1333
1334- cindex:[routing,loops in]
1335cindex:[loop,while routing]
1336A router that accepts an address may set up a local or a remote transport for
1337it. However, the transport is not run at this time. Instead, the address is
1338placed on a list for the particular transport, to be run later. Alternatively,
1339the router may generate one or more new addresses (typically from alias,
1340forward, or filter files). New addresses are fed back into this process from
1341the top, but in order to avoid loops, a router ignores any address which has an
1342identically-named ancestor that was processed by itself.
1343
1344- When all the routing has been done, addresses that have been successfully
1345handled are passed to their assigned transports. When local transports are
1346doing real local deliveries, they handle only one address at a time, but if a
1347local transport is being used as a pseudo-remote transport (for example, to
1348collect batched SMTP messages for transmission by some other means) multiple
1349addresses can be handled. Remote transports can always handle more than one
1350address at a time, but can be configured not to do so, or to restrict multiple
1351addresses to the same domain.
1352
1353- Each local delivery to a file or a pipe runs in a separate process under a
1354non-privileged uid, and these deliveries are run one at a time. Remote
1355deliveries also run in separate processes, normally under a uid that is private
1356to Exim (``the Exim user''), but in this case, several remote deliveries can be
1357run in parallel. The maximum number of simultaneous remote deliveries for any
1358one message is set by the %remote_max_parallel% option.
1359The order in which deliveries are done is not defined, except that all local
1360deliveries happen before any remote deliveries.
1361
1362- cindex:[queue runner]
1363When it encounters a local delivery during a queue run, Exim checks its retry
1364database to see if there has been a previous temporary delivery failure for the
1365address before running the local transport. If there was a previous failure,
1366Exim does not attempt a new delivery until the retry time for the address is
1367reached. However, this happens only for delivery attempts that are part of a
1368queue run. Local deliveries are always attempted when delivery immediately
1369follows message reception, even if retry times are set for them. This makes for
1370better behaviour if one particular message is causing problems (for example,
1371causing quota overflow, or provoking an error in a filter file).
1372
1373- cindex:[delivery,retry in remote transports]
1374Remote transports do their own retry handling, since an address may be
1375deliverable to one of a number of hosts, each of which may have a different
1376retry time. If there have been previous temporary failures and no host has
1377reached its retry time, no delivery is attempted, whether in a queue run or
1378not. See chapter <<CHAPretry>> for details of retry strategies.
1379
1380- If there were any permanent errors, a bounce message is returned to an
1381appropriate address (the sender in the common case), with details of the error
1382for each failing address. Exim can be configured to send copies of bounce
1383messages to other addresses.
1384
1385- cindex:[delivery,deferral]
1386If one or more addresses suffered a temporary failure, the message is left on
1387the queue, to be tried again later. Delivery of these addresses is said to be
1388'deferred'.
1389
1390- When all the recipient addresses have either been delivered or bounced,
1391handling of the message is complete. The spool files and message log are
1392deleted, though the message log can optionally be preserved if required.
1393
1394
1395
1396
1397Retry mechanism
1398~~~~~~~~~~~~~~~
1399cindex:[delivery,retry mechanism]
1400cindex:[retry,description of mechanism]
1401cindex:[queue runner]
1402Exim's mechanism for retrying messages that fail to get delivered at the first
1403attempt is the queue runner process. You must either run an Exim daemon that
1404uses the %-q% option with a time interval to start queue runners at regular
1405intervals, or use some other means (such as 'cron') to start them. If you do
1406not arrange for queue runners to be run, messages that fail temporarily at the
1407first attempt will remain on your queue for ever. A queue runner process works
1408it way through the queue, one message at a time, trying each delivery that has
1409passed its retry time.
1410You can run several queue runners at once.
1411
1412Exim uses a set of configured rules to determine when next to retry the failing
1413address (see chapter <<CHAPretry>>). These rules also specify when Exim should
1414give up trying to deliver to the address, at which point it generates a bounce
1415message. If no retry rules are set for a particular host, address, and error
1416combination, no retries are attempted, and temporary errors are treated as
1417permanent.
1418
1419
1420
1421Temporary delivery failure
1422~~~~~~~~~~~~~~~~~~~~~~~~~~
1423cindex:[delivery,temporary failure]
1424There are many reasons why a message may not be immediately deliverable to a
1425particular address. Failure to connect to a remote machine (because it, or the
1426connection to it, is down) is one of the most common. Temporary failures may be
1427detected during routing as well as during the transport stage of delivery.
1428Local deliveries may be delayed if NFS files are unavailable, or if a mailbox
1429is on a file system where the user is over quota. Exim can be configured to
1430impose its own quotas on local mailboxes; where system quotas are set they will
1431also apply.
1432
1433If a host is unreachable for a period of time, a number of messages may be
1434waiting for it by the time it recovers, and sending them in a single SMTP
1435connection is clearly beneficial. Whenever a delivery to a remote host is
1436deferred,
1437
1438cindex:[hints database]
1439Exim makes a note in its hints database, and whenever a successful
1440SMTP delivery has happened, it looks to see if any other messages are waiting
1441for the same host. If any are found, they are sent over the same SMTP
1442connection, subject to a configuration limit as to the maximum number in any
1443one connection.
1444
1445
1446
1447
1448Permanent delivery failure
1449~~~~~~~~~~~~~~~~~~~~~~~~~~
1450cindex:[delivery,permanent failure]
1451cindex:[bounce message,when generated]
1452When a message cannot be delivered to some or all of its intended recipients, a
1453bounce message is generated. Temporary delivery failures turn into permanent
1454errors when their timeout expires. All the addresses that fail in a given
1455delivery attempt are listed in a single message. If the original message has
1456many recipients, it is possible for some addresses to fail in one delivery
1457attempt and others to fail subsequently, giving rise to more than one bounce
1458message. The wording of bounce messages can be customized by the administrator.
1459See chapter <<CHAPemsgcust>> for details.
1460
1461cindex:['X-Failed-Recipients:' header line]
1462Bounce messages contain an 'X-Failed-Recipients:' header line that lists the
1463failed addresses, for the benefit of programs that try to analyse such messages
1464automatically.
1465
1466cindex:[bounce message,recipient of]
1467A bounce message is normally sent to the sender of the original message, as
1468obtained from the message's envelope. For incoming SMTP messages, this is the
1469address given in the MAIL command. However, when an address is
1470expanded via a forward or alias file, an alternative address can be specified
1471for delivery failures of the generated addresses. For a mailing list expansion
1472(see section <<SECTmailinglists>>) it is common to direct bounce messages to the
1473manager of the list.
1474
1475
1476
1477
1478Failures to deliver bounce messages
1479~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1480cindex:[bounce message,failure to deliver]
1481If a bounce message (either locally generated or received from a remote host)
1482itself suffers a permanent delivery failure, the message is left on the queue,
1483but it is frozen, awaiting the attention of an administrator. There are options
1484which can be used to make Exim discard such failed messages, or to keep them
1485for only a short time (see %timeout_frozen_after% and
1486%ignore_bounce_errors_after%).
1487
1488
1489
1490
1491
1492////////////////////////////////////////////////////////////////////////////
1493////////////////////////////////////////////////////////////////////////////
1494
1495Building and installing Exim
1496----------------------------
1497
1498cindex:[building Exim]
1499
1500Unpacking
1501~~~~~~~~~
1502Exim is distributed as a gzipped or bzipped tar file which, when upacked,
1503creates a directory with the name of the current release (for example,
1504_exim-{version}_) into which the following files are placed:
1505
1506[frame="none"]
1507`--------------------`--------------------------------------------------------
1508_ACKNOWLEDGMENTS_ contains some acknowledgments
1509_CHANGES_ contains a reference to where changes are documented
1510_LICENCE_ the GNU General Public Licence
1511_Makefile_ top-level make file
1512_NOTICE_ conditions for the use of Exim
1513_README_ list of files, directories and simple build instructions
1514------------------------------------------------------------------------------
1515
1516Other files whose names begin with _README_ may also be present. The
1517following subdirectories are created:
1518
1519[frame="none"]
1520`--------------------`------------------------------------------------
1521_Local_ an empty directory for local configuration files
1522_OS_ OS-specific files
1523_doc_ documentation files
1524_exim_monitor_ source files for the Exim monitor
1525_scripts_ scripts used in the build process
1526_src_ remaining source files
1527_util_ independent utilities
1528----------------------------------------------------------------------
1529
1530The main utility programs are contained in the _src_ directory, and are built
1531with the Exim binary. The _util_ directory contains a few optional scripts
1532that may be useful to some sites.
1533
1534
1535Multiple machine architectures and operating systems
1536~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1537cindex:[building Exim,multiple OS/architectures]
1538The building process for Exim is arranged to make it easy to build binaries for
1539a number of different architectures and operating systems from the same set of
1540source files. Compilation does not take place in the _src_ directory. Instead,
1541a 'build directory' is created for each architecture and operating system.
1542
1543cindex:[symbolic link,to build directory]
1544Symbolic links to the sources are installed in this directory, which is where
1545the actual building takes place.
1546
1547In most cases, Exim can discover the machine architecture and operating system
1548for itself, but the defaults can be overridden if necessary.
1549
1550
1551[[SECTdb]]
1552DBM libraries
1553~~~~~~~~~~~~~
1554cindex:[DBM libraries, discussion of]
1555cindex:[hints database,DBM files used for]
1556Even if you do not use any DBM files in your configuration, Exim still needs a
1557DBM library in order to operate, because it uses indexed files for its hints
1558databases. Unfortunately, there are a number of DBM libraries in existence, and
1559different operating systems often have different ones installed.
1560
1561cindex:[Solaris,DBM library for]
1562cindex:[IRIX, DBM library for]
1563cindex:[BSD, DBM library for]
1564cindex:[Linux, DBM library for]
1565If you are using Solaris, IRIX, one of the modern BSD systems, or a modern
1566Linux distribution, the DBM configuration should happen automatically, and you
1567may be able to ignore this section. Otherwise, you may have to learn more than
1568you would like about DBM libraries from what follows.
1569
1570cindex:['ndbm' DBM library]
1571Licensed versions of Unix normally contain a library of DBM functions operating
1572via the 'ndbm' interface, and this is what Exim expects by default. Free
1573versions of Unix seem to vary in what they contain as standard. In particular,
1574some early versions of Linux have no default DBM library, and different
1575distributors have chosen to bundle different libraries with their packaged
1576versions. However, the more recent releases seem to have standardised on the
1577Berkeley DB library.
1578
1579Different DBM libraries have different conventions for naming the files they
1580use. When a program opens a file called _dbmfile_, there are four
1581possibilities:
1582
1583. A traditional 'ndbm' implementation, such as that supplied as part of
1584Solaris, operates on two files called _dbmfile.dir_ and _dbmfile.pag_.
1585
1586. cindex:['gdbm' DBM library]
1587The GNU library, 'gdbm', operates on a single file. If used via its 'ndbm'
1588compatibility interface it makes two different hard links to it with names
1589_dbmfile.dir_ and _dbmfile.pag_, but if used via its native interface, the
1590file name is used unmodified.
1591
1592. cindex:[Berkeley DB library]
1593The Berkeley DB package, if called via its 'ndbm' compatibility interface,
1594operates on a single file called _dbmfile.db_, but otherwise looks to the
1595programmer exactly the same as the traditional 'ndbm' implementation.
1596
1597. If the Berkeley package is used in its native mode, it operates on a single
1598file called _dbmfile_; the programmer's interface is somewhat different to
1599the traditional 'ndbm' interface.
1600
1601. To complicate things further, there are several very different versions of the
1602Berkeley DB package. Version 1.85 was stable for a very long time, releases
16032.'x' and 3.'x' were current for a while, but the latest versions are now
1604numbered 4.'x'. Maintenance of some of the earlier releases has ceased. All
1605versions of Berkeley DB can be obtained from
1606+
1607&&&
1608*http://www.sleepycat.com/[]*
1609&&&
1610
1611. cindex:['tdb' DBM library]
1612Yet another DBM library, called 'tdb', has become available from
1613+
1614&&&
1615*http://download.sourceforge.net/tdb[]*
1616&&&
1617+
1618It has its own interface, and also operates on a single file.
1619
1620cindex:[USE_DB]
1621cindex:[DBM libraries, configuration for building]
1622Exim and its utilities can be compiled to use any of these interfaces. In order
1623to use any version of the Berkeley DB package in native mode, you must set
1624USE_DB in an appropriate configuration file (typically
1625_Local/Makefile_). For example:
1626
1627 USE_DB=yes
1628
1629Similarly, for gdbm you set USE_GDBM, and for tdb you set USE_TDB. An
1630error is diagnosed if you set more than one of these.
1631
1632At the lowest level, the build-time configuration sets none of these options,
1633thereby assuming an interface of type (1). However, some operating system
1634configuration files (for example, those for the BSD operating systems and
1635Linux) assume type (4) by setting USE_DB as their default, and the
1636configuration files for Cygwin set USE_GDBM. Anything you set in
1637_Local/Makefile_, however, overrides these system defaults.
1638
1639As well as setting USE_DB, USE_GDBM, or USE_TDB, it may also be
1640necessary to set DBMLIB, to cause inclusion of the appropriate library, as
1641in one of these lines:
1642
1643 DBMLIB = -ldb
1644 DBMLIB = -ltdb
1645
1646Settings like that will work if the DBM library is installed in the standard
1647place. Sometimes it is not, and the library's header file may also not be in
1648the default path. You may need to set INCLUDE to specify where the header
1649file is, and to specify the path to the library more fully in DBMLIB, as in
1650this example:
1651
1652 INCLUDE=-I/usr/local/include/db-4.1
1653 DBMLIB=/usr/local/lib/db-4.1/libdb.a
1654
1655
1656There is further detailed discussion about the various DBM libraries in the
1657file _doc/dbm.discuss.txt_ in the Exim distribution.
1658
1659
1660
1661Pre-building configuration
1662~~~~~~~~~~~~~~~~~~~~~~~~~~
1663cindex:[building Exim,pre-building configuration]
1664cindex:[configuration for building Exim]
1665cindex:[_Local/Makefile_]
1666cindex:[_src/EDITME_]
1667Before building Exim, a local configuration file that specifies options
1668independent of any operating system has to be created with the name
1669_Local/Makefile_. A template for this file is supplied as the file
1670_src/EDITME_, and it contains full descriptions of all the option settings
1671therein. These descriptions are therefore not repeated here. If you are
1672building Exim for the first time, the simplest thing to do is to copy
1673_src/EDITME_ to _Local/Makefile_, then read it and edit it appropriately.
1674
1675There are three settings that you must supply, because Exim will not build
1676without them. They are the location of the run time configuration file
1677(CONFIGURE_FILE), the directory in which Exim binaries will be installed
1678(BIN_DIRECTORY), and the identity of the Exim user (EXIM_USER and
1679maybe EXIM_GROUP as well). The value of CONFIGURE_FILE can in fact be
1680a colon-separated list of file names; Exim uses the first of them that exists.
1681
1682There are a few other parameters that can be specified either at build time or
1683at run time, to enable the same binary to be used on a number of different
1684machines. However, if the locations of Exim's spool directory and log file
1685directory (if not within the spool directory) are fixed, it is recommended that
1686you specify them in _Local/Makefile_ instead of at run time, so that errors
1687detected early in Exim's execution (such as a malformed configuration file) can
1688be logged.
1689
1690cindex:[content scanning,specifying at build time]
1691Exim's interfaces for calling virus and spam scanning sofware directly from
1692access control lists are not compiled by default. If you want to include these
1693facilities, you need to set
1694
1695 WITH_CONTENT_SCAN=yes
1696
1697in your _Local/Makefile_. For details of the facilities themselves, see
1698chapter <<CHAPexiscan>>.
1699
1700
1701cindex:[_Local/eximon.conf_]
1702cindex:[_exim_monitor/EDITME_]
1703If you are going to build the Exim monitor, a similar configuration process is
1704required. The file _exim_monitor/EDITME_ must be edited appropriately for
1705your installation and saved under the name _Local/eximon.conf_. If you are
1706happy with the default settings described in _exim_monitor/EDITME_,
1707_Local/eximon.conf_ can be empty, but it must exist.
1708
1709This is all the configuration that is needed in straightforward cases for known
1710operating systems. However, the building process is set up so that it is easy
1711to override options that are set by default or by operating-system-specific
1712configuration files, for example to change the name of the C compiler, which
1713defaults to %gcc%. See section <<SECToverride>> below for details of how to do
1714this.
1715
1716
1717
1718Support for iconv()
1719~~~~~~~~~~~~~~~~~~~
1720cindex:['iconv()' support]
1721The contents of header lines in messages may be encoded according to the rules
1722described RFC 2047. This makes it possible to transmit characters that are not
1723in the ASCII character set, and to label them as being in a particular
1724character set. When Exim is inspecting header lines by means of the %\$h_%
1725mechanism, it decodes them, and translates them into a specified character set
1726(default ISO-8859-1). The translation is possible only if the operating system
1727supports the 'iconv()' function.
1728
1729However, some of the operating systems that supply 'iconv()' do not support
1730very many conversions. The GNU %libiconv% library (available from
1731*http://www.gnu.org/software/libiconv/[]*) can be installed on such systems to
1732remedy this deficiency, as well as on systems that do not supply 'iconv()' at
1733all. After installing %libiconv%, you should add
1734
1735 HAVE_ICONV=yes
1736
1737to your _Local/Makefile_ and rebuild Exim.
1738
1739
1740
1741[[SECTinctlsssl]]
1742Including TLS/SSL encryption support
1743~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1744cindex:[TLS,including support for TLS]
1745cindex:[encryption,including support for]
1746cindex:[SUPPORT_TLS]
1747cindex:[OpenSSL,building Exim with]
1748cindex:[GnuTLS,building Exim with]
1749Exim can be built to support encrypted SMTP connections, using the STARTTLS
1750command as per RFC 2487. It can also support legacy clients that expect to
1751start a TLS session immediately on connection to a non-standard port (see the
1752%tls_on_connect_ports% runtime option and the %-tls-on-connect% command
1753line option).
1754
1755If you want to build Exim with TLS support, you must first install either the
1756OpenSSL or GnuTLS library. There is no cryptographic code in Exim itself for
1757implementing SSL.
1758
1759If OpenSSL is installed, you should set
1760
1761 SUPPORT_TLS=yes
1762 TLS_LIBS=-lssl -lcrypto
1763
1764in _Local/Makefile_. You may also need to specify the locations of the
1765OpenSSL library and include files. For example:
1766
1767 SUPPORT_TLS=yes
1768 TLS_LIBS=-L/usr/local/openssl/lib -lssl -lcrypto
1769 TLS_INCLUDE=-I/usr/local/openssl/include/
1770
1771cindex:[USE_GNUTLS]
1772If GnuTLS is installed, you should set
1773
1774 SUPPORT_TLS=yes
1775 USE_GNUTLS=yes
1776 TLS_LIBS=-lgnutls -ltasn1 -lgcrypt
1777
1778in _Local/Makefile_, and again you may need to specify the locations of the
1779library and include files. For example:
1780
1781 SUPPORT_TLS=yes
1782 USE_GNUTLS=yes
1783 TLS_LIBS=-L/usr/gnu/lib -lgnutls -ltasn1 -lgcrypt
1784 TLS_INCLUDE=-I/usr/gnu/include
1785
1786You do not need to set TLS_INCLUDE if the relevant directory is already
1787specified in INCLUDE. Details of how to configure Exim to make use of TLS
1788are given in chapter <<CHAPTLS>>.
1789
1790
1791
1792
1793Use of tcpwrappers
1794~~~~~~~~~~~~~~~~~~
1795cindex:[tcpwrappers, building Exim to support]
1796cindex:[USE_TCP_WRAPPERS]
1797Exim can be linked with the 'tcpwrappers' library in order to check incoming
1798SMTP calls using the 'tcpwrappers' control files. This may be a convenient
1799alternative to Exim's own checking facilities for installations that are
1800already making use of 'tcpwrappers' for other purposes. To do this, you should
1801set USE_TCP_WRAPPERS in _Local/Makefile_, arrange for the file
1802_tcpd.h_ to be available at compile time, and also ensure that the library
1803_libwrap.a_ is available at link time, typically by including %-lwrap% in
1804EXTRALIBS_EXIM. For example, if 'tcpwrappers' is installed in
1805_/usr/local_, you might have
1806
1807 USE_TCP_WRAPPERS=yes
1808 CFLAGS=-O -I/usr/local/include
1809 EXTRALIBS_EXIM=-L/usr/local/lib -lwrap
1810
1811in _Local/Makefile_. The name to use in the 'tcpwrappers' control files is
1812``exim''. For example, the line
1813
1814 exim : LOCAL 192.168.1. .friendly.domain.example
1815
1816in your _/etc/hosts.allow_ file allows connections from the local host, from
1817the subnet 192.168.1.0/24, and from all hosts in 'friendly.domain.example'.
1818All other connections are denied. Consult the 'tcpwrappers' documentation for
1819further details.
1820
1821
1822
1823Including support for IPv6
1824~~~~~~~~~~~~~~~~~~~~~~~~~~
1825cindex:[IPv6,including support for]
1826Exim contains code for use on systems that have IPv6 support. Setting
1827`HAVE_IPV6=YES` in _Local/Makefile_ causes the IPv6 code to be included;
1828it may also be necessary to set IPV6_INCLUDE and IPV6_LIBS on systems
1829where the IPv6 support is not fully integrated into the normal include and
1830library files.
1831
1832Two different types of DNS record for handling IPv6 addresses have been
1833defined. AAAA records (analagous to A records for IPv4) are in use, and are
1834currently seen as the mainstream. Another record type called A6 was proposed
1835as better than AAAA because it had more flexibility. However, it was felt to be
1836over-complex, and its status was reduced to ``experimental''. It is not known
1837if anyone is actually using A6 records. Exim has support for A6 records, but
1838this is included only if you set `SUPPORT_A6=YES` in _Local/Makefile_. The
1839support has not been tested for some time.
1840
1841
1842
1843The building process
1844~~~~~~~~~~~~~~~~~~~~
1845cindex:[build directory]
1846Once _Local/Makefile_ (and _Local/eximon.conf_, if required) have been
1847created, run 'make' at the top level. It determines the architecture and
1848operating system types, and creates a build directory if one does not exist.
1849For example, on a Sun system running Solaris 8, the directory
1850_build-SunOS5-5.8-sparc_ is created.
1851cindex:[symbolic link,to source files]
1852Symbolic links to relevant source files are installed in the build directory.
1853
1854*Warning*: The %-j% (parallel) flag must not be used with 'make'; the
1855building process fails if it is set.
1856
1857If this is the first time 'make' has been run, it calls a script that builds
1858a make file inside the build directory, using the configuration files from the
1859_Local_ directory. The new make file is then passed to another instance of
1860'make'. This does the real work, building a number of utility scripts, and
1861then compiling and linking the binaries for the Exim monitor (if configured), a
1862number of utility programs, and finally Exim itself. The command 'make
1863makefile' can be used to force a rebuild of the make file in the build
1864directory, should this ever be necessary.
1865
1866If you have problems building Exim, check for any comments there may be in the
1867_README_ file concerning your operating system, and also take a look at the
1868FAQ, where some common problems are covered.
1869
1870
1871
1872
1873[[SECToverride]]
1874Overriding build-time options for Exim
1875~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1876cindex:[build-time options, overriding]
1877The main make file that is created at the beginning of the building process
1878consists of the concatenation of a number of files which set configuration
1879values, followed by a fixed set of 'make' instructions. If a value is set
1880more than once, the last setting overrides any previous ones. This provides a
1881convenient way of overriding defaults. The files that are concatenated are, in
1882order:
1883
1884&&&
1885_OS/Makefile-Default_
1886_OS/Makefile-_<'ostype'>
1887_Local/Makefile_
1888_Local/Makefile-_<'ostype'>
1889_Local/Makefile-_<'archtype'>
1890_Local/Makefile-_<'ostype'>-<'archtype'>
1891_OS/Makefile-Base_
1892&&&
1893
1894cindex:[_Local/Makefile_]
1895cindex:[building Exim,operating system type]
1896cindex:[building Exim,architecture type]
1897where <'ostype'> is the operating system type and <'archtype'> is the
1898architecture type. _Local/Makefile_ is required to exist, and the building
1899process fails if it is absent. The other three _Local_ files are optional,
1900and are often not needed.
1901
1902The values used for <'ostype'> and <'archtype'> are obtained from scripts
1903called _scripts/os-type_ and _scripts/arch-type_ respectively. If either of
1904the environment variables EXIM_OSTYPE or EXIM_ARCHTYPE is set, their
1905values are used, thereby providing a means of forcing particular settings.
1906Otherwise, the scripts try to get values from the %uname% command. If this
1907fails, the shell variables OSTYPE and ARCHTYPE are inspected. A number
1908of 'ad hoc' transformations are then applied, to produce the standard names
1909that Exim expects. You can run these scripts directly from the shell in order
1910to find out what values are being used on your system.
1911
1912
1913_OS/Makefile-Default_ contains comments about the variables that are set
1914therein. Some (but not all) are mentioned below. If there is something that
1915needs changing, review the contents of this file and the contents of the make
1916file for your operating system (_OS/Makefile-<ostype>_) to see what the
1917default values are.
1918
1919
1920cindex:[building Exim,overriding default settings]
1921If you need to change any of the values that are set in _OS/Makefile-Default_
1922or in _OS/Makefile-<ostype>_, or to add any new definitions, you do not
1923need to change the original files. Instead, you should make the changes by
1924putting the new values in an appropriate _Local_ file. For example,
1925cindex:[Tru64-Unix build-time settings]
1926when building Exim in many releases of the Tru64-Unix (formerly Digital UNIX,
1927formerly DEC-OSF1) operating system, it is necessary to specify that the C
1928compiler is called 'cc' rather than 'gcc'. Also, the compiler must be
1929called with the option %-std1%, to make it recognize some of the features of
1930Standard C that Exim uses. (Most other compilers recognize Standard C by
1931default.) To do this, you should create a file called _Local/Makefile-OSF1_
1932containing the lines
1933
1934 CC=cc
1935 CFLAGS=-std1
1936
1937If you are compiling for just one operating system, it may be easier to put
1938these lines directly into _Local/Makefile_.
1939
1940Keeping all your local configuration settings separate from the distributed
1941files makes it easy to transfer them to new versions of Exim simply by copying
1942the contents of the _Local_ directory.
1943
1944
1945cindex:[NIS lookup type,including support for]
1946cindex:[NIS+ lookup type,including support for]
1947cindex:[LDAP,including support for]
1948cindex:[lookup,inclusion in binary]
1949Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file
1950lookup, but not all systems have these components installed, so the default is
1951not to include the relevant code in the binary. All the different kinds of file
1952and database lookup that Exim supports are implemented as separate code modules
1953which are included only if the relevant compile-time options are set. In the
1954case of LDAP, NIS, and NIS+, the settings for _Local/Makefile_ are:
1955
1956 LOOKUP_LDAP=yes
1957 LOOKUP_NIS=yes
1958 LOOKUP_NISPLUS=yes
1959
1960and similar settings apply to the other lookup types. They are all listed in
1961_src/EDITME_. In most cases the relevant include files and interface
1962libraries need to be installed before compiling Exim.
1963cindex:[cdb,including support for]
1964However, in the case of cdb, which is included in the binary only if
1965
1966 LOOKUP_CDB=yes
1967
1968is set, the code is entirely contained within Exim, and no external include
1969files or libraries are required. When a lookup type is not included in the
1970binary, attempts to configure Exim to use it cause run time configuration
1971errors.
1972
1973cindex:[Perl,including support for]
1974Exim can be linked with an embedded Perl interpreter, allowing Perl
1975subroutines to be called during string expansion. To enable this facility,
1976
1977 EXIM_PERL=perl.o
1978
1979must be defined in _Local/Makefile_. Details of this facility are given in
1980chapter <<CHAPperl>>.
1981
1982cindex:[X11 libraries, location of]
1983The location of the X11 libraries is something that varies a lot between
1984operating systems, and of course there are different versions of X11 to cope
1985with. Exim itself makes no use of X11, but if you are compiling the Exim
1986monitor, the X11 libraries must be available.
1987The following three variables are set in _OS/Makefile-Default_:
1988
1989 X11=/usr/X11R6
1990 XINCLUDE=-I$(X11)/include
1991 XLFLAGS=-L$(X11)/lib
1992
1993These are overridden in some of the operating-system configuration files. For
1994example, in _OS/Makefile-SunOS5_ there is
1995
1996 X11=/usr/openwin
1997 XINCLUDE=-I$(X11)/include
1998 XLFLAGS=-L$(X11)/lib -R$(X11)/lib
1999
2000If you need to override the default setting for your operating system, place a
2001definition of all three of these variables into your
2002_Local/Makefile-<ostype>_ file.
2003
2004cindex:[EXTRALIBS]
2005If you need to add any extra libraries to the link steps, these can be put in a
2006variable called EXTRALIBS, which appears in all the link commands, but by
2007default is not defined. In contrast, EXTRALIBS_EXIM is used only on the
2008command for linking the main Exim binary, and not for any associated utilities.
2009
2010cindex:[DBM libraries, configuration for building]
2011There is also DBMLIB, which appears in the link commands for binaries that
2012use DBM functions (see also section <<SECTdb>>). Finally, there is
2013EXTRALIBS_EXIMON, which appears only in the link step for the Exim monitor
2014binary, and which can be used, for example, to include additional X11
2015libraries.
2016
2017cindex:[configuration file,editing]
2018The make file copes with rebuilding Exim correctly if any of the configuration
2019files are edited. However, if an optional configuration file is deleted, it is
2020necessary to touch the associated non-optional file (that is, _Local/Makefile_
2021or _Local/eximon.conf_) before rebuilding.
2022
2023
2024OS-specific header files
2025~~~~~~~~~~~~~~~~~~~~~~~~
2026cindex:[_os.h_]
2027cindex:[building Exim,OS-specific C header files]
2028The _OS_ directory contains a number of files with names of the form
2029_os.h-<ostype>_. These are system-specific C header files that should not
2030normally need to be changed. There is a list of macro settings that are
2031recognized in the file _OS/os.configuring_, which should be consulted if you
2032are porting Exim to a new operating system.
2033
2034
2035
2036Overriding build-time options for the monitor
2037~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2038cindex:[building Eximon,overriding default options]
2039A similar process is used for overriding things when building the Exim monitor,
2040where the files that are involved are
2041
2042&&&
2043_OS/eximon.conf-Default_
2044_OS/eximon.conf-_<'ostype'>
2045_Local/eximon.conf_
2046_Local/eximon.conf-_<'ostype'>
2047_Local/eximon.conf-_<'archtype'>
2048_Local/eximon.conf-_<'ostype'>-<'archtype'>
2049&&&
2050
2051cindex:[_Local/eximon.conf_]
2052As with Exim itself, the final three files need not exist, and in this case the
2053_OS/eximon.conf-<ostype>_ file is also optional. The default values in
2054_OS/eximon.conf-Default_ can be overridden dynamically by setting environment
2055variables of the same name, preceded by EXIMON_. For example, setting
2056EXIMON_LOG_DEPTH in the environment overrides the value of
2057LOG_DEPTH at run time.
2058
2059
2060
2061
2062Installing Exim binaries and scripts
2063~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2064cindex:[installing Exim]
2065cindex:[BIN_DIRECTORY]
2066The command 'make install' runs the 'exim_install' script with no
2067arguments. The script copies binaries and utility scripts into the directory
2068whose name is specified by the BIN_DIRECTORY setting in
2069_Local/Makefile_.
2070
2071cindex:[CONFIGURE_FILE]
2072Exim's run time configuration file is named by the CONFIGURE_FILE setting
2073in _Local/Makefile_. If this names a single file, and the file does not
2074exist, the default configuration file _src/configure.default_ is copied there
2075by the installation script. If a run time configuration file already exists, it
2076is left alone. If CONFIGURE_FILE is a colon-separated list, naming several
2077alternative files, no default is installed.
2078
2079cindex:[system aliases file]
2080cindex:[_/etc/aliases_]
2081One change is made to the default configuration file when it is installed: the
2082default configuration contains a router that references a system aliases file.
2083The path to this file is set to the value specified by
2084SYSTEM_ALIASES_FILE in _Local/Makefile_ (_/etc/aliases_ by default).
2085If the system aliases file does not exist, the installation script creates it,
2086and outputs a comment to the user.
2087
2088The created file contains no aliases, but it does contain comments about the
2089aliases a site should normally have. Mail aliases have traditionally been
2090kept in _/etc/aliases_. However, some operating systems are now using
2091_/etc/mail/aliases_. You should check if yours is one of these, and change
2092Exim's configuration if necessary.
2093
2094The default configuration uses the local host's name as the only local domain,
2095and is set up to do local deliveries into the shared directory _/var/mail_,
2096running as the local user. System aliases and _.forward_ files in users' home
2097directories are supported, but no NIS or NIS+ support is configured. Domains
2098other than the name of the local host are routed using the DNS, with delivery
2099over SMTP.
2100
2101cindex:[setuid,installing Exim with]
2102The install script copies files only if they are newer than the files they are
2103going to replace. The Exim binary is required to be owned by root and have the
2104'setuid' bit set, for normal configurations. Therefore, you must run 'make
2105install' as root so that it can set up the Exim binary in this way. However, in
2106some special situations (for example, if a host is doing no local deliveries)
2107it may be possible to run Exim without making the binary setuid root (see
2108chapter <<CHAPsecurity>> for details).
2109
2110It is possible to install Exim for special purposes (such as building a binary
2111distribution) in a private part of the file system. You can do this by a
2112command such as
2113
2114 make DESTDIR=/some/directory/ install
2115
2116This has the effect of pre-pending the specified directory to all the file
2117paths, except the name of the system aliases file that appears in the default
2118configuration. (If a default alias file is created, its name 'is' modified.)
2119For backwards compatibility, ROOT is used if DESTDIR is not set,
2120but this usage is deprecated.
2121
2122cindex:[installing Exim,what is not installed]
2123Running 'make install' does not copy the Exim 4 conversion script
2124'convert4r4', or the 'pcretest' test program. You will probably run the
2125first of these only once (if you are upgrading from Exim 3), and the second
2126isn't really part of Exim. None of the documentation files in the _doc_
2127directory are copied, except for the info files when you have set
2128INFO_DIRECTORY, as described in section <<SECTinsinfdoc>> below.
2129
2130For the utility programs, old versions are renamed by adding the suffix _.O_
2131to their names. The Exim binary itself, however, is handled differently. It is
2132installed under a name that includes the version number and the compile number,
2133for example _exim-{version}-1_. The script then arranges for a symbolic link
2134called _exim_ to point to the binary. If you are updating a previous version
2135of Exim, the script takes care to ensure that the name _exim_ is never absent
2136from the directory (as seen by other processes).
2137
2138cindex:[installing Exim,testing the script]
2139If you want to see what the 'make install' will do before running it for
2140real, you can pass the %-n% option to the installation script by this command:
2141
2142 make INSTALL_ARG=-n install
2143
2144The contents of the variable INSTALL_ARG are passed to the installation
2145script. You do not need to be root to run this test. Alternatively, you can run
2146the installation script directly, but this must be from within the build
2147directory. For example, from the top-level Exim directory you could use this
2148command:
2149
2150 (cd build-SunOS5-5.5.1-sparc; ../scripts/exim_install -n)
2151
2152cindex:[installing Exim,install script options]
2153There are two other options that can be supplied to the installation script.
2154
2155- %-no_chown% bypasses the call to change the owner of the installed binary
2156to root, and the call to make it a setuid binary.
2157
2158- %-no_symlink% bypasses the setting up of the symbolic link _exim_ to the
2159installed binary.
2160
2161INSTALL_ARG can be used to pass these options to the script. For example:
2162
2163 make INSTALL_ARG=-no_symlink install
2164
2165
2166The installation script can also be given arguments specifying which files are
2167to be copied. For example, to install just the Exim binary, and nothing else,
2168without creating the symbolic link, you could use:
2169
2170 make INSTALL_ARG='-no_symlink exim' install
2171
2172
2173
2174
2175[[SECTinsinfdoc]]
2176Installing info documentation
2177~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2178cindex:[installing Exim,'info' documentation]
2179Not all systems use the GNU 'info' system for documentation, and for this
2180reason, the Texinfo source of Exim's documentation is not included in the main
2181distribution. Instead it is available separately from the ftp site (see section
2182<<SECTavail>>).
2183
2184If you have defined INFO_DIRECTORY in _Local/Makefile_ and the Texinfo
2185source of the documentation is found in the source tree, running 'make
2186install' automatically builds the info files and installs them.
2187
2188
2189
2190Setting up the spool directory
2191~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2192cindex:[spool directory,creating]
2193When it starts up, Exim tries to create its spool directory if it does not
2194exist. The Exim uid and gid are used for the owner and group of the spool
2195directory. Sub-directories are automatically created in the spool directory as
2196necessary.
2197
2198
2199
2200
2201Testing
2202~~~~~~~
2203cindex:[testing,installation]
2204Having installed Exim, you can check that the run time configuration file is
2205syntactically valid by running the following command, which assumes that the
2206Exim binary directory is within your PATH environment variable:
2207
2208 exim -bV
2209
2210If there are any errors in the configuration file, Exim outputs error messages.
2211Otherwise it outputs the version number and build date,
2212the DBM library that is being used, and information about which drivers and
2213other optional code modules are included in the binary.
2214Some simple routing tests can be done by using the address testing option. For
2215example,
2216
2217 exim -bt <local username>
2218
2219should verify that it recognizes a local mailbox, and
2220
2221 exim -bt <remote address>
2222
2223a remote one. Then try getting it to deliver mail, both locally and remotely.
2224This can be done by passing messages directly to Exim, without going through a
2225user agent. For example:
2226
2227 exim -v postmaster@your.domain.example
2228 From: user@your.domain.example
2229 To: postmaster@your.domain.example
2230 Subject: Testing Exim
2231
2232 This is a test message.
2233 ^D
2234
2235The %-v% option causes Exim to output some verification of what it is doing.
2236In this case you should see copies of three log lines, one for the message's
2237arrival, one for its delivery, and one containing ``Completed''.
2238
2239cindex:[delivery,problems with]
2240If you encounter problems, look at Exim's log files ('mainlog' and
2241'paniclog') to see if there is any relevant information there. Another source
2242of information is running Exim with debugging turned on, by specifying the
2243%-d% option. If a message is stuck on Exim's spool, you can force a delivery
2244with debugging turned on by a command of the form
2245
2246 exim -d -M <message-id>
2247
2248You must be root or an ``admin user'' in order to do this. The %-d% option
2249produces rather a lot of output, but you can cut this down to specific areas.
2250For example, if you use %-d-all+route% only the debugging information relevant
2251to routing is included. (See the %-d% option in chapter <<CHAPcommandline>> for
2252more details.)
2253
2254cindex:[``sticky'' bit]
2255cindex:[lock files]
2256One specific problem that has shown up on some sites is the inability to do
2257local deliveries into a shared mailbox directory, because it does not have the
2258``sticky bit'' set on it. By default, Exim tries to create a lock file before
2259writing to a mailbox file, and if it cannot create the lock file, the delivery
2260is deferred. You can get round this either by setting the ``sticky bit'' on the
2261directory, or by setting a specific group for local deliveries and allowing
2262that group to create files in the directory (see the comments above the
2263^local_delivery^ transport in the default configuration file). Another
2264approach is to configure Exim not to use lock files, but just to rely on
2265'fcntl()' locking instead. However, you should do this only if all user
2266agents also use 'fcntl()' locking. For further discussion of locking issues,
2267see chapter <<CHAPappendfile>>.
2268
2269One thing that cannot be tested on a system that is already running an MTA is
2270the receipt of incoming SMTP mail on the standard SMTP port. However, the
2271%-oX% option can be used to run an Exim daemon that listens on some other
2272port, or 'inetd' can be used to do this. The %-bh% option and the
2273'exim_checkaccess' utility can be used to check out policy controls on
2274incoming SMTP mail.
2275
2276Testing a new version on a system that is already running Exim can most easily
2277be done by building a binary with a different CONFIGURE_FILE setting. From
2278within the run time configuration, all other file and directory names
2279that Exim uses can be altered, in order to keep it entirely clear of the
2280production version.
2281
2282
2283Replacing another MTA with Exim
2284~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2285cindex:[replacing another MTA]
2286Building and installing Exim for the first time does not of itself put it in
2287general use. The name by which the system's MTA is called by mail user agents
2288is either _/usr/sbin/sendmail_, or _/usr/lib/sendmail_ (depending on the
2289operating system), and it is necessary to make this name point to the 'exim'
2290binary in order to get the user agents to pass messages to Exim. This is
2291normally done by renaming any existing file and making _/usr/sbin/sendmail_
2292or _/usr/lib/sendmail_
2293
2294cindex:[symbolic link,to 'exim' binary]
2295a symbolic link to the 'exim' binary. It is a good idea to remove any setuid
2296privilege and executable status from the old MTA. It is then necessary to stop
2297and restart the mailer daemon, if one is running.
2298
2299cindex:[FreeBSD, MTA indirection]
2300cindex:[_/etc/mail/mailer.conf_]
2301Some operating systems have introduced alternative ways of switching MTAs. For
2302example, if you are running FreeBSD, you need to edit the file
2303_/etc/mail/mailer.conf_ instead of setting up a symbolic link as just
2304described. A typical example of the contents of this file for running Exim is
2305as follows:
2306
2307 sendmail /usr/exim/bin/exim
2308 send-mail /usr/exim/bin/exim
2309 mailq /usr/exim/bin/exim -bp
2310 newaliases /usr/bin/true
2311
2312
2313Once you have set up the symbolic link, or edited _/etc/mail/mailer.conf_,
2314your Exim installation is ``live''. Check it by sending a message from your
2315favourite user agent.
2316
2317You should consider what to tell your users about the change of MTA. Exim may
2318have different capabilities to what was previously running, and there are
2319various operational differences such as the text of messages produced by
2320command line options and in bounce messages. If you allow your users to make
2321use of Exim's filtering capabilities, you should make the document entitled
2322'Exim's interface to mail filtering'
2323available to them.
2324
2325
2326
2327Upgrading Exim
2328~~~~~~~~~~~~~~
2329cindex:[upgrading Exim]
2330If you are already running Exim on your host, building and installing a new
2331version automatically makes it available to MUAs, or any other programs that
2332call the MTA directly. However, if you are running an Exim daemon, you do need
2333to send it a HUP signal, to make it re-exec itself, and thereby pick up the new
2334binary. You do not need to stop processing mail in order to install a new
2335version of Exim.
2336
2337
2338
2339Stopping the Exim daemon on Solaris
2340~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2341cindex:[Solaris,stopping Exim on]
2342The standard command for stopping the mailer daemon on Solaris is
2343
2344 /etc/init.d/sendmail stop
2345
2346If _/usr/lib/sendmail_ has been turned into a symbolic link, this script
2347fails to stop Exim because it uses the command 'ps -e' and greps the output
2348for the text ``sendmail''; this is not present because the actual program name
2349(that is, ``exim'') is given by the 'ps' command with these options. A solution
2350is to replace the line that finds the process id with something like
2351
2352 pid=`cat /var/spool/exim/exim-daemon.pid`
2353
2354to obtain the daemon's pid directly from the file that Exim saves it in.
2355
2356Note, however, that stopping the daemon does not ``stop Exim''. Messages can
2357still be received from local processes, and if automatic delivery is configured
2358(the normal case), deliveries will still occur.
2359
2360
2361
2362
2363////////////////////////////////////////////////////////////////////////////
2364////////////////////////////////////////////////////////////////////////////
2365
2366[[CHAPcommandline]]
2367The Exim command line
2368---------------------
2369cindex:[command line,options]
2370cindex:[options,command line]
2371Exim's command line takes the standard Unix form of a sequence of options,
2372each starting with a hyphen character, followed by a number of arguments. The
2373options are compatible with the main options of Sendmail, and there are also
2374some additional options, some of which are compatible with Smail 3. Certain
2375combinations of options do not make sense, and provoke an error if used.
2376The form of the arguments depends on which options are set.
2377
2378
2379Setting options by program name
2380~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2381cindex:['mailq']
2382If Exim is called under the name 'mailq', it behaves as if the option %-bp%
2383were present before any other options.
2384The %-bp% option requests a listing of the contents of the mail queue on the
2385standard output.
2386This feature is for compatibility with some systems that contain a command of
2387that name in one of the standard libraries, symbolically linked to
2388_/usr/sbin/sendmail_ or _/usr/lib/sendmail_.
2389
2390cindex:['rsmtp']
2391If Exim is called under the name 'rsmtp' it behaves as if the option %-bS%
2392were present before any other options, for compatibility with Smail. The %-bS%
2393option is used for reading in a number of messages in batched SMTP format.
2394
2395cindex:['rmail']
2396If Exim is called under the name 'rmail' it behaves as if the %-i% and
2397%-oee% options were present before any other options, for compatibility with
2398Smail. The name 'rmail' is used as an interface by some UUCP systems.
2399
2400cindex:['runq']
2401cindex:[queue runner]
2402If Exim is called under the name 'runq' it behaves as if the option %-q% were
2403present before any other options, for compatibility with Smail. The %-q%
2404option causes a single queue runner process to be started.
2405
2406cindex:['newaliases']
2407cindex:[alias file,building]
2408cindex:[Sendmail compatibility,calling Exim as 'newaliases']
2409If Exim is called under the name 'newaliases' it behaves as if the option
2410%-bi% were present before any other options, for compatibility with Sendmail.
2411This option is used for rebuilding Sendmail's alias file. Exim does not have
2412the concept of a single alias file, but can be configured to run a given
2413command if called with the %-bi% option.
2414
2415
2416[[SECTtrustedadmin]]
2417Trusted and admin users
2418~~~~~~~~~~~~~~~~~~~~~~~
2419Some Exim options are available only to 'trusted users' and others are
2420available only to 'admin users'. In the description below, the phrases ``Exim
2421user'' and ``Exim group'' mean the user and group defined by EXIM_USER and
2422EXIM_GROUP in _Local/Makefile_ or set by the %exim_user% and
2423%exim_group% options. These do not necessarily have to use the name ``exim''.
2424
2425- cindex:[trusted user,definition of]
2426cindex:[user, trusted definition of]
2427The trusted users are root, the Exim user, any user listed in the
2428%trusted_users% configuration option, and any user whose current group or any
2429supplementary group is one of those listed in the %trusted_groups%
2430configuration option. Note that the Exim group is not automatically trusted.
2431+
2432cindex:[``From'' line]
2433cindex:[envelope sender]
2434Trusted users are always permitted to use the %-f% option or a leading ``From ''
2435line to specify the envelope sender of a message that is passed to Exim through
2436the local interface (see the %-bm% and %-f% options below). See the
2437%untrusted_set_sender% option for a way of permitting non-trusted users to
2438set envelope senders.
2439+
2440cindex:['From:' header line]
2441cindex:['Sender:' header line]
2442For a trusted user, there is never any check on the contents of the 'From:'
2443header line, and a 'Sender:' line is never added. Furthermore, any existing
2444'Sender:' line in incoming local (non-TCP/IP) messages is not removed.
2445+
2446Trusted users may also specify a host name, host address, interface address,
2447protocol name, ident value, and authentication data when submitting a message
2448locally. Thus, they are able to insert messages into Exim's queue locally that
2449have the characteristics of messages received from a remote host. Untrusted
2450users may in some circumstances use %-f%, but can never set the other values
2451that are available to trusted users.
2452
2453- cindex:[user, admin definition of]
2454cindex:[admin user,definition of]
2455The admin users are root, the Exim user, and any user that is a member of the
2456Exim group or of any group listed in the %admin_groups% configuration option.
2457The current group does not have to be one of these groups.
2458+
2459Admin users are permitted to list the queue, and to carry out certain
2460operations on messages, for example, to force delivery failures. It is also
2461necessary to be an admin user in order to see the full information provided by
2462the Exim monitor, and full debugging output.
2463+
2464By default, the use of the %-M%, %-q%, %-R%, and %-S% options to cause Exim
2465to attempt delivery of messages on its queue is restricted to admin users.
2466However, this restriction can be relaxed by setting the %prod_requires_admin%
2467option false (that is, specifying %no_prod_requires_admin%).
2468+
2469Similarly, the use of the %-bp% option to list all the messages in the queue
2470is restricted to admin users unless %queue_list_requires_admin% is set
2471false.
2472
2473
2474*Warning*: If you configure your system so that admin users are able to
2475edit Exim's configuration file, you are giving those users an easy way of
2476getting root. There is further discussion of this issue at the start of chapter
2477<<CHAPconf>>.
2478
2479
2480
2481
2482Command line options
2483~~~~~~~~~~~~~~~~~~~~
2484The command options are described in alphabetical order below.
2485
2486///
2487We insert a stylized DocBook comment here, to identify the start of the command
2488line options. This is for the benefit of the Perl script that automatically
2489creates a man page for the options.
2490///
2491
2492++++
2493<!-- === Start of command line options === -->
2494++++
2495
2496
2497*{hh}*::
2498oindex:[{hh}]
2499cindex:[options, command line; terminating]
2500This is a pseudo-option whose only purpose is to terminate the options and
2501therefore to cause subsequent command line items to be treated as arguments
2502rather than options, even if they begin with hyphens.
2503
2504*--help*::
2505oindex:[%{hh}help%]
2506This option causes Exim to output a few sentences stating what it is.
2507The same output is generated if the Exim binary is called with no options and
2508no arguments.
2509
2510*-B*<'type'>::
2511oindex:[%-B%]
2512cindex:[8-bit characters]
2513cindex:[Sendmail compatibility,8-bit characters]
2514This is a Sendmail option for selecting 7 or 8 bit processing. Exim is 8-bit
2515clean; it ignores this option.
2516
2517*-bd*::
2518oindex:[%-bd%]
2519cindex:[daemon]
2520cindex:[SMTP listener]
2521cindex:[queue runner]
2522This option runs Exim as a daemon, awaiting incoming SMTP connections. Usually
2523the %-bd% option is combined with the %-q%<'time'> option, to specify that
2524the daemon should also initiate periodic queue runs.
2525+
2526The %-bd% option can be used only by an admin user. If either of the %-d%
2527(debugging) or %-v% (verifying) options are set, the daemon does not
2528disconnect from the controlling terminal. When running this way, it can be
2529stopped by pressing ctrl-C.
2530+
2531By default, Exim listens for incoming connections to the standard SMTP port on
2532all the host's running interfaces. However, it is possible to listen on other
2533ports, on multiple ports, and only on specific interfaces. Chapter
2534<<CHAPinterfaces>> contains a description of the options that control this.
2535+
2536When a listening daemon
2537cindex:[daemon,process id (pid)]
2538cindex:[pid (process id),of daemon]
2539is started without the use of %-oX% (that is, without overriding the normal
2540configuration), it writes its process id to a file called _exim-daemon.pid_ in
2541Exim's spool directory. This location can be overridden by setting
2542PID_FILE_PATH in _Local/Makefile_. The file is written while Exim is still
2543running as root.
2544+
2545When %-oX% is used on the command line to start a listening daemon, the
2546process id is not written to the normal pid file path. However, %-oP% can be
2547used to specify a path on the command line if a pid file is required.
2548+
2549The SIGHUP signal
2550cindex:[SIGHUP]
2551can be used to cause the daemon to re-exec itself. This should be done whenever
2552Exim's configuration file, or any file that is incorporated into it by means of
2553the %.include% facility, is changed, and also whenever a new version of Exim is
2554installed. It is not necessary to do this when other files that are referenced
2555from the configuration (for example, alias files) are changed, because these
2556are reread each time they are used.
2557
2558*-bdf*::
2559oindex:[%-bdf%]
2560This option has the same effect as %-bd% except that it never disconnects from
2561the controlling terminal, even when no debugging is specified.
2562
2563*-be*::
2564oindex:[%-be%]
2565cindex:[testing,string expansion]
2566cindex:[expansion,testing]
2567Run Exim in expansion testing mode. Exim discards its root privilege, to
2568prevent ordinary users from using this mode to read otherwise inaccessible
2569files. If no arguments are given, Exim runs interactively, prompting for lines
2570of data.
2571+
2572If Exim was built with USE_READLINE=yes in _Local/Makefile_, it tries
2573to load the %libreadline% library dynamically whenever the %-be% option is
2574used without command line arguments. If successful, it uses the 'readline()'
2575function, which provides extensive line-editing facilities, for reading the
2576test data. A line history is supported.
2577+
2578Long expansion expressions can be split over several lines by using backslash
2579continuations. As in Exim's run time configuration, whitespace at the start of
2580continuation lines is ignored. Each argument or data line is passed through the
2581string expansion mechanism, and the result is output. Variable values from the
2582configuration file (for example, $qualify_domain$) are available, but no
2583message-specific values (such as $domain$) are set, because no message is
2584being processed.
2585
2586*-bF*~<'filename'>::
2587oindex:[%-bF%]
2588cindex:[system filter,testing]
2589cindex:[testing,system filter]
2590This option is the same as %-bf% except that it assumes that the filter being
2591tested is a system filter. The additional commands that are available only in
2592system filters are recognized.
2593
2594*-bf*~<'filename'>::
2595oindex:[%-bf%]
2596cindex:[filter,testing]
2597cindex:[testing,filter file]
2598cindex:[forward file,testing]
2599cindex:[testing,forward file]
2600cindex:[Sieve filter,testing]
2601This option runs Exim in user filter testing mode; the file is the filter file
2602to be tested, and a test message must be supplied on the standard input. If
2603there are no message-dependent tests in the filter, an empty file can be
2604supplied.
2605+
2606If you want to test a system filter file, use %-bF% instead of %-bf%. You can
2607use both %-bF% and %-bf% on the same command, in order to
2608test a system filter and a user filter in the same run. For example:
2609
2610 exim -bF /system/filter -bf /user/filter </test/message
2611+
2612This is helpful when the system filter adds header lines or sets filter
2613variables that are used by the user filter.
2614+
2615If the test filter file does not begin with one of the special lines
2616
2617 # Exim filter
2618 # Sieve filter
2619+
2620it is taken to be a normal _.forward_ file, and is tested for validity under
2621that interpretation. See sections <<SECTitenonfilred>> to <<SECTspecitredli>> for a
2622description of the possible contents of non-filter redirection lists.
2623+
2624The result of an Exim command that uses %-bf%, provided no errors are
2625detected, is a list of the actions that Exim would try to take if presented
2626with the message for real. More details of filter testing are given in the
2627separate document entitled 'Exim's interfaces to mail filtering'.
2628+
2629When testing a filter file,
2630cindex:[``From'' line]
2631cindex:[envelope sender]
2632cindex:[%-f% option,for filter testing]
2633the envelope sender can be set by the %-f% option,
2634or by a ``From '' line at the start of the test message. Various parameters that
2635would normally be taken from the envelope recipient address of the message can
2636be set by means of additional command line options (see the next four options).
2637
2638*-bfd*~<'domain'>::
2639oindex:[%-bfd%]
2640This sets the domain of the recipient address when a filter file is being
2641tested by means of the %-bf% option. The default is the value of
2642$qualify_domain$.
2643
2644*-bfl*~<'local~part'>::
2645oindex:[%-bfl%]
2646This sets the local part of the recipient address when a filter file is being
2647tested by means of the %-bf% option. The default is the username of the
2648process that calls Exim. A local part should be specified with any prefix or
2649suffix stripped, because that is how it appears to the filter when a message is
2650actually being delivered.
2651
2652*-bfp*~<'prefix'>::
2653oindex:[%-bfp%]
2654This sets the prefix of the local part of the recipient address when a filter
2655file is being tested by means of the %-bf% option. The default is an empty
2656prefix.
2657
2658*-bfs*~<'suffix'>::
2659oindex:[%-bfs%]
2660This sets the suffix of the local part of the recipient address when a filter
2661file is being tested by means of the %-bf% option. The default is an empty
2662suffix.
2663
2664*-bh*~<'IP~address'>::
2665oindex:[%-bh%]
2666cindex:[testing,incoming SMTP]
2667cindex:[SMTP,testing incoming]
2668cindex:[testing,relay control]
2669cindex:[relaying,testing configuration]
2670cindex:[policy control,testing]
2671cindex:[debugging,%-bh% option]
2672This option runs a fake SMTP session as if from the given IP address, using the
2673standard input and output. The IP address may include a port number at the end,
2674after a full stop. For example:
2675
2676 exim -bh 10.9.8.7.1234
2677 exim -bh fe80::a00:20ff:fe86:a061.5678
2678+
2679When an IPv6 address is given, it is converted into canonical form. In the case
2680of the second example above, the value of $sender_host_address$ after
2681conversion to the canonical form is `fe80:0000:0000:0a00:20ff:fe86:a061.5678`.
2682+
2683Comments as to what is going on are written to the standard error file. These
2684include lines beginning with ``LOG'' for anything that would have been logged.
2685This facility is provided for testing configuration options for incoming
2686messages, to make sure they implement the required policy. For example, you can
2687test your relay controls using %-bh%.
2688+
2689*Warning 1*:
2690cindex:[RFC 1413]
2691You cannot test features of the configuration that rely on
2692ident (RFC 1413) callouts. These cannot be done when testing using
2693%-bh% because there is no incoming SMTP connection.
2694+
2695*Warning 2*: Address verification callouts (see section <<SECTcallver>>) are
2696also skipped when testing using %-bh%. If you want these callouts to occur,
2697use %-bhc% instead.
2698+
2699Messages supplied during the testing session are discarded, and nothing is
2700written to any of the real log files. There may be pauses when DNS (and other)
2701lookups are taking place, and of course these may time out. The %-oMi% option
2702can be used to specify a specific IP interface and port if this is important.
2703+
2704The 'exim_checkaccess' utility is a ``packaged'' version of %-bh% whose
2705output just states whether a given recipient address from a given host is
2706acceptable or not. See section <<SECTcheckaccess>>.
2707
2708*-bhc*~<'IP~address'>::
2709oindex:[%-bhc%]
2710This option operates in the same way as %-bh%, except that address
2711verification callouts are performed if required. This includes consulting and
2712updating the callout cache database.
2713
2714*-bi*::
2715oindex:[%-bi%]
2716cindex:[alias file,building]
2717cindex:[building alias file]
2718cindex:[Sendmail compatibility,%-bi% option]
2719Sendmail interprets the %-bi% option as a request to rebuild its alias file.
2720Exim does not have the concept of a single alias file, and so it cannot mimic
2721this behaviour. However, calls to _/usr/lib/sendmail_ with the %-bi% option
2722tend to appear in various scripts such as NIS make files, so the option must be
2723recognized.
2724+
2725If %-bi% is encountered, the command specified by the %bi_command%
2726configuration option is run, under the uid and gid of the caller of Exim. If
2727the %-oA% option is used, its value is passed to the command as an argument.
2728The command set by %bi_command% may not contain arguments. The command can use
2729the 'exim_dbmbuild' utility, or some other means, to rebuild alias files if
2730this is required. If the %bi_command% option is not set, calling Exim with
2731%-bi% is a no-op.
2732
2733*-bm*::
2734oindex:[%-bm%]
2735cindex:[local message reception]
2736This option runs an Exim receiving process that accepts an incoming,
2737locally-generated message on the current input. The recipients are given as the
2738command arguments (except when %-t% is also present -- see below). Each
2739argument can be a comma-separated list of RFC 2822 addresses. This is the
2740default option for selecting the overall action of an Exim call; it is assumed
2741if no other conflicting option is present.
2742+
2743If any addresses in the message are unqualified (have no domain), they are
2744qualified by the values of the %qualify_domain% or %qualify_recipient%
2745options, as appropriate. The %-bnq% option (see below) provides a way of
2746suppressing this for special cases.
2747+
2748Policy checks on the contents of local messages can be enforced by means of
2749the non-SMTP ACL. See chapter <<CHAPACL>> for details.
2750+
2751The return code
2752cindex:[return code,for %-bm%]
2753is zero if the message is successfully accepted. Otherwise, the
2754action is controlled by the %-oe'x'% option setting -- see below.
2755+
2756The format
2757cindex:[message,format]
2758cindex:[format,message]
2759cindex:[``From'' line]
2760cindex:[UUCP,``From'' line]
2761cindex:[Sendmail compatibility,``From'' line]
2762of the message must be as defined in RFC 2822, except that, for
2763compatibility with Sendmail and Smail, a line in one of the forms
2764
2765 From sender Fri Jan 5 12:55 GMT 1997
2766 From sender Fri, 5 Jan 97 12:55:01
2767+
2768(with the weekday optional, and possibly with additional text after the date)
2769is permitted to appear at the start of the message. There appears to be no
2770authoritative specification of the format of this line. Exim recognizes it by
2771matching against the regular expression defined by the %uucp_from_pattern%
2772option, which can be changed if necessary.
2773+
2774The
2775cindex:[%-f% option,overriding ``From'' line]
2776specified sender is treated as if it were given as the argument to the
2777%-f% option, but if a %-f% option is also present, its argument is used in
2778preference to the address taken from the message. The caller of Exim must be a
2779trusted user for the sender of a message to be set in this way.
2780
2781*-bnq*::
2782oindex:[%-bnq%]
2783cindex:[address qualification, suppressing]
2784By default, Exim automatically qualifies unqualified addresses (those
2785without domains) that appear in messages that are submitted locally (that
2786is, not over TCP/IP). This qualification applies both to addresses in
2787envelopes, and addresses in header lines. Sender addresses are qualified using
2788%qualify_domain%, and recipient addresses using %qualify_recipient% (which
2789defaults to the value of %qualify_domain%).
2790+
2791Sometimes, qualification is not wanted. For example, if %-bS% (batch SMTP) is
2792being used to re-submit messages that originally came from remote hosts after
2793content scanning, you probably do not want to qualify unqualified addresses in
2794header lines. (Such lines will be present only if you have not enabled a header
2795syntax check in the appropriate ACL.)
2796+
2797The %-bnq% option suppresses all qualification of unqualified addresses in
2798messages that originate on the local host. When this is used, unqualified
2799addresses in the envelope provoke errors (causing message rejection) and
2800unqualified addresses in header lines are left alone.
2801
2802
2803*-bP*::
2804oindex:[%-bP%]
2805cindex:[configuration options, extracting]
2806cindex:[options,configuration -- extracting]
2807If this option is given with no arguments, it causes the values of all Exim's
2808main configuration options to be written to the standard output. The values
2809of one or more specific options can be requested by giving their names as
2810arguments, for example:
2811
2812 exim -bP qualify_domain hold_domains
2813+
2814However, any option setting that is preceded by the word ``hide'' in the
2815configuration file is not shown in full, except to an admin user. For other
2816users, the output is as in this example:
2817
2818 mysql_servers = <value not displayable>
2819+
2820If %configure_file% is given as an argument, the name of the run time
2821configuration file is output.
2822If a list of configuration files was supplied, the value that is output here
2823is the name of the file that was actually used.
2824+
2825cindex:[daemon,process id (pid)]
2826cindex:[pid (process id),of daemon]
2827If %log_file_path% or %pid_file_path% are given, the names of the directories
2828where log files and daemon pid files are written are output, respectively. If
2829these values are unset, log files are written in a sub-directory of the spool
2830directory called %log%, and the pid file is written directly into the spool
2831directory.
2832+
2833If %-bP% is followed by a name preceded by `+`, for example,
2834
2835 exim -bP +local_domains
2836+
2837it searches for a matching named list of any type (domain, host, address, or
2838local part) and outputs what it finds.
2839+
2840If
2841cindex:[options,router -- extracting]
2842cindex:[options,transport -- extracting]
2843one of the words %router%, %transport%, or %authenticator% is given,
2844followed by the name of an appropriate driver instance, the option settings for
2845that driver are output. For example:
2846
2847 exim -bP transport local_delivery
2848+
2849The generic driver options are output first, followed by the driver's private
2850options. A list of the names of drivers of a particular type can be obtained by
2851using one of the words %router_list%, %transport_list%, or
2852%authenticator_list%, and a complete list of all drivers with their option
2853settings can be obtained by using %routers%, %transports%, or %authenticators%.
2854
2855
2856*-bp*::
2857oindex:[%-bp%]
2858cindex:[queue,listing messages on]
2859cindex:[listing,messages on the queue]
2860This option requests a listing of the contents of the mail queue on the
2861standard output. If the %-bp% option is followed by a list of message ids,
2862just those messages are listed. By default, this option can be used only by an
2863admin user. However, the %queue_list_requires_admin% option can be set false
2864to allow any user to see the queue.
2865+
2866Each message on the queue is displayed as in the following example:
2867
2868 25m 2.9K 0t5C6f-0000c8-00 <alice@wonderland.fict.example>
2869 red.king@looking-glass.fict.example
2870 <other addresses>
2871+
2872The
2873cindex:[message,size in queue listing]
2874cindex:[size,of message]
2875first line contains the length of time the message has been on the queue
2876(in this case 25 minutes), the size of the message (2.9K), the unique local
2877identifier for the message, and the message sender, as contained in the
2878envelope. For bounce messages, the sender address is empty, and appears as
2879``<>''. If the message was submitted locally by an untrusted user who overrode
2880the default sender address, the user's login name is shown in parentheses
2881before the sender address.
2882+
2883If
2884cindex:[frozen messages,in queue listing]
2885the message is frozen (attempts to deliver it are suspended) then the text
2886``\*\*\* frozen \*\*\*'' is displayed at the end of this line.
2887+
2888The recipients of the message (taken from the envelope, not the headers) are
2889displayed on subsequent lines. Those addresses to which the message has already
2890been delivered are marked with the letter D. If an original address gets
2891expanded into several addresses via an alias or forward file, the original is
2892displayed with a D only when deliveries for all of its child addresses are
2893complete.
2894
2895
2896*-bpa*::
2897oindex:[%-bpa%]
2898This option operates like %-bp%, but in addition it shows delivered addresses
2899that were generated from the original top level address(es) in each message by
2900alias or forwarding operations. These addresses are flagged with ``+D'' instead
2901of just ``D''.
2902
2903
2904*-bpc*::
2905oindex:[%-bpc%]
2906cindex:[queue,count of messages on]
2907This option counts the number of messages on the queue, and writes the total
2908to the standard output. It is restricted to admin users, unless
2909%queue_list_requires_admin% is set false.
2910
2911
2912*-bpr*::
2913oindex:[%-bpr%]
2914This option operates like %-bp%, but the output is not sorted into
2915chronological order of message arrival. This can speed it up when there are
2916lots of messages on the queue, and is particularly useful if the output is
2917going to be post-processed in a way that doesn't need the sorting.
2918
2919*-bpra*::
2920oindex:[%-bpra%]
2921This option is a combination of %-bpr% and %-bpa%.
2922
2923*-bpru*::
2924oindex:[%-bpru%]
2925This option is a combination of %-bpr% and %-bpu%.
2926
2927
2928*-bpu*::
2929oindex:[%-bpu%]
2930This option operates like %-bp% but shows only undelivered top-level addresses
2931for each message displayed. Addresses generated by aliasing or forwarding are
2932not shown, unless the message was deferred after processing by a router with
2933the %one_time% option set.
2934
2935
2936*-brt*::
2937oindex:[%-brt%]
2938cindex:[testing,retry configuration]
2939cindex:[retry,configuration testing]
2940This option is for testing retry rules, and it must be followed by up to three
2941arguments. It causes Exim to look for a retry rule that matches the values
2942and to write it to the standard output. For example:
2943
2944 exim -brt bach.comp.mus.example
2945 Retry rule: *.comp.mus.example F,2h,15m; F,4d,30m;
2946+
2947See chapter <<CHAPretry>> for a description of Exim's retry rules. The first
2948argument, which is required, can be a complete address in the form
2949'local_part@domain', or it can be just a domain name. The second argument is
2950an optional second domain name; if no retry rule is found for the first
2951argument, the second is tried. This ties in with Exim's behaviour when looking
2952for retry rules for remote hosts -- if no rule is found that matches the host,
2953one that matches the mail domain is sought. The final argument is the name of a
2954specific delivery error, as used in setting up retry rules, for example
2955``quota_3d''.
2956
2957*-brw*::
2958oindex:[%-brw%]
2959cindex:[testing,rewriting]
2960cindex:[rewriting,testing]
2961This option is for testing address rewriting rules, and it must be followed by
2962a single argument, consisting of either a local part without a domain, or a
2963complete address with a fully qualified domain. Exim outputs how this address
2964would be rewritten for each possible place it might appear. See chapter
2965<<CHAPrewrite>> for further details.
2966
2967*-bS*::
2968oindex:[%-bS%]
2969cindex:[SMTP,batched incoming]
2970cindex:[batched SMTP input]
2971This option is used for batched SMTP input, which is an alternative interface
2972for non-interactive local message submission. A number of messages can be
2973submitted in a single run. However, despite its name, this is not really SMTP
2974input. Exim reads each message's envelope from SMTP commands on the standard
2975input, but generates no responses. If the caller is trusted, or
2976%untrusted_set_sender% is set, the senders in the SMTP MAIL commands are
2977believed; otherwise the sender is always the caller of Exim.
2978+
2979The message itself is read from the standard input, in SMTP format (leading
2980dots doubled), terminated by a line containing just a single dot. An error is
2981provoked if the terminating dot is missing. A further message may then follow.
2982+
2983As for other local message submissions, the contents of incoming batch SMTP
2984messages can be checked using the non-SMTP ACL (see chapter <<CHAPACL>>).
2985Unqualified addresses are automatically qualified using %qualify_domain% and
2986%qualify_recipient%, as appropriate, unless the %-bnq% option is used.
2987+
2988Some other SMTP commands are recognized in the input. HELO and EHLO act
2989as RSET; VRFY, EXPN, ETRN, and HELP act as NOOP;
2990QUIT quits, ignoring the rest of the standard input.
2991+
2992cindex:[return code,for %-bS%]
2993If any error is encountered, reports are written to the standard output and
2994error streams, and Exim gives up immediately. The return code is 0 if no error
2995was detected; it is 1 if one or more messages were accepted before the error
2996was detected; otherwise it is 2.
2997+
2998More details of input using batched SMTP are given in section
2999<<SECTincomingbatchedSMTP>>.
3000
3001*-bs*::
3002oindex:[%-bs%]
3003cindex:[SMTP,local input]
3004cindex:[local SMTP input]
3005This option causes Exim to accept one or more messages by reading SMTP commands
3006on the standard input, and producing SMTP replies on the standard output. SMTP
3007policy controls, as defined in ACLs (see chapter <<CHAPACL>>) are applied.
3008Some user agents use this interface as a way of passing locally-generated
3009messages to the MTA.
3010+
3011In
3012cindex:[sender,source of]
3013this usage, if the caller of Exim is trusted, or %untrusted_set_sender% is
3014set, the senders of messages are taken from the SMTP MAIL commands.
3015Otherwise the content of these commands is ignored and the sender is set up as
3016the calling user. Unqualified addresses are automatically qualified using
3017%qualify_domain% and %qualify_recipient%, as appropriate, unless the %-bnq%
3018option is used.
3019+
3020cindex:[inetd]
3021The
3022%-bs% option is also used to run Exim from 'inetd', as an alternative to using
3023a listening daemon. Exim can distinguish the two cases by checking whether the
3024standard input is a TCP/IP socket. When Exim is called from 'inetd', the source
3025of the mail is assumed to be remote, and the comments above concerning senders
3026and qualification do not apply. In this situation, Exim behaves in exactly the
3027same way as it does when receiving a message via the listening daemon.
3028
3029*-bt*::
3030oindex:[%-bt%]
3031cindex:[testing,addresses]
3032cindex:[address,testing]
3033This option runs Exim in address testing mode, in which each argument is taken
3034as an address to be tested for deliverability. The results are written to the
3035standard output. If a test fails, and the caller is not an admin user, no
3036details of the failure are output, because these might contain sensitive
3037information such as usernames and passwords for database lookups.
3038+
3039If no arguments are given, Exim runs in an interactive manner, prompting with a
3040right angle bracket for addresses to be tested.
3041+
3042Unlike the %-be% test option, you cannot arrange for Exim to use the
3043'readline()' function, because it is running as 'root' and there are
3044security issues.
3045+
3046Each address is handled as if it were the recipient address of a message
3047(compare the %-bv% option). It is passed to the routers and the result is
3048written to the standard output. However, any router that has
3049%no_address_test% set is bypassed. This can make %-bt% easier to use for
3050genuine routing tests if your first router passes everything to a scanner
3051program.
3052+
3053The
3054cindex:[return code,for %-bt%]
3055return code is 2 if any address failed outright; it is 1 if no address
3056failed outright but at least one could not be resolved for some reason. Return
3057code 0 is given only when all addresses succeed.
3058+
3059*Warning*: %-bt% can only do relatively simple testing. If any of the
3060routers in the configuration makes any tests on the sender address of a
3061message,
3062cindex:[%-f% option,for address testing]
3063you can use the %-f% option to set an appropriate sender when running
3064%-bt% tests. Without it, the sender is assumed to be the calling user at the
3065default qualifying domain. However, if you have set up (for example) routers
3066whose behaviour depends on the contents of an incoming message, you cannot test
3067those conditions using %-bt%. The %-N% option provides a possible way of
3068doing such tests.
3069
3070*-bV*::
3071oindex:[%-bV%]
3072cindex:[version number of Exim, verifying]
3073This option causes Exim to write the current version number, compilation
3074number, and compilation date of the 'exim' binary to the standard output.
3075It also lists the DBM library this is being used, the optional modules (such as
3076specific lookup types), the drivers that are included in the binary, and the
3077name of the run time configuration file that is in use.
3078+
3079As part of its operation, %-bV% causes Exim to read and syntax check its
3080configuration file. However, this is a static check only. It cannot check
3081values that are to be expanded. For example, although a misspelt ACL verb is
3082detected, an error in the verb's arguments is not. You cannot rely on %-bV%
3083alone to discover (for example) all the typos in the configuration; some
3084realistic testing is needed. The %-bh% and %-N% options provide more dynamic
3085testing facilities.
3086
3087*-bv*::
3088oindex:[%-bv%]
3089cindex:[verifying address, using %-bv%]
3090cindex:[address,verification]
3091This option runs Exim in address verification mode, in which each argument is
3092taken as an address to be verified. During normal operation, verification
3093happens mostly as a consequence processing a %verify% condition in an ACL (see
3094chapter <<CHAPACL>>). If you want to test an entire ACL, see the %-bh% option.
3095+
3096If verification fails, and the caller is not an admin user, no details of the
3097failure are output, because these might contain sensitive information such as
3098usernames and passwords for database lookups.
3099+
3100If no arguments are given, Exim runs in an interactive manner, prompting with a
3101right angle bracket for addresses to be verified.
3102+
3103Unlike the %-be% test option, you cannot arrange for Exim to use the
3104'readline()' function, because it is running as 'exim' and there are
3105security issues.
3106+
3107Verification differs from address testing (the %-bt% option) in that routers
3108that have %no_verify% set are skipped, and if the address is accepted by a
3109router that has %fail_verify% set, verification fails. The address is verified
3110as a recipient if %-bv% is used; to test verification for a sender address,
3111%-bvs% should be used.
3112+
3113If the %-v% option is not set, the output consists of a single line for each
3114address, stating whether it was verified or not, and giving a reason in the
3115latter case. Otherwise, more details are given of how the address has been
3116handled, and in the case of address redirection, all the generated addresses
3117are also considered. Without %-v%, generating more than one address by
3118redirection causes verification to end sucessfully.
3119+
3120The
3121cindex:[return code,for %-bv%]
3122return code is 2 if any address failed outright; it is 1 if no address
3123failed outright but at least one could not be resolved for some reason. Return
3124code 0 is given only when all addresses succeed.
3125+
3126If any of the routers in the configuration makes any tests on the sender
3127address of a message, you should use the %-f% option to set an appropriate
3128sender when running %-bv% tests. Without it, the sender is assumed to be the
3129calling user at the default qualifying domain.
3130
3131*-bvs*::
3132oindex:[%-bvs%]
3133This option acts like %-bv%, but verifies the address as a sender rather
3134than a recipient address. This affects any rewriting and qualification that
3135might happen.
3136
3137*-C*~<'filelist'>::
3138oindex:[%-C%]
3139cindex:[configuration file,alternate]
3140cindex:[CONFIGURE_FILE]
3141cindex:[alternate configuration file]
3142This option causes Exim to find the run time configuration file from the given
3143list instead of from the list specified by the CONFIGURE_FILE
3144compile-time setting. Usually, the list will consist of just a single file
3145name, but it can be a colon-separated list of names. In this case, the first
3146file that exists is used. Failure to open an existing file stops Exim from
3147proceeding any further along the list, and an error is generated.
3148+
3149When this option is used by a caller other than root or the Exim user, and the
3150list is different from the compiled-in list, Exim gives up its root privilege
3151immediately, and runs with the real and effective uid and gid set to those of
3152the caller. However, if ALT_CONFIG_ROOT_ONLY is defined in
3153_Local/Makefile_, root privilege is retained for %-C% only if the caller of
3154Exim is root.
3155+
3156That is, the Exim user is no longer privileged in this regard. This build-time
3157option is not set by default in the Exim source distribution tarbundle.
3158However, if you are using a ``packaged'' version of Exim (source or binary), the
3159packagers might have enabled it.
3160+
3161Setting ALT_CONFIG_ROOT_ONLY locks out the possibility of testing a
3162configuration using %-C% right through message reception and delivery, even if
3163the caller is root. The reception works, but by that time, Exim is running as
3164the Exim user, so when it re-execs to regain privilege for the delivery, the
3165use of %-C% causes privilege to be lost. However, root can test reception and
3166delivery using two separate commands (one to put a message on the queue, using
3167%-odq%, and another to do the delivery, using %-M%).
3168+
3169If ALT_CONFIG_PREFIX is defined _in Local/Makefile_, it specifies a
3170prefix string with which any file named in a %-C% command line option
3171must start. In addition, the file name must not contain the sequence `/../`.
3172However, if the value of the %-C% option is identical to the value of
3173CONFIGURE_FILE in _Local/Makefile_, Exim ignores %-C% and proceeds as
3174usual. There is no default setting for ALT_CONFIG_PREFIX; when it is
3175unset, any file name can be used with %-C%.
3176+
3177ALT_CONFIG_PREFIX can be used to confine alternative configuration files
3178to a directory to which only root has access. This prevents someone who has
3179broken into the Exim account from running a privileged Exim with an arbitrary
3180configuration file.
3181+
3182The %-C% facility is useful for ensuring that configuration files are
3183syntactically correct, but cannot be used for test deliveries, unless the
3184caller is privileged, or unless it is an exotic configuration that does not
3185require privilege. No check is made on the owner or group of the files
3186specified by this option.
3187
3188*-D*<'macro'>=<'value'>::
3189oindex:[%-D%]
3190cindex:[macro,setting on command line]
3191This option can be used to override macro definitions in the configuration file
3192(see section <<SECTmacrodefs>>). However, like %-C%, if it is used by an
3193unprivileged caller, it causes Exim to give up its root privilege.
3194If DISABLE_D_OPTION is defined in _Local/Makefile_, the use of %-D% is
3195completely disabled, and its use causes an immediate error exit.
3196+
3197The entire option (including equals sign if present) must all be within one
3198command line item. %-D% can be used to set the value of a macro to the empty
3199string, in which case the equals sign is optional. These two commands are
3200synonymous:
3201
3202 exim -DABC ...
3203 exim -DABC= ...
3204+
3205To include spaces in a macro definition item, quotes must be used. If you use
3206quotes, spaces are permitted around the macro name and the equals sign. For
3207example:
3208
3209 exim '-D ABC = something' ...
3210+
3211%-D% may be repeated up to 10 times on a command line.
3212
3213*-d*<'debug~options'>::
3214oindex:[%-d%]
3215cindex:[debugging,list of selectors]
3216cindex:[debugging,%-d% option]
3217This option causes debugging information to be written to the standard
3218error stream. It is restricted to admin users because debugging output may show
3219database queries that contain password information. Also, the details of users'
3220filter files should be protected. When %-d% is used, %-v% is assumed. If
3221%-d% is given on its own, a lot of standard debugging data is output. This can
3222be reduced, or increased to include some more rarely needed information, by
3223following %-d% with a string made up of names preceded by plus or minus
3224characters. These add or remove sets of debugging data, respectively. For
3225example, %-d+filter% adds filter debugging, whereas %-d-all+filter% selects
3226only filter debugging. The available debugging categories are:
3227+
3228&&&
3229`acl ` ACL interpretation
3230`auth ` authenticators
3231`deliver ` general delivery logic
3232`dns ` DNS lookups (see also resolver)
3233`dnsbl ` DNS black list (aka RBL) code
3234`exec ` arguments for ^^execv()^^ calls
3235`expand ` detailed debugging for string expansions
3236`filter ` filter handling
3237`hints_lookup ` hints data lookups
3238`host_lookup ` all types of name-to-IP address handling
3239`ident ` ident lookup
3240`interface ` lists of local interfaces
3241`lists ` matching things in lists
3242`load ` system load checks
3243`local_scan ` can be used by ^^local_scan()^^ (see chapter <<CHAPlocalscan>>)
3244`lookup ` general lookup code and all lookups
3245`memory ` memory handling
3246`pid ` add pid to debug output lines
3247`process_info ` setting info for the process log
3248`queue_run ` queue runs
3249`receive ` general message reception logic
3250`resolver ` turn on the DNS resolver's debugging output
3251`retry ` retry handling
3252`rewrite ` address rewriting
3253`route ` address routing
3254`timestamp ` add timestamp to debug output lines
3255`tls ` TLS logic
3256`transport ` transports
3257`uid ` changes of uid/gid and looking up uid/gid
3258`verify ` address verification logic
3259`all ` all of the above, and also %-v%
3260&&&
3261+
3262The
3263cindex:[resolver, debugging output]
3264cindex:[DNS resolver, debugging output]
3265`resolver` option produces output only if the DNS resolver was compiled
3266with DEBUG enabled. This is not the case in some operating systems. Also,
3267unfortunately, debugging output from the DNS resolver is written to stdout
3268rather than stderr.
3269+
3270The default (%-d% with no argument) omits `expand`, `filter`,
3271`interface`, `load`, `memory`, `pid`, `resolver`, and `timestamp`.
3272However, the `pid` selector is forced when debugging is turned on for a
3273daemon, which then passes it on to any re-executed Exims. Exim also
3274automatically adds the pid to debug lines when several remote deliveries are
3275run in parallel.
3276+
3277The `timestamp` selector causes the current time to be inserted at the start
3278of all debug output lines. This can be useful when trying to track down delays
3279in processing.
3280+
3281If the %debug_print% option is set in any driver, it produces output whenever
3282any debugging is selected, or if %-v% is used.
3283
3284*-dd*<'debug~options'>::
3285oindex:[%-dd%]
3286This option behaves exactly like %-d% except when used on a command that
3287starts a daemon process. In that case, debugging is turned off for the
3288subprocesses that the daemon creates. Thus, it is useful for monitoring the
3289behaviour of the daemon without creating as much output as full debugging does.
3290
3291*-dropcr*::
3292oindex:[%-dropcr%]
3293This is an obsolete option that is now a no-op. It used to affect the way Exim
3294handled CR and LF characters in incoming messages. What happens now is
3295described in section <<SECTlineendings>>.
3296
3297*-E*::
3298oindex:[%-E%]
3299cindex:[bounce message,generating]
3300This option specifies that an incoming message is a locally-generated delivery
3301failure report. It is used internally by Exim when handling delivery failures
3302and is not intended for external use. Its only effect is to stop Exim
3303generating certain messages to the postmaster, as otherwise message cascades
3304could occur in some situations. As part of the same option, a message id may
3305follow the characters %-E%. If it does, the log entry for the receipt of the
3306new message contains the id, following ``R='', as a cross-reference.
3307
3308*-e*'x'::
3309oindex:[%-e'x'%]
3310There are a number of Sendmail options starting with %-oe% which seem to be
3311called by various programs without the leading %o% in the option. For example,
3312the %vacation% program uses %-eq%. Exim treats all options of the form
3313%-e'x'% as synonymous with the corresponding %-oe'x'% options.
3314
3315*-F*~<'string'>::
3316oindex:[%-F%]
3317cindex:[sender,name]
3318cindex:[name,of sender]
3319This option sets the sender's full name for use when a locally-generated
3320message is being accepted. In the absence of this option, the user's 'gecos'
3321entry from the password data is used. As users are generally permitted to alter
3322their 'gecos' entries, no security considerations are involved. White space
3323between %-F% and the <'string'> is optional.
3324
3325*-f*~<'address'>::
3326oindex:[%-f%]
3327cindex:[sender,address]
3328cindex:[address,sender]
3329cindex:[trusted user]
3330cindex:[envelope sender]
3331cindex:[user,trusted]
3332This option sets the address of the envelope sender of a locally-generated
3333message (also known as the return path). The option can normally be used only
3334by a trusted user, but %untrusted_set_sender% can be set to allow untrusted
3335users to use it.
3336+
3337Processes running as root or the Exim user are always trusted. Other
3338trusted users are defined by the %trusted_users% or %trusted_groups% options.
3339In the absence of %-f%, or if the caller is not trusted, the sender of a local
3340message is set to the caller's login name at the default qualify domain.
3341+
3342There is one exception to the restriction on the use of %-f%: an empty sender
3343can be specified by any user, trusted or not, to create a message that can
3344never provoke a bounce. An empty sender can be specified either as an empty
3345string, or as a pair of angle brackets with nothing between them, as in these
3346examples of shell commands:
3347
3348 exim -f '<>' user@domain
3349 exim -f "" user@domain
3350+
3351In addition, the use of %-f% is not restricted when testing a filter file with
3352%-bf% or when testing or verifying addresses using the %-bt% or %-bv%
3353options.
3354+
3355Allowing untrusted users to change the sender address does not of itself make
3356it possible to send anonymous mail. Exim still checks that the 'From:' header
3357refers to the local user, and if it does not, it adds a 'Sender:' header,
3358though this can be overridden by setting %no_local_from_check%.
3359+
3360White
3361cindex:[``From'' line]
3362space between %-f% and the <'address'> is optional (that is, they can be given
3363as two arguments or one combined argument). The sender of a locally-generated
3364message can also be set (when permitted) by an initial ``From '' line in the
3365message -- see the description of %-bm% above -- but if %-f% is also present,
3366it overrides ``From''.
3367
3368*-G*::
3369oindex:[%-G%]
3370cindex:[Sendmail compatibility,%-G% option ignored]
3371This is a Sendmail option which is ignored by Exim.
3372
3373*-h*~<'number'>::
3374oindex:[%-h%]
3375cindex:[Sendmail compatibility,%-h% option ignored]
3376This option is accepted for compatibility with Sendmail, but has no effect. (In
3377Sendmail it overrides the ``hop count'' obtained by counting 'Received:'
3378headers.)
3379
3380*-i*::
3381oindex:[%-i%]
3382cindex:[Solaris,'mail' command]
3383cindex:[dot in incoming, non-SMTP message]
3384This option, which has the same effect as %-oi%, specifies that a dot on a line
3385by itself should not terminate an incoming, non-SMTP message. I can find no
3386documentation for this option in Solaris 2.4 Sendmail, but the 'mailx' command
3387in Solaris 2.4 uses it. See also %-ti%.
3388
3389*-M*~<'message~id'>~<'message~id'>~...::
3390oindex:[%-M%]
3391cindex:[forcing delivery]
3392cindex:[delivery,forcing attempt]
3393cindex:[frozen messages,forcing delivery]
3394This option requests Exim to run a delivery attempt on each message in turn. If
3395any of the messages are frozen, they are automatically thawed before the
3396delivery attempt. The settings of %queue_domains%, %queue_smtp_domains%, and
3397%hold_domains% are ignored.
3398+
3399Retry
3400cindex:[hints database,overriding retry hints]
3401hints for any of the addresses are overridden -- Exim tries to deliver even if
3402the normal retry time has not yet been reached. This option requires the caller
3403to be an admin user. However, there is an option called %prod_requires_admin%
3404which can be set false to relax this restriction (and also the same requirement
3405for the %-q%, %-R%, and %-S% options).
3406
3407*-Mar*~<'message~id'>~<'address'>~<'address'>~...::
3408oindex:[%-Mar%]
3409cindex:[message,adding recipients]
3410cindex:[recipient,adding]
3411This option requests Exim to add the addresses to the list of recipients of the
3412message (``ar'' for ``add recipients''). The first argument must be a message id,
3413and the remaining ones must be email addresses. However, if the message is
3414active (in the middle of a delivery attempt), it is not altered. This option
3415can be used only by an admin user.
3416
3417*-MC*~<'transport'>~<'hostname'>~<'sequence~number'>~<'message~id'>::
3418oindex:[%-MC%]
3419cindex:[SMTP,passed connection]
3420cindex:[SMTP,multiple deliveries]
3421cindex:[multiple SMTP deliveries]
3422This option is not intended for use by external callers. It is used internally
3423by Exim to invoke another instance of itself to deliver a waiting message using
3424an existing SMTP connection, which is passed as the standard input. Details are
3425given in chapter <<CHAPSMTP>>. This must be the final option, and the caller must
3426be root or the Exim user in order to use it.
3427
3428*-MCA*::
3429oindex:[%-MCA%]
3430This option is not intended for use by external callers. It is used internally
3431by Exim in conjunction with the %-MC% option. It signifies that the connection
3432to the remote host has been authenticated.
3433
3434*-MCP*::
3435oindex:[%-MCP%]
3436This option is not intended for use by external callers. It is used internally
3437by Exim in conjunction with the %-MC% option. It signifies that the server to
3438which Exim is connected supports pipelining.
3439
3440*-MCQ*~<'process~id'>~<'pipe~fd'>::
3441oindex:[%-MCQ%]
3442This option is not intended for use by external callers. It is used internally
3443by Exim in conjunction with the %-MC% option when the original delivery was
3444started by a queue runner. It passes on the process id of the queue runner,
3445together with the file descriptor number of an open pipe. Closure of the pipe
3446signals the final completion of the sequence of processes that are passing
3447messages through the same SMTP connection.
3448
3449*-MCS*::
3450oindex:[%-MCS%]
3451This option is not intended for use by external callers. It is used internally
3452by Exim in conjunction with the %-MC% option, and passes on the fact that the
3453SMTP SIZE option should be used on messages delivered down the existing
3454connection.
3455
3456*-MCT*::
3457oindex:[%-MCT%]
3458This option is not intended for use by external callers. It is used internally
3459by Exim in conjunction with the %-MC% option, and passes on the fact that the
3460host to which Exim is connected supports TLS encryption.
3461
3462*-Mc*~<'message~id'>~<'message~id'>~...::
3463oindex:[%-Mc%]
3464cindex:[hints database,not overridden by %-Mc%]
3465cindex:[delivery,manually started -- not forced]
3466This option requests Exim to run a delivery attempt on each message in turn,
3467but unlike the %-M% option, it does check for retry hints, and respects any
3468that are found. This option is not very useful to external callers. It is
3469provided mainly for internal use by Exim when it needs to re-invoke itself in
3470order to regain root privilege for a delivery (see chapter <<CHAPsecurity>>).
3471However, %-Mc% can be useful when testing, in order to run a delivery that
3472respects retry times and other options such as %hold_domains% that are
3473overridden when %-M% is used. Such a delivery does not count as a queue run.
3474If you want to run a specific delivery as if in a queue run, you should use
3475%-q% with a message id argument. A distinction between queue run deliveries
3476and other deliveries is made in one or two places.
3477
3478*-Mes*~<'message~id'>~<'address'>::
3479oindex:[%-Mes%]
3480cindex:[message,changing sender]
3481cindex:[sender,changing]
3482This option requests Exim to change the sender address in the message to the
3483given address, which must be a fully qualified address or ``<>'' (``es'' for ``edit
3484sender''). There must be exactly two arguments. The first argument must be a
3485message id, and the second one an email address. However, if the message is
3486active (in the middle of a delivery attempt), its status is not altered. This
3487option can be used only by an admin user.
3488
3489*-Mf*~<'message~id'>~<'message~id'>~...::
3490oindex:[%-Mf%]
3491cindex:[freezing messages]
3492cindex:[message,manually freezing]
3493This option requests Exim to mark each listed message as ``frozen''. This
3494prevents any delivery attempts taking place until the message is ``thawed'',
3495either manually or as a result of the %auto_thaw% configuration option.
3496However, if any of the messages are active (in the middle of a delivery
3497attempt), their status is not altered. This option can be used only by an admin
3498user.
3499
3500*-Mg*~<'message~id'>~<'message~id'>~...::
3501oindex:[%-Mg%]
3502cindex:[giving up on messages]
3503cindex:[message,abandoning delivery attempts]
3504cindex:[delivery,abandoning further attempts]
3505This option requests Exim to give up trying to deliver the listed messages,
3506including any that are frozen. However, if any of the messages are active,
3507their status is not altered. For non-bounce messages, a delivery error message
3508is sent to the sender, containing the text ``cancelled by administrator''.
3509Bounce messages are just discarded. This option can be used only by an admin
3510user.
3511
3512*-Mmad*~<'message~id'>~<'message~id'>~...::
3513oindex:[%-Mmad%]
3514cindex:[delivery,cancelling all]
3515This option requests Exim to mark all the recipient addresses in the messages
3516as already delivered (``mad'' for ``mark all delivered''). However, if any
3517message is active (in the middle of a delivery attempt), its status is not
3518altered. This option can be used only by an admin user.
3519
3520*-Mmd*~<'message~id'>~<'address'>~<'address'>~...::
3521oindex:[%-Mmd%]
3522cindex:[delivery,cancelling by address]
3523cindex:[recipient,removing]
3524cindex:[removing recipients]
3525This option requests Exim to mark the given addresses as already delivered
3526(``md'' for ``mark delivered''). The first argument must be a message id, and
3527the remaining ones must be email addresses. These are matched to recipient
3528addresses in the message in a case-sensitive manner. If the message is active
3529(in the middle of a delivery attempt), its status is not altered. This option
3530can be used only by an admin user.
3531
3532*-Mrm*~<'message~id'>~<'message~id'>~...::
3533oindex:[%-Mrm%]
3534cindex:[removing messages]
3535cindex:[abandoning mail]
3536cindex:[message,manually discarding]
3537This option requests Exim to remove the given messages from the queue. No
3538bounce messages are sent; each message is simply forgotten. However, if any of
3539the messages are active, their status is not altered. This option can be used
3540only by an admin user or by the user who originally caused the message to be
3541placed on the queue.
3542
3543*-Mt*~<'message~id'>~<'message~id'>~...::
3544oindex:[%-Mt%]
3545cindex:[thawing messages]
3546cindex:[unfreezing messages]
3547cindex:[frozen messages,thawing]
3548cindex:[message,thawing frozen]
3549This option requests Exim to ``thaw'' any of the listed messages that are
3550``frozen'', so that delivery attempts can resume. However, if any of the messages
3551are active, their status is not altered. This option can be used only by an
3552admin user.
3553
3554*-Mvb*~<'message~id'>::
3555oindex:[%-Mvb%]
3556cindex:[listing,message body]
3557cindex:[message,listing body of]
3558This option causes the contents of the message body (-D) spool file to be
3559written to the standard output. This option can be used only by an admin user.
3560
3561*-Mvh*~<'message~id'>::
3562oindex:[%-Mvh%]
3563cindex:[listing,message headers]
3564cindex:[header lines,listing]
3565cindex:[message,listing header lines]
3566This option causes the contents of the message headers (-H) spool file to be
3567written to the standard output. This option can be used only by an admin user.
3568
3569*-Mvl*~<'message~id'>::
3570oindex:[%-Mvl%]
3571cindex:[listing,message log]
3572cindex:[message,listing message log]
3573This option causes the contents of the message log spool file to be written to
3574the standard output. This option can be used only by an admin user.
3575
3576*-m*::
3577oindex:[%-m%]
3578This is apparently a synonym for %-om% that is accepted by Sendmail, so Exim
3579treats it that way too.
3580
3581*-N*::
3582oindex:[%-N%]
3583cindex:[debugging,%-N% option]
3584cindex:[debugging,suppressing delivery]
3585This is a debugging option that inhibits delivery of a message at the transport
3586level. It implies %-v%. Exim goes through many of the motions of delivery --
3587it just doesn't actually transport the message, but instead behaves as if it
3588had successfully done so. However, it does not make any updates to the retry
3589database, and the log entries for deliveries are flagged with ``\*>'' rather
3590than ``=>''.
3591+
3592Because %-N% discards any message to which it applies, only root or the Exim
3593user are allowed to use it with %-bd%, %-q%, %-R% or %-M%. In other words,
3594an ordinary user can use it only when supplying an incoming message to which it
3595will apply. Although transportation never fails when %-N% is set, an address
3596may be deferred because of a configuration problem on a transport, or a routing
3597problem. Once %-N% has been used for a delivery attempt, it sticks to the
3598message, and applies to any subsequent delivery attempts that may happen for
3599that message.
3600
3601*-n*::
3602oindex:[%-n%]
3603cindex:[Sendmail compatibility,%-n% option ignored]
3604This option is interpreted by Sendmail to mean ``no aliasing''. It is ignored by
3605Exim.
3606
3607*-O*~<'data'>::
3608oindex:[%-O%]
3609This option is interpreted by Sendmail to mean `set option`. It is ignored by
3610Exim.
3611
3612*-oA*~<'file~name'>::
3613oindex:[%-oA%]
3614cindex:[Sendmail compatibility,%-oA% option]
3615This option is used by Sendmail in conjunction with %-bi% to specify an
3616alternative alias file name. Exim handles %-bi% differently; see the
3617description above.
3618
3619*-oB*~<'n'>::
3620oindex:[%-oB%]
3621cindex:[SMTP,passed connection]
3622cindex:[SMTP,multiple deliveries]
3623cindex:[multiple SMTP deliveries]
3624This is a debugging option which limits the maximum number of messages that can
3625be delivered down one SMTP connection, overriding the value set in any ^smtp^
3626transport. If <'n'> is omitted, the limit is set to 1.
3627
3628*-odb*::
3629oindex:[%-odb%]
3630cindex:[background delivery]
3631cindex:[delivery,in the background]
3632This option applies to all modes in which Exim accepts incoming messages,
3633including the listening daemon. It requests ``background'' delivery of such
3634messages, which means that the accepting process automatically starts a
3635delivery process for each message received, but does not wait for the delivery
3636processes to finish.
3637+
3638When all the messages have been received, the reception process exits,
3639leaving the delivery processes to finish in their own time. The standard output
3640and error streams are closed at the start of each delivery process.
3641This is the default action if none of the %-od% options are present.
3642+
3643If one of the queueing options in the configuration file
3644(%queue_only% or %queue_only_file%, for example) is in effect, %-odb%
3645overrides it if %queue_only_override% is set true, which is the default
3646setting. If %queue_only_override% is set false, %-odb% has no effect.
3647
3648*-odf*::
3649oindex:[%-odf%]
3650cindex:[foreground delivery]
3651cindex:[delivery,in the foreground]
3652This option requests ``foreground'' (synchronous) delivery when Exim has accepted
3653a locally-generated message. (For the daemon it is exactly the same as
3654%-odb%.) A delivery process is automatically started to deliver the
3655message, and Exim waits for it to complete before proceeding.
3656+
3657The original Exim reception process does not finish until the delivery
3658process for the final message has ended. The standard error stream is left open
3659during deliveries.
3660+
3661However, like %-odb%, this option has no effect if %queue_only_override% is
3662false and one of the queueing options in the configuration file is in effect.
3663+
3664If there is a temporary delivery error during foreground delivery, the
3665message is left on the queue for later delivery, and the original reception
3666process exists. See chapter <<CHAPnonqueueing>> for a way of setting up a
3667restricted configuration that never queues messages.
3668
3669
3670*-odi*::
3671oindex:[%-odi%]
3672This option is synonymous with %-odf%. It is provided for compatibility with
3673Sendmail.
3674
3675*-odq*::
3676oindex:[%-odq%]
3677cindex:[non-immediate delivery]
3678cindex:[delivery,suppressing immediate]
3679cindex:[queueing incoming messages]
3680This option applies to all modes in which Exim accepts incoming messages,
3681including the listening daemon. It specifies that the accepting process should
3682not automatically start a delivery process for each message received. Messages
3683are placed on the queue, and remain there until a subsequent queue runner
3684process encounters them. There are several configuration options (such as
3685%queue_only%) that can be used to queue incoming messages under certain
3686conditions. This option overrides all of them and also %-odqs%. It always
3687forces queueing.
3688
3689*-odqs*::
3690oindex:[%-odqs%]
3691cindex:[SMTP,delaying delivery]
3692This option is a hybrid between %-odb%/%-odi% and %-odq%.
3693However, like %-odb% and %-odi%, this option has no effect if
3694%queue_only_override% is false and one of the queueing options in the
3695configuration file is in effect.
3696+
3697When %-odqs% does operate, a delivery process is started for each incoming
3698message, in the background by default, but in the foreground if %-odi% is also
3699present. The recipient addresses are routed, and local deliveries are done in
3700the normal way. However, if any SMTP deliveries are required, they are not done
3701at this time, so the message remains on the queue until a subsequent queue
3702runner process encounters it. Because routing was done, Exim knows which
3703messages are waiting for which hosts, and so a number of messages for the same
3704host can be sent in a single SMTP connection. The %queue_smtp_domains%
3705configuration option has the same effect for specific domains. See also the
3706%-qq% option.
3707
3708*-oee*::
3709oindex:[%-oee%]
3710cindex:[error,reporting]
3711If an error is detected while a non-SMTP message is being received (for
3712example, a malformed address), the error is reported to the sender in a mail
3713message.
3714+
3715Provided
3716cindex:[return code,for %-oee%]
3717this error message is successfully sent, the Exim receiving process
3718exits with a return code of zero. If not, the return code is 2 if the problem
3719is that the original message has no recipients, or 1 any other error. This is
3720the default %-oe'x'% option if Exim is called as 'rmail'.
3721
3722*-oem*::
3723oindex:[%-oem%]
3724cindex:[error,reporting]
3725cindex:[return code,for %-oem%]
3726This is the same as %-oee%, except that Exim always exits with a non-zero
3727return code, whether or not the error message was successfully sent.
3728This is the default %-oe'x'% option, unless Exim is called as 'rmail'.
3729
3730*-oep*::
3731oindex:[%-oep%]
3732cindex:[error,reporting]
3733If an error is detected while a non-SMTP message is being received, the
3734error is reported by writing a message to the standard error file (stderr).
3735cindex:[return code,for %-oep%]
3736The return code is 1 for all errors.
3737
3738*-oeq*::
3739oindex:[%-oeq%]
3740cindex:[error,reporting]
3741This option is supported for compatibility with Sendmail, but has the same
3742effect as %-oep%.
3743
3744*-oew*::
3745oindex:[%-oew%]
3746cindex:[error,reporting]
3747This option is supported for compatibility with Sendmail, but has the same
3748effect as %-oem%.
3749
3750*-oi*::
3751oindex:[%-oi%]
3752cindex:[dot in incoming, non-SMTP message]
3753This option, which has the same effect as %-i%, specifies that a dot on a line
3754by itself should not terminate an incoming, non-SMTP message.
3755Otherwise, a single dot does terminate, though Exim does no special processing
3756for other lines that start with a dot.
3757This option is set by default if Exim is called as 'rmail'. See also %-ti%.
3758
3759*-oitrue*::
3760oindex:[%-oitrue%]
3761This option is treated as synonymous with %-oi%.
3762
3763*-oMa*~<'host~address'>::
3764oindex:[%-oMa%]
3765cindex:[sender host address, specifying for local message]
3766A number of options starting with %-oM% can be used to set values associated
3767with remote hosts on locally-submitted messages (that is, messages not received
3768over TCP/IP). These options can be used by any caller in conjunction with the
3769%-bh%, %-be%, %-bf%, %-bF%, %-bt%, or %-bv% testing options. In other
3770circumstances, they are ignored unless the caller is trusted.
3771+
3772The %-oMa% option sets the sender host address. This may include a port number
3773at the end, after a full stop (period). For example:
3774
3775 exim -bs -oMa 10.9.8.7.1234
3776+
3777An alternative syntax is to enclose the IP address in square brackets,
3778followed by a colon and the port number:
3779
3780 exim -bs -oMa [10.9.8.7]:1234
3781+
3782The IP address is placed in the $sender_host_address$ variable, and the
3783port, if present, in $sender_host_port$.
3784
3785*-oMaa*~<'name'>::
3786oindex:[%-oMaa%]
3787cindex:[authentication name, specifying for local message]
3788See %-oMa% above for general remarks about the %-oM% options. The %-oMaa%
3789option sets the value of $sender_host_authenticated$ (the authenticator
3790name). See chapter <<CHAPSMTPAUTH>> for a discussion of SMTP authentication.
3791
3792*-oMai*~<'string'>::
3793oindex:[%-oMai%]
3794cindex:[authentication id, specifying for local message]
3795See %-oMa% above for general remarks about the %-oM% options. The %-oMai%
3796option sets the value of $authenticated_id$ (the id that was authenticated).
3797This overrides the default value (the caller's login id) for messages from
3798local sources. See chapter <<CHAPSMTPAUTH>> for a discussion of authenticated
3799ids.
3800
3801*-oMas*~<'address'>::
3802oindex:[%-oMas%]
3803cindex:[authentication sender, specifying for local message]
3804See %-oMa% above for general remarks about the %-oM% options. The %-oMas%
3805option sets the authenticated sender value in $authenticated_sender$. It
3806overrides the sender address that is created from the caller's login id for
3807messages from local sources. See chapter <<CHAPSMTPAUTH>> for a discussion of
3808authenticated senders.
3809
3810*-oMi*~<'interface~address'>::
3811oindex:[%-oMi%]
3812cindex:[interface address, specifying for local message]
3813See %-oMa% above for general remarks about the %-oM% options. The %-oMi% option
3814sets the IP interface address value. A port number may be included, using the
3815same syntax as for %-oMa%. The interface address is placed in
3816$interface_address$ and the port number, if present, in $interface_port$.
3817
3818*-oMr*~<'protocol~name'>::
3819oindex:[%-oMr%]
3820cindex:[protocol,incoming -- specifying for local message]
3821See %-oMa% above for general remarks about the %-oM% options. The %-oMr% option
3822sets the received protocol value that is stored in $received_protocol$.
3823However, this applies only when %-bs% is not used. For interactive SMTP input
3824(%-bs%), the protocol is always ``local-'' followed by one of the standard SMTP
3825protocol names (see the description of $received_protocol$ in section
3826<<SECTexpvar>>). For %-bS% (batch SMTP) however, the protocol can be set by
3827<<%-oMr%.
3828
3829*-oMs*~<'host~name'>::
3830oindex:[%-oMs%]
3831cindex:[sender host name, specifying for local message]
3832See %-oMa% above for general remarks about the %-oM% options. The %-oMs% option
3833sets the sender host name in $sender_host_name$. When this option is present,
3834Exim does not attempt to look up a host name from an IP address; it uses the
3835name it is given.
3836
3837*-oMt*~<'ident~string'>::
3838oindex:[%-oMt%]
3839cindex:[sender ident string, specifying for local message]
3840See %-oMa% above for general remarks about the %-oM% options. The %-oMt% option
3841sets the sender ident value in $sender_ident$. The default setting for local
3842callers is the login id of the calling process.
3843
3844*-om*::
3845oindex:[%-om%]
3846cindex:[Sendmail compatibility,%-om% option ignored]
3847In Sendmail, this option means ``me too'', indicating that the sender of a
3848message should receive a copy of the message if the sender appears in an alias
3849expansion. Exim always does this, so the option does nothing.
3850
3851*-oo*::
3852oindex:[%-oo%]
3853cindex:[Sendmail compatibility,%-oo% option ignored]
3854This option is ignored. In Sendmail it specifies ``old style headers'', whatever
3855that means.
3856
3857*-oP*~<'path'>::
3858oindex:[%-oP%]
3859cindex:[pid (process id),of daemon]
3860cindex:[daemon,process id (pid)]
3861This option is useful only in conjunction with %-bd% or %-q% with a time
3862value. The option specifies the file to which the process id of the daemon is
3863written. When %-oX% is used with %-bd%, or when %-q% with a time is used
3864without %-bd%, this is the only way of causing Exim to write a pid file,
3865because in those cases, the normal pid file is not used.
3866
3867*-or*~<'time'>::
3868oindex:[%-or%]
3869cindex:[timeout,for non-SMTP input]
3870This option sets a timeout value for incoming non-SMTP messages. If it is not
3871set, Exim will wait forever for the standard input. The value can also be set
3872by the %receive_timeout% option. The format used for specifying times is
3873described in section <<SECTtimeformat>>.
3874
3875*-os*~<'time'>::
3876oindex:[%-os%]
3877cindex:[timeout,for SMTP input]
3878cindex:[SMTP timeout, input]
3879This option sets a timeout value for incoming SMTP messages. The timeout
3880applies to each SMTP command and block of data. The value can also be set by
3881the %smtp_receive_timeout% option; it defaults to 5 minutes. The format used
3882for specifying times is described in section <<SECTtimeformat>>.
3883
3884*-ov*::
3885oindex:[%-ov%]
3886This option has exactly the same effect as %-v%.
3887
3888*-oX*~<'number~or~string'>::
3889oindex:[%-oX%]
3890cindex:[TCP/IP,setting listening ports]
3891cindex:[TCP/IP,setting listening interfaces]
3892cindex:[port,receiving TCP/IP]
3893This option is relevant only when the %-bd% (start listening daemon) option is
3894also given. It controls which ports and interfaces the daemon uses. Details of
3895the syntax, and how it interacts with configuration file options, are given in
3896chapter <<CHAPinterfaces>>. When %-oX% is used to start a daemon, no pid file is
3897written unless %-oP% is also present to specify a pid file name.
3898
3899*-pd*::
3900oindex:[%-pd%]
3901cindex:[Perl,starting the interpreter]
3902This option applies when an embedded Perl interpreter is linked with Exim (see
3903chapter <<CHAPperl>>). It overrides the setting of the %perl_at_start% option,
3904forcing the starting of the interpreter to be delayed until it is needed.
3905
3906*-ps*::
3907oindex:[%-ps%]
3908cindex:[Perl,starting the interpreter]
3909This option applies when an embedded Perl interpreter is linked with Exim (see
3910chapter <<CHAPperl>>). It overrides the setting of the %perl_at_start% option,
3911forcing the starting of the interpreter to occur as soon as Exim is started.
3912
3913*-p*<'rval'>:<'sval'>::
3914oindex:[%-p%]
3915For compatibility with Sendmail, this option is equivalent to
3916
3917 -oMr <rval> -oMs <sval>
3918+
3919It sets the incoming protocol and host name (for trusted callers). The
3920host name and its colon can be omitted when only the protocol is to be set.
3921Note the Exim already has two private options, %-pd% and %-ps%, that refer to
3922embedded Perl. It is therefore impossible to set a protocol value of `p` or
3923`s` using this option (but that does not seem a real limitation).
3924
3925*-q*::
3926oindex:[%-q%]
3927cindex:[queue runner,starting manually]
3928This option is normally restricted to admin users. However, there is a
3929configuration option called %prod_requires_admin% which can be set false to
3930relax this restriction (and also the same requirement for the %-M%, %-R%, and
3931%-S% options).
3932+
3933The
3934cindex:[queue runner,description of operation]
3935%-q% option starts one queue runner process. This scans the queue of
3936waiting messages, and runs a delivery process for each one in turn. It waits
3937for each delivery process to finish before starting the next one. A delivery
3938process may not actually do any deliveries if the retry times for the addresses
3939have not been reached. Use %-qf% (see below) if you want to override this.
3940+
3941If
3942cindex:[SMTP,passed connection]
3943cindex:[SMTP,multiple deliveries]
3944cindex:[multiple SMTP deliveries]
3945the delivery process spawns other processes to deliver other messages down
3946passed SMTP connections, the queue runner waits for these to finish before
3947proceeding.
3948+
3949When all the queued messages have been considered, the original queue runner
3950process terminates. In other words, a single pass is made over the waiting
3951mail, one message at a time. Use %-q% with a time (see below) if you want this
3952to be repeated periodically.
3953+
3954Exim processes the waiting messages in an unpredictable order. It isn't very
3955random, but it is likely to be different each time, which is all that matters.
3956If one particular message screws up a remote MTA, other messages to the same
3957MTA have a chance of getting through if they get tried first.
3958+
3959It is possible to cause the messages to be processed in lexical message id
3960order, which is essentially the order in which they arrived, by setting the
3961%queue_run_in_order% option, but this is not recommended for normal use.
3962
3963*-q*<'qflags'>::
3964The %-q% option may be followed by one or more flag letters that change its
3965behaviour. They are all optional, but if more than one is present, they must
3966appear in the correct order. Each flag is described in a separate item below.
3967
3968*-qq...*::
3969oindex:[%-qq%]
3970cindex:[queue,double scanning]
3971cindex:[queue,routing]
3972cindex:[routing,whole queue before delivery]
3973An option starting with %-qq% requests a two-stage queue run. In the first
3974stage, the queue is scanned as if the %queue_smtp_domains% option matched
3975every domain. Addresses are routed, local deliveries happen, but no remote
3976transports are run.
3977+
3978The
3979cindex:[hints database,remembering routing]
3980hints database that remembers which messages are waiting for specific hosts is
3981updated, as if delivery to those hosts had been deferred. After this is
3982complete, a second, normal queue scan happens, with routing and delivery taking
3983place as normal. Messages that are routed to the same host should mostly be
3984delivered down a single SMTP
3985cindex:[SMTP,passed connection]
3986cindex:[SMTP,multiple deliveries]
3987cindex:[multiple SMTP deliveries]
3988connection because of the hints that were set up during the first queue scan.
3989This option may be useful for hosts that are connected to the Internet
3990intermittently.
3991
3992*-q[q]i...*::
3993oindex:[%-qi%]
3994cindex:[queue,initial delivery]
3995If the 'i' flag is present, the queue runner runs delivery processes only for
3996those messages that haven't previously been tried. ('i' stands for ``initial
3997delivery''.) This can be helpful if you are putting messages on the queue using
3998%-odq% and want a queue runner just to process the new messages.
3999
4000*-q[q][i]f...*::
4001oindex:[%-qf%]
4002cindex:[queue,forcing delivery]
4003cindex:[delivery,forcing in queue run]
4004If one 'f' flag is present, a delivery attempt is forced for each non-frozen
4005message, whereas without %f% only those non-frozen addresses that have passed
4006their retry times are tried.
4007
4008*-q[q][i]ff...*::
4009oindex:[%-qff%]
4010cindex:[frozen messages,forcing delivery]
4011If 'ff' is present, a delivery attempt is forced for every message, whether
4012frozen or not.
4013
4014*-q[q][i][f[f]]l*::
4015oindex:[%-ql%]
4016cindex:[queue,local deliveries only]
4017The 'l' (the letter ``ell'') flag specifies that only local deliveries are to be
4018done. If a message requires any remote deliveries, it remains on the queue for
4019later delivery.
4020
4021*-q*<'qflags'>~<'start~id'>~<'end~id'>::
4022cindex:[queue,delivering specific messages]
4023When scanning the queue, Exim can be made to skip over messages whose ids are
4024lexically less than a given value by following the %-q% option with a starting
4025message id. For example:
4026
4027 exim -q 0t5C6f-0000c8-00
4028+
4029Messages that arrived earlier than `0t5C6f-0000c8-00` are not inspected. If a
4030second message id is given, messages whose ids are lexically greater than it
4031are also skipped. If the same id is given twice, for example,
4032
4033 exim -q 0t5C6f-0000c8-00 0t5C6f-0000c8-00
4034+
4035just one delivery process is started, for that message. This differs from %-M%
4036in that retry data is respected, and it also differs from %-Mc% in that it
4037counts as a delivery from a queue run. Note that the selection mechanism does
4038not affect the order in which the messages are scanned. There are also other
4039ways of selecting specific sets of messages for delivery in a queue run -- see
4040%-R% and %-S%.
4041
4042*-q*<'qflags'><'time'>::
4043cindex:[queue runner,starting periodically]
4044cindex:[periodic queue running]
4045When a time value is present, the %-q% option causes Exim to run as a daemon,
4046starting a queue runner process at intervals specified by the given time value
4047(whose format is described in section <<SECTtimeformat>>). This form of the %-q%
4048option is commonly combined with the %-bd% option, in which case a single
4049daemon process handles both functions. A common way of starting up a combined
4050daemon at system boot time is to use a command such as
4051
4052 /usr/exim/bin/exim -bd -q30m
4053+
4054Such a daemon listens for incoming SMTP calls, and also starts a queue runner
4055process every 30 minutes.
4056+
4057When a daemon is started by %-q% with a time value, but without %-bd%, no pid
4058file is written unless one is explicitly requested by the %-oP% option.
4059
4060*-qR*<'rsflags'>~<'string'>::
4061oindex:[%-qR%]
4062This option is synonymous with %-R%. It is provided for Sendmail compatibility.
4063
4064*-qS*<'rsflags'>~<'string'>::
4065oindex:[%-qS%]
4066This option is synonymous with %-S%.
4067
4068*-R*<'rsflags'>~<'string'>::
4069oindex:[%-R%]
4070cindex:[queue runner,for specific recipients]
4071cindex:[delivery,to given domain]
4072cindex:[domain,delivery to]
4073The <'rsflags'> may be empty, in which case the white space before the string
4074is optional, unless the string is 'f', 'ff', 'r', 'rf', or 'rff', which are the
4075possible values for <'rsflags'>. White space is required if <'rsflags'> is not
4076empty.
4077+
4078This option is similar to %-q% with no time value, that is, it causes Exim to
4079perform a single queue run, except that, when scanning the messages on the
4080queue, Exim processes only those that have at least one undelivered recipient
4081address containing the given string, which is checked in a case-independent
4082way. If the <'rsflags'> start with 'r', <'string'> is interpreted as a regular
4083expression; otherwise it is a literal string.
4084+
4085Once a message is selected, all its addresses are processed. For the first
4086selected message, Exim overrides any retry information and forces a delivery
4087attempt for each undelivered address. This means that if delivery of any
4088address in the first message is successful, any existing retry information is
4089deleted, and so delivery attempts for that address in subsequently selected
4090messages (which are processed without forcing) will run. However, if delivery
4091of any address does not succeed, the retry information is updated, and in
4092subsequently selected messages, the failing address will be skipped.
4093+
4094If the <'rsflags'> contain 'f' or 'ff', the delivery forcing applies to all
4095selected messages, not just the first;
4096cindex:[frozen messages,forcing delivery]
4097frozen messages are included when 'ff' is present.
4098+
4099The %-R% option makes it straightforward to initiate delivery of all messages
4100to a given domain after a host has been down for some time. When the SMTP
4101command ETRN is accepted by its ACL (see chapter <<CHAPACL>>), its default
4102effect is to run Exim with the %-R% option, but it can be configured to run an
4103arbitrary command instead.
4104
4105*-r*::
4106oindex:[%-r%]
4107This is a documented (for Sendmail) obsolete alternative name for %-f%.
4108
4109*-S*<'rsflags'>~<'string'>::
4110oindex:[%-S%]
4111cindex:[delivery,from given sender]
4112cindex:[queue runner,for specific senders]
4113This option acts like %-R% except that it checks the string against each
4114message's sender instead of against the recipients. If %-R% is also set, both
4115conditions must be met for a message to be selected. If either of the options
4116has 'f' or 'ff' in its flags, the associated action is taken.
4117
4118*-Tqt*~<'times'>::
4119oindex:[%-Tqt%]
4120This an option that is exclusively for use by the Exim testing suite. It is not
4121recognized when Exim is run normally. It allows for the setting up of explicit
4122``queue times'' so that various warning/retry features can be tested.
4123
4124*-t*::
4125oindex:[%-t%]
4126cindex:[recipient,extracting from header lines]
4127cindex:['Bcc:' header line]
4128cindex:['Cc:' header line]
4129cindex:['To:' header line]
4130When Exim is receiving a locally-generated, non-SMTP message on its standard
4131input, the %-t% option causes the recipients of the message to be obtained
4132from the 'To:', 'Cc:', and 'Bcc:' header lines in the message instead of from
4133the command arguments. The addresses are extracted before any rewriting takes
4134place.
4135+
4136If
4137cindex:[Sendmail compatibility,%-t% option]
4138the command has any arguments, they specify addresses to which the message
4139is 'not' to be delivered. That is, the argument addresses are removed from
4140the recipients list obtained from the headers. This is compatible with Smail 3
4141and in accordance with the documented behaviour of several versions of
4142Sendmail, as described in man pages on a number of operating systems (e.g.
4143Solaris 8, IRIX 6.5, HP-UX 11). However, some versions of Sendmail 'add'
4144argument addresses to those obtained from the headers, and the O'Reilly
4145Sendmail book documents it that way. Exim can be made to add argument addresses
4146instead of subtracting them by setting the option
4147%extract_addresses_remove_arguments% false.
4148+
4149If a 'Bcc:' header line is present, it is removed from the message unless
4150there is no 'To:' or 'Cc:', in which case a 'Bcc:' line with no data is
4151created. This is necessary for conformity with the original RFC 822 standard;
4152the requirement has been removed in RFC 2822, but that is still very new.
4153+
4154If
4155cindex:[%Resent-% header lines,with %-t%]
4156there are any %Resent-% header lines in the message, Exim extracts
4157recipients from all 'Resent-To:', 'Resent-Cc:', and 'Resent-Bcc:' header
4158lines instead of from 'To:', 'Cc:', and 'Bcc:'. This is for compatibility
4159with Sendmail and other MTAs. (Prior to release 4.20, Exim gave an error if
4160%-t% was used in conjunction with %Resent-% header lines.)
4161+
4162RFC 2822 talks about different sets of %Resent-% header lines (for when a
4163message is resent several times). The RFC also specifies that they should be
4164added at the front of the message, and separated by 'Received:' lines. It is
4165not at all clear how %-t% should operate in the present of multiple sets,
4166nor indeed exactly what constitutes a ``set''.
4167In practice, it seems that MUAs do not follow the RFC. The %Resent-% lines are
4168often added at the end of the header, and if a message is resent more than
4169once, it is common for the original set of %Resent-% headers to be renamed as
4170%X-Resent-% when a new set is added. This removes any possible ambiguity.
4171
4172*-ti*::
4173oindex:[%-ti%]
4174This option is exactly equivalent to %-t% %-i%. It is provided for
4175compatibility with Sendmail.
4176
4177*-tls-on-connect*::
4178oindex:[%-tls-on-connect%]
4179cindex:[TLS,use without STARTTLS]
4180cindex:[TLS,automatic start]
4181This option is available when Exim is compiled with TLS support. It forces all
4182incoming SMTP connections to behave as if the incoming port is listed in the
4183%tls_on_connect_ports% option. See section <<SECTsupobssmt>> and chapter
4184<<CHAPTLS>> for further details.
4185
4186
4187*-U*::
4188oindex:[%-U%]
4189cindex:[Sendmail compatibility,%-U% option ignored]
4190Sendmail uses this option for ``initial message submission'', and its
4191documentation states that in future releases, it may complain about
4192syntactically invalid messages rather than fixing them when this flag is not
4193set. Exim ignores this option.
4194
4195*-v*::
4196oindex:[%-v%]
4197This option causes Exim to write information to the standard error stream,
4198describing what it is doing. In particular, it shows the log lines for
4199receiving and delivering a message, and if an SMTP connection is made, the SMTP
4200dialogue is shown. Some of the log lines shown may not actually be written to
4201the log if the setting of %log_selector% discards them. Any relevant selectors
4202are shown with each log line. If none are shown, the logging is unconditional.
4203
4204*-x*::
4205oindex:[%-x%]
4206AIX uses %-x% for a private purpose (``mail from a local mail program has
4207National Language Support extended characters in the body of the mail item'').
4208It sets %-x% when calling the MTA from its %mail% command. Exim ignores this
4209option.
4210
4211///
4212We insert a stylized DocBook comment here, to identify the end of the command
4213line options. This is for the benefit of the Perl script that automatically
4214creates a man page for the options.
4215///
4216
4217++++
4218<!-- === End of command line options === -->
4219++++
4220
4221
4222
4223
4224
4225////////////////////////////////////////////////////////////////////////////
4226////////////////////////////////////////////////////////////////////////////
4227
4228
4229[[CHAPconf]]
4230[titleabbrev="The runtime configuration file"]
4231The Exim run time configuration file
4232------------------------------------
4233
4234cindex:[run time configuration]
4235cindex:[configuration file,general description]
4236cindex:[CONFIGURE_FILE]
4237cindex:[configuration file,errors in]
4238cindex:[error,in configuration file]
4239cindex:[return code,for bad configuration]
4240Exim uses a single run time configuration file that is read whenever an Exim
4241binary is executed. Note that in normal operation, this happens frequently,
4242because Exim is designed to operate in a distributed manner, without central
4243control.
4244
4245If a syntax error is detected while reading the configuration file, Exim
4246writes a message on the standard error, and exits with a non-zero return code.
4247The message is also written to the panic log. *Note*: only simple syntax
4248errors can be detected at this time. The values of any expanded options are
4249not checked until the expansion happens, even when the expansion does not
4250actually alter the string.
4251
4252
4253
4254The name of the configuration file is compiled into the binary for security
4255reasons, and is specified by the CONFIGURE_FILE compilation option. In
4256most configurations, this specifies a single file. However, it is permitted to
4257give a colon-separated list of file names, in which case Exim uses the first
4258existing file in the list.
4259
4260cindex:[EXIM_USER]
4261cindex:[EXIM_GROUP]
4262cindex:[CONFIGURE_OWNER]
4263cindex:[CONFIGURE_GROUP]
4264cindex:[configuration file,ownership]
4265cindex:[ownership,configuration file]
4266The run time configuration file must be owned by root or by the user that is
4267specified at compile time by the EXIM_USER option, or by the user that is
4268specified at compile time by the CONFIGURE_OWNER option (if set). The
4269configuration file must not be world-writeable or group-writeable, unless its
4270group is the one specified at compile time by the EXIM_GROUP option
4271
4272or by the CONFIGURE_GROUP option.
4273
4274
4275*Warning*: In a conventional configuration, where the Exim binary is setuid
4276to root, anybody who is able to edit the run time configuration file has an
4277easy way to run commands as root. If you make your mail administrators members
4278of the Exim group, but do not trust them with root, make sure that the run time
4279configuration is not group writeable.
4280
4281A default configuration file, which will work correctly in simple situations,
4282is provided in the file _src/configure.default_. If CONFIGURE_FILE
4283defines just one file name, the installation process copies the default
4284configuration to a new file of that name if it did not previously exist. If
4285CONFIGURE_FILE is a list, no default is automatically installed. Chapter
4286<<CHAPdefconfil>> is a ``walk-through'' discussion of the default configuration.
4287
4288
4289
4290Using a different configuration file
4291~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4292cindex:[configuration file,alternate]
4293A one-off alternate configuration can be specified by the %-C% command line
4294option, which may specify a single file or a list of files. However, when %-C%
4295is used, Exim gives up its root privilege, unless called by root or the Exim
4296user (or unless the argument for %-C% is identical to the built-in value from
4297CONFIGURE_FILE). %-C% is useful mainly for checking the syntax of
4298configuration files before installing them. No owner or group checks are done
4299on a configuration file specified by %-C%.
4300
4301The privileged use of %-C% by the Exim user can be locked out by setting
4302ALT_CONFIG_ROOT_ONLY in _Local/Makefile_ when building Exim. However,
4303if you do this, you also lock out the possibility of testing a
4304configuration using %-C% right through message reception and delivery, even if
4305the caller is root. The reception works, but by that time, Exim is running as
4306the Exim user, so when it re-execs to regain privilege for the delivery, the
4307use of %-C% causes privilege to be lost. However, root can test reception and
4308delivery using two separate commands (one to put a message on the queue, using
4309%-odq%, and another to do the delivery, using %-M%).
4310
4311If ALT_CONFIG_PREFIX is defined _in Local/Makefile_, it specifies a
4312prefix string with which any file named in a %-C% command line option must
4313start. In addition, the file name must not contain the sequence `/../`. There
4314is no default setting for ALT_CONFIG_PREFIX; when it is unset, any file
4315name can be used with %-C%.
4316
4317One-off changes to a configuration can be specified by the %-D% command line
4318option, which defines and overrides values for macros used inside the
4319configuration file. However, like %-C%, the use of this option by a
4320non-privileged user causes Exim to discard its root privilege.
4321If DISABLE_D_OPTION is defined in _Local/Makefile_, the use of %-D% is
4322completely disabled, and its use causes an immediate error exit.
4323
4324Some sites may wish to use the same Exim binary on different machines that
4325share a file system, but to use different configuration files on each machine.
4326If CONFIGURE_FILE_USE_NODE is defined in _Local/Makefile_, Exim first
4327looks for a file whose name is the configuration file name followed by a dot
4328and the machine's node name, as obtained from the 'uname()' function. If this
4329file does not exist, the standard name is tried. This processing occurs for
4330each file name in the list given by CONFIGURE_FILE or %-C%.
4331
4332In some esoteric situations different versions of Exim may be run under
4333different effective uids and the CONFIGURE_FILE_USE_EUID is defined to
4334help with this. See the comments in _src/EDITME_ for details.
4335
4336
4337
4338[[SECTconffilfor]]
4339Configuration file format
4340~~~~~~~~~~~~~~~~~~~~~~~~~
4341cindex:[configuration file,format of]
4342cindex:[format,configuration file]
4343Exim's configuration file is divided into a number of different parts. General
4344option settings must always appear at the start of the file. The other parts
4345are all optional, and may appear in any order. Each part other than the first
4346is introduced by the word ``begin'' followed by the name of the part. The
4347optional parts are:
4348
4349- 'ACL': Access control lists for controlling incoming SMTP mail.
4350
4351- cindex:[AUTH,configuration]
4352'authenticators': Configuration settings for the authenticator drivers. These
4353are concerned with the SMTP AUTH command (see chapter <<CHAPSMTPAUTH>>).
4354
4355- 'routers': Configuration settings for the router drivers. Routers process
4356addresses and determine how the message is to be delivered.
4357
4358- 'transports': Configuration settings for the transport drivers. Transports
4359define mechanisms for copying messages to destinations.
4360
4361- 'retry': Retry rules, for use when a message cannot be immediately delivered.
4362
4363- 'rewrite': Global address rewriting rules, for use when a message arrives and
4364when new addresses are generated during delivery.
4365
4366- 'local_scan': Private options for the 'local_scan()' function. If you
4367want to use this feature, you must set
4368
4369 LOCAL_SCAN_HAS_OPTIONS=yes
4370+
4371in _Local/Makefile_ before building Exim. Full details of the
4372'local_scan()' facility are given in chapter <<CHAPlocalscan>>.
4373
4374cindex:[configuration file,leading whitespace in]
4375cindex:[configuration file,trailing whitespace in]
4376cindex:[whitespace,in configuration file]
4377Leading and trailing whitespace in configuration lines is always ignored.
4378
4379Blank lines in the file, and lines starting with a # character (ignoring
4380leading white space) are treated as comments and are ignored. *Note*: a
4381# character other than at the beginning of a line is not treated specially,
4382and does not introduce a comment.
4383
4384Any non-comment line can be continued by ending it with a backslash. Note that
4385the general rule for whitespace means that trailing white space after the
4386backslash is ignored, and leading white space at the start of continuation
4387lines is also ignored. Comment lines beginning with # (but not empty lines) may
4388appear in the middle of a sequence of continuation lines.
4389
4390A convenient way to create a configuration file is to start from the
4391default, which is supplied in _src/configure.default_, and add, delete, or
4392change settings as required.
4393
4394The ACLs, retry rules, and rewriting rules have their own syntax which is
4395described in chapters <<CHAPACL>>, <<CHAPretry>>, and <<CHAPrewrite>>,
4396respectively. The other parts of the configuration file have some syntactic
4397items in common, and these are described below, from section <<SECTcos>>
4398onwards. Before that, the inclusion, macro, and conditional facilities are
4399described.
4400
4401
4402
4403File inclusions in the configuration file
4404~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4405cindex:[inclusions in configuration file]
4406cindex:[configuration file,including other files]
4407cindex:[.include in configuration file]
4408cindex:[.include_if_exists in configuration file]
4409You can include other files inside Exim's run time configuration file by
4410using this syntax:
4411
4412 .include <file name>
4413
4414or
4415
4416 .include_if_exists <file name>
4417
4418on a line by itself. Double quotes round the file name are optional. If you use
4419the first form, a configuration error occurs if the file does not exist; the
4420second form does nothing for non-existent files.
4421
4422Includes may be nested to any depth, but remember that Exim reads its
4423configuration file often, so it is a good idea to keep them to a minimum.
4424If you change the contents of an included file, you must HUP the daemon,
4425because an included file is read only when the configuration itself is read.
4426
4427The processing of inclusions happens early, at a physical line level, so, like
4428comment lines, an inclusion can be used in the middle of an option setting,
4429for example:
4430
4431....
4432hosts_lookup = a.b.c \
4433 .include /some/file
4434....
4435
4436Include processing happens after macro processing (see below). Its effect is to
4437process the lines of the file as if they occurred inline where the inclusion
4438appears.
4439
4440
4441
4442[[SECTmacrodefs]]
4443Macros in the configuration file
4444~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4445cindex:[macro,description of]
4446cindex:[configuration file,macros]
4447If a line in the main part of the configuration (that is, before the first
4448``begin'' line) begins with an upper case letter, it is taken as a macro
4449definition, and must be of the form
4450
4451&&&
4452<'name'> = <'rest of line'>
4453&&&
4454
4455The name must consist of letters, digits, and underscores, and need not all be
4456in upper case, though that is recommended. The rest of the line, including any
4457continuations, is the replacement text, and has leading and trailing white
4458space removed. Quotes are not removed. The replacement text can never end with
4459a backslash character, but this doesn't seem to be a serious limitation.
4460
4461Once a macro is defined, all subsequent lines in the file (and any included
4462files) are scanned for the macro name; if there are several macros, the line is
4463scanned for each in turn, in the order in which they are defined. The
4464replacement text is not re-scanned for the current macro, though it is scanned
4465for subsequently defined macros. For this reason, a macro name may not contain
4466the name of a previously defined macro as a substring. You could, for example,
4467define
4468
4469&&&
4470`ABCD_XYZ = `<'something'>
4471`ABCD = `<'something else'>
4472&&&
4473
4474but putting the definitions in the opposite order would provoke a configuration
4475error.
4476
4477Macro expansion is applied to individual lines from the file, before checking
4478for line continuation or file inclusion (see below). If a line consists solely
4479of a macro name, and the expansion of the macro is empty, the line is ignored.
4480A macro at the start of a line may turn the line into a comment line or a
4481`.include` line.
4482
4483As an example of macro usage, consider a configuration where aliases are looked
4484up in a MySQL database. It helps to keep the file less cluttered if long
4485strings such as SQL statements are defined separately as macros, for example:
4486
4487....
4488ALIAS_QUERY = select mailbox from user where \
4489 login=${quote_mysql:$local_part};
4490....
4491
4492This can then be used in a ^redirect^ router setting like this:
4493
4494 data = ${lookup mysql{ALIAS_QUERY}}
4495
4496In earlier versions of Exim macros were sometimes used for domain, host, or
4497address lists. In Exim 4 these are handled better by named lists -- see section
4498<<SECTnamedlists>>.
4499
4500Macros in the configuration file can be overridden by the %-D% command line
4501option, but Exim gives up its root privilege when %-D% is used, unless called
4502by root or the Exim user.
4503
4504
4505
4506Conditional skips in the configuration file
4507~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4508cindex:[configuration file,conditional skips]
4509cindex:[.ifdef]
4510You can use the directives `.ifdef`, `.ifndef`, `.elifdef`,
4511`.elifndef`, `.else`, and `.endif` to dynamically include or exclude
4512portions of the configuration file. The processing happens whenever the file is
4513read (that is, when an Exim binary starts to run).
4514
4515The implementation is very simple. Instances of the first four directives must
4516be followed by text that includes the names of one or macros. The condition
4517that is tested is whether or not any macro substitution has taken place in the
4518line. Thus:
4519
4520 .ifdef AAA
4521 message_size_limit = 50M
4522 .else
4523 message_size_limit = 100M
4524 .endif
4525
4526sets a message size limit of 50M if the macro `AAA` is defined, and 100M
4527otherwise. If there is more than one macro named on the line, the condition
4528is true if any of them are defined. That is, it is an ``or'' condition. To
4529obtain an ``and'' condition, you need to use nested `.ifdef`##s.
4530
4531Although you can use a macro expansion to generate one of these directives,
4532it is not very useful, because the condition ``there was a macro substitution
4533in this line'' will always be true.
4534
4535Text following `.else` and `.endif` is ignored, and can be used as comment
4536to clarify complicated nestings.
4537
4538
4539
4540[[SECTcos]]
4541Common option syntax
4542~~~~~~~~~~~~~~~~~~~~
4543cindex:[common option syntax]
4544cindex:[syntax of common options]
4545cindex:[configuration file,common option syntax]
4546For the main set of options, driver options, and 'local_scan()' options,
4547each setting is on a line by itself, and starts with a name consisting of
4548lower-case letters and underscores. Many options require a data value, and in
4549these cases the name must be followed by an equals sign (with optional white
4550space) and then the value. For example:
4551
4552 qualify_domain = mydomain.example.com
4553
4554Some option settings may contain sensitive data, for example, passwords for
4555accessing databases. To stop non-admin users from using the %-bP% command line
4556option to read these values, you can precede the option settings with the word
4557``hide''. For example:
4558
4559 hide mysql_servers = localhost/users/admin/secret-password
4560
4561For non-admin users, such options are displayed like this:
4562
4563 mysql_servers = <value not displayable>
4564
4565If ``hide'' is used on a driver option, it hides the value of that option on all
4566instances of the same driver.
4567
4568The following sections describe the syntax used for the different data types
4569that are found in option settings.
4570
4571
4572Boolean options
4573~~~~~~~~~~~~~~~
4574cindex:[format,boolean]
4575cindex:[boolean configuration values]
4576Options whose type is given as boolean are on/off switches. There are two
4577different ways of specifying such options: with and without a data value. If
4578the option name is specified on its own without data, the switch is turned on;
4579if it is preceded by ``no_'' or ``not_'' the switch is turned off. However,
4580boolean options may optionally be followed by an equals sign and one of the
4581words ``true'', ``false'', ``yes'', or ``no'', as an alternative syntax. For example,
4582the following two settings have exactly the same effect:
4583
4584 queue_only
4585 queue_only = true
4586
4587The following two lines also have the same (opposite) effect:
4588
4589 no_queue_only
4590 queue_only = false
4591
4592You can use whichever syntax you prefer.
4593
4594
4595
4596
4597Integer values
4598~~~~~~~~~~~~~~
4599cindex:[integer configuration values]
4600cindex:[format,integer]
4601If an integer data item starts with the characters ``0x'', the remainder of it
4602is interpreted as a hexadecimal number. Otherwise, it is treated as octal if it
4603starts with the digit 0, and decimal if not. If an integer value is followed by
4604the letter K, it is multiplied by 1024; if it is followed by the letter M, it
4605is multiplied by 1024x1024.
4606
4607When the values of integer option settings are output, values which are an
4608exact multiple of 1024 or 1024x1024 are
4609sometimes, but not always,
4610printed using the letters K and M. The printing style is independent of the
4611actual input format that was used.
4612
4613
4614Octal integer values
4615~~~~~~~~~~~~~~~~~~~~
4616cindex:[integer format]
4617cindex:[format,octal integer]
4618The value of an option specified as an octal integer is always interpreted in
4619octal, whether or not it starts with the digit zero. Such options are always
4620output in octal.
4621
4622
4623
4624Fixed point number values
4625~~~~~~~~~~~~~~~~~~~~~~~~~
4626cindex:[fixed point configuration values]
4627cindex:[format,fixed point]
4628A fixed point number consists of a decimal integer, optionally followed by a
4629decimal point and up to three further digits.
4630
4631
4632
4633[[SECTtimeformat]]
4634Time interval values
4635~~~~~~~~~~~~~~~~~~~~
4636cindex:[time interval,specifying in configuration]
4637cindex:[format,time interval]
4638A time interval is specified as a sequence of numbers, each followed by one of
4639the following letters, with no intervening white space:
4640
4641[frame="none"]
4642`-`-----`--------
4643 %s% seconds
4644 %m% minutes
4645 %h% hours
4646 %d% days
4647 %w% weeks
4648-----------------
4649
4650For example, ``3h50m'' specifies 3 hours and 50 minutes. The values of time
4651intervals are output in the same format. Exim does not restrict the values; it
4652is perfectly acceptable, for example, to specify ``90m'' instead of ``1h30m''.
4653
4654
4655
4656[[SECTstrings]]
4657String values
4658~~~~~~~~~~~~~
4659cindex:[string,format of configuration values]
4660cindex:[format,string]
4661If a string data item does not start with a double-quote character, it is taken
4662as consisting of the remainder of the line plus any continuation lines,
4663starting at the first character after any leading white space, with trailing
4664white space characters removed, and with no interpretation of the characters in
4665the string. Because Exim removes comment lines (those beginning with #) at an
4666early stage, they can appear in the middle of a multi-line string. The
4667following settings are therefore equivalent:
4668
4669....
4670trusted_users = uucp:mail
4671
4672trusted_users = uucp:\
4673 # This comment line is ignored
4674 mail
4675....
4676
4677cindex:[string,quoted]
4678cindex:[escape characters in quoted strings]
4679If a string does start with a double-quote, it must end with a closing
4680double-quote, and any backslash characters other than those used for line
4681continuation are interpreted as escape characters, as follows:
4682
4683[frame="none"]
4684`-`----------------------`--------------------------------------------------
4685 `\\` single backslash
4686 `\n` newline
4687 `\r` carriage return
4688 `\t` tab
4689 `\`<'octal digits'> up to 3 octal digits specify one character
4690 `\x`<'hex digits'> up to 2 hexadecimal digits specify one character
4691----------------------------------------------------------------------------
4692
4693If a backslash is followed by some other character, including a double-quote
4694character, that character replaces the pair.
4695
4696Quoting is necessary only if you want to make use of the backslash escapes to
4697insert special characters, or if you need to specify a value with leading or
4698trailing spaces. These cases are rare, so quoting is almost never needed in
4699current versions of Exim. In versions of Exim before 3.14, quoting was required
4700in order to continue lines, so you may come across older configuration files
4701and examples that apparently quote unnecessarily.
4702
4703
4704Expanded strings
4705~~~~~~~~~~~~~~~~
4706cindex:[string expansion, definition of]
4707cindex:[expansion,definition of]
4708Some strings in the configuration file are subjected to 'string expansion',
4709by which means various parts of the string may be changed according to the
4710circumstances (see chapter <<CHAPexpand>>). The input syntax for such strings is
4711as just described; in particular, the handling of backslashes in quoted strings
4712is done as part of the input process, before expansion takes place. However,
4713backslash is also an escape character for the expander, so any backslashes that
4714are required for that reason must be doubled if they are within a quoted
4715configuration string.
4716
4717
4718User and group names
4719~~~~~~~~~~~~~~~~~~~~
4720cindex:[user name,format of]
4721cindex:[format,user name]
4722cindex:[group,name format]
4723cindex:[format,group name]
4724User and group names are specified as strings, using the syntax described
4725above, but the strings are interpreted specially. A user or group name must
4726either consist entirely of digits, or be a name that can be looked up using the
4727'getpwnam()' or 'getgrnam()' function, as appropriate.
4728
4729
4730[[SECTlistconstruct]]
4731List construction
4732~~~~~~~~~~~~~~~~~
4733cindex:[list,syntax of in configuration]
4734cindex:[format,list item in configuration]
4735cindex:[string list, definition]
4736The data for some configuration options is a list of items, with colon as the
4737default separator. Many of these options are shown with type ``string list'' in
4738the descriptions later in this document. Others are listed as ``domain list'',
4739``host list'', ``address list'', or ``local part list''. Syntactically, they are all
4740the same; however, those other than ``string list'' are subject to particular
4741kinds of interpretation, as described in chapter <<CHAPdomhosaddlists>>.
4742
4743In all these cases, the entire list is treated as a single string as far as the
4744input syntax is concerned. The %trusted_users% setting in section
4745<<SECTstrings>> above is an example. If a colon is actually needed in an item in
4746a list, it must be entered as two colons. Leading and trailing white space on
4747each item in a list is ignored. This makes it possible to include items that
4748start with a colon, and in particular, certain forms of IPv6 address. For
4749example, the list
4750
4751 local_interfaces = 127.0.0.1 : ::::1
4752
4753+contains two IP addresses, the IPv4 address 127.0.0.1 and the IPv6 address
47541.
4755
4756cindex:[list separator, changing]
4757cindex:[IPv6,addresses in lists]
4758Doubling colons in IPv6 addresses is an unwelcome chore, so a mechanism was
4759introduced to allow the separator character to be changed. If a list begins
4760with a left angle bracket, followed by any punctuation character, that
4761character is used instead of colon as the list separator. For example, the list
4762above can be rewritten to use a semicolon separator like this:
4763
4764 local_interfaces = <; 127.0.0.1 ; ::1
4765
4766This facility applies to all lists, with the exception of the list in
4767%log_file_path%. It is recommended that the use of non-colon separators be
4768confined to circumstances where they really are needed.
4769
4770
4771
4772[[SECTempitelis]]
4773Empty items in lists
4774~~~~~~~~~~~~~~~~~~~~
4775cindex:[list,empty item in]
4776An empty item at the end of a list is always ignored. In other words, trailing
4777separator characters are ignored. Thus, the list in
4778
4779 senders = user@domain :
4780
4781contains only a single item. If you want to include an empty string as one item
4782in a list, it must not be the last item. For example, this list contains three
4783items, the second of which is empty:
4784
4785 senders = user1@domain : : user2@domain
4786
4787*Note*: there must be whitespace between the two colons, as otherwise they
4788are interpreted as representing a single colon data character (and the list
4789would then contain just one item). If you want to specify a list that contains
4790just one, empty item, you can do it as in this example:
4791
4792 senders = :
4793
4794In this case, the first item is empty, and the second is discarded because it
4795is at the end of the list.
4796
4797
4798
4799
4800[[SECTfordricon]]
4801Format of driver configurations
4802~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4803cindex:[drivers,configuration format]
4804There are separate parts in the configuration for defining routers, transports,
4805and authenticators. In each part, you are defining a number of driver
4806instances, each with its own set of options. Each driver instance is defined by
4807a sequence of lines like this:
4808
4809&&&
4810<'instance name'>:
4811 <'option'>
4812 ...
4813 <'option'>
4814&&&
4815
4816In the following example, the instance name is ^localuser^, and it is
4817followed by three options settings:
4818
4819 localuser:
4820 driver = accept
4821 check_local_user
4822 transport = local_delivery
4823
4824For each driver instance, you specify which Exim code module it uses -- by the
4825setting of the %driver% option -- and (optionally) some configuration settings.
4826For example, in the case of transports, if you want a transport to deliver with
4827SMTP you would use the ^smtp^ driver; if you want to deliver to a local file
4828you would use the ^appendfile^ driver. Each of the drivers is described in
4829detail in its own separate chapter later in this manual.
4830
4831You can have several routers, transports, or authenticators that are based on
4832the same underlying driver (each must have a different name).
4833
4834The order in which routers are defined is important, because addresses are
4835passed to individual routers one by one, in order. The order in which
4836transports are defined does not matter at all. The order in which
4837authenticators are defined is used only when Exim, as a client, is searching
4838them to find one that matches an authentication mechanism offered by the
4839server.
4840
4841cindex:[generic options]
4842cindex:[options, generic -- definition of]
4843Within a driver instance definition, there are two kinds of option:
4844'generic' and 'private'. The generic options are those that apply to all
4845drivers of the same type (that is, all routers, all transports or all
4846authenticators).
4847The %driver% option is a generic option that must appear in every definition.
4848
4849cindex:[private options]
4850The private options are special for each driver, and none need appear, because
4851they all have default values.
4852
4853The options may appear in any order, except that the %driver% option must
4854precede any private options, since these depend on the particular driver. For
4855this reason, it is recommended that %driver% always be the first option.
4856
4857Driver instance names, which are used for reference in log entries and
4858elsewhere, can be any sequence of letters, digits, and underscores (starting
4859with a letter) and must be unique among drivers of the same type. A router and
4860a transport (for example) can each have the same name, but no two router
4861instances can have the same name. The name of a driver instance should not be
4862confused with the name of the underlying driver module. For example, the
4863configuration lines:
4864
4865 remote_smtp:
4866 driver = smtp
4867
4868create an instance of the ^smtp^ transport driver whose name is
4869^remote_smtp^. The same driver code can be used more than once, with
4870different instance names and different option settings each time. A second
4871instance of the ^smtp^ transport, with different options, might be defined
4872thus:
4873
4874 special_smtp:
4875 driver = smtp
4876 port = 1234
4877 command_timeout = 10s
4878
4879The names ^remote_smtp^ and ^special_smtp^ would be used to reference
4880these transport instances from routers, and these names would appear in log
4881lines.
4882
4883Comment lines may be present in the middle of driver specifications. The full
4884list of option settings for any particular driver instance, including all the
4885defaulted values, can be extracted by making use of the %-bP% command line
4886option.
4887
4888
4889
4890
4891
4892
4893////////////////////////////////////////////////////////////////////////////
4894////////////////////////////////////////////////////////////////////////////
4895
4896[[CHAPdefconfil]]
4897The default configuration file
4898------------------------------
4899cindex:[configuration file,default ``walk through'']
4900cindex:[default,configuration file ``walk through'']
4901The default configuration file supplied with Exim as _src/configure.default_
4902is sufficient for a host with simple mail requirements. As an introduction to
4903the way Exim is configured, this chapter ``walks through'' the default
4904configuration, giving brief explanations of the settings. Detailed descriptions
4905of the options are given in subsequent chapters. The default configuration file
4906itself contains extensive comments about ways you might want to modify the
4907initial settings. However, note that there are many options that are not
4908mentioned at all in the default configuration.
4909
4910
4911
4912Main configuration settings
4913~~~~~~~~~~~~~~~~~~~~~~~~~~~
4914The main (global) configuration option settings must always come first in the
4915file. The first thing you'll see in the file, after some initial comments, is
4916the line
4917
4918 # primary_hostname =
4919
4920This is a commented-out setting of the %primary_hostname% option. Exim needs
4921to know the official, fully qualified name of your host, and this is where you
4922can specify it. However, in most cases you do not need to set this option. When
4923it is unset, Exim uses the 'uname()' system function to obtain the host name.
4924
4925The first three non-comment configuration lines are as follows:
4926
4927 domainlist local_domains = @
4928 domainlist relay_to_domains =
4929 hostlist relay_from_hosts = 127.0.0.1
4930
4931These are not, in fact, option settings. They are definitions of two named
4932domain lists and one named host list. Exim allows you to give names to lists of
4933domains, hosts, and email addresses, in order to make it easier to manage the
4934configuration file (see section <<SECTnamedlists>>).
4935
4936The first line defines a domain list called 'local_domains'; this is used
4937later in the configuration to identify domains that are to be delivered
4938on the local host.
4939
4940cindex:[@ in a domain list]
4941There is just one item in this list, the string ``@''. This is a special form of
4942entry which means ``the name of the local host''. Thus, if the local host is
4943called 'a.host.example', mail to 'any.user@a.host.example' is expected to
4944be delivered locally. Because the local host's name is referenced indirectly,
4945the same configuration file can be used on different hosts.
4946
4947The second line defines a domain list called 'relay_to_domains', but the
4948list itself is empty. Later in the configuration we will come to the part that
4949controls mail relaying through the local host; it allows relaying to any
4950domains in this list. By default, therefore, no relaying on the basis of a mail
4951domain is permitted.
4952
4953The third line defines a host list called 'relay_from_hosts'. This list is
4954used later in the configuration to permit relaying from any host or IP address
4955that matches the list. The default contains just the IP address of the IPv4
4956loopback interface, which means that processes on the local host are able to
4957submit mail for relaying by sending it over TCP/IP to that interface. No other
4958hosts are permitted to submit messages for relaying.
4959
4960Just to be sure there's no misunderstanding: at this point in the configuration
4961we aren't actually setting up any controls. We are just defining some domains
4962and hosts that will be used in the controls that are specified later.
4963
4964The next configuration line is a genuine option setting:
4965
4966 acl_smtp_rcpt = acl_check_rcpt
4967
4968This option specifies an 'Access Control List' (ACL) which is to be used
4969during an incoming SMTP session for every recipient of a message (every
4970RCPT command). The name of the list is 'acl_check_rcpt', and we will
4971come to its definition below, in the ACL section of the configuration. ACLs
4972control which recipients are accepted for an incoming message -- if a
4973configuration does not provide an ACL to check recipients, no SMTP mail can be
4974accepted.
4975
4976Two commented-out options settings are next:
4977
4978 # qualify_domain =
4979 # qualify_recipient =
4980
4981The first of these specifies a domain that Exim uses when it constructs a
4982complete email address from a local login name. This is often needed when Exim
4983receives a message from a local process. If you do not set %qualify_domain%,
4984the value of %primary_hostname% is used. If you set both of these options, you
4985can have different qualification domains for sender and recipient addresses. If
4986you set only the first one, its value is used in both cases.
4987
4988cindex:[domain literal,recognizing format]
4989The following line must be uncommented if you want Exim to recognize
4990addresses of the form 'user@[10.11.12.13]' that is, with a ``domain literal''
4991(an IP address) instead of a named domain.
4992
4993 # allow_domain_literals
4994
4995The RFCs still require this form, but many people think that in the modern
4996Internet it makes little sense to permit mail to be sent to specific hosts by
4997quoting their IP addresses. This ancient format has been used by people who
4998try to abuse hosts by using them for unwanted relaying. However, some
4999people believe there are circumstances (for example, messages addressed to
5000'postmaster') where domain literals are still useful.
5001
5002The next configuration line is a kind of trigger guard:
5003
5004 never_users = root
5005
5006It specifies that no delivery must ever be run as the root user. The normal
5007convention is to set up 'root' as an alias for the system administrator. This
5008setting is a guard against slips in the configuration.
5009The list of users specified by %never_users% is not, however, the complete
5010list; the build-time configuration in _Local/Makefile_ has an option called
5011FIXED_NEVER_USERS specifying a list that cannot be overridden. The
5012contents of %never_users% are added to this list. By default
5013FIXED_NEVER_USERS also specifies root.
5014
5015When a remote host connects to Exim in order to send mail, the only information
5016Exim has about the host's identity is its IP address. The next configuration
5017line,
5018
5019 host_lookup = *
5020
5021specifies that Exim should do a reverse DNS lookup on all incoming connections,
5022in order to get a host name. This improves the quality of the logging
5023information, but if you feel it is too expensive, you can remove it entirely,
5024or restrict the lookup to hosts on ``nearby'' networks.
5025Note that it is not always possible to find a host name from an IP address,
5026because not all DNS reverse zones are maintained, and sometimes DNS servers are
5027unreachable.
5028
5029The next two lines are concerned with 'ident' callbacks, as defined by RFC
50301413 (hence their names):
5031
5032 rfc1413_hosts = *
5033 rfc1413_query_timeout = 30s
5034
5035These settings cause Exim to make ident callbacks for all incoming SMTP calls.
5036You can limit the hosts to which these calls are made, or change the timeout
5037that is used. If you set the timeout to zero, all ident calls are disabled.
5038Although they are cheap and can provide useful information for tracing problem
5039messages, some hosts and firewalls have problems with ident calls. This can
5040result in a timeout instead of an immediate refused connection, leading to
5041delays on starting up an incoming SMTP session.
5042
5043When Exim receives messages over SMTP connections, it expects all addresses to
5044be fully qualified with a domain, as required by the SMTP definition. However,
5045if you are running a server to which simple clients submit messages, you may
5046find that they send unqualified addresses. The two commented-out options:
5047
5048 # sender_unqualified_hosts =
5049 # recipient_unqualified_hosts =
5050
5051show how you can specify hosts that are permitted to send unqualified sender
5052and recipient addresses, respectively.
5053
5054The %percent_hack_domains% option is also commented out:
5055
5056 # percent_hack_domains =
5057
5058It provides a list of domains for which the ``percent hack'' is to operate. This
5059is an almost obsolete form of explicit email routing. If you do not know
5060anything about it, you can safely ignore this topic.
5061
5062The last two settings in the main part of the default configuration are
5063concerned with messages that have been ``frozen'' on Exim's queue. When a message
5064is frozen, Exim no longer continues to try to deliver it. Freezing occurs when
5065a bounce message encounters a permanent failure because the sender address of
5066the original message that caused the bounce is invalid, so the bounce cannot be
5067delivered. This is probably the most common case, but there are also other
5068conditions that cause freezing, and frozen messages are not always bounce
5069messages.
5070
5071 ignore_bounce_errors_after = 2d
5072 timeout_frozen_after = 7d
5073
5074The first of these options specifies that failing bounce messages are to be
5075discarded after 2 days on the queue. The second specifies that any frozen
5076message (whether a bounce message or not) is to be timed out (and discarded)
5077after a week. In this configuration, the first setting ensures that no failing
5078bounce message ever lasts a week.
5079
5080
5081
5082ACL configuration
5083~~~~~~~~~~~~~~~~~
5084cindex:[default,ACLs]
5085cindex:[{ACL},default configuration]
5086In the default configuration, the ACL section follows the main configuration.
5087It starts with the line
5088
5089 begin acl
5090
5091and it contains the definition of one ACL called 'acl_check_rcpt' that was
5092referenced in the setting of %acl_smtp_rcpt% above.
5093
5094cindex:[RCPT,ACL for]
5095This ACL is used for every RCPT command in an incoming SMTP message. Each
5096RCPT command specifies one of the message's recipients. The ACL statements
5097are considered in order, until the recipient address is either accepted or
5098rejected. The RCPT command is then accepted or rejected, according to the
5099result of the ACL processing.
5100
5101 acl_check_rcpt:
5102
5103This line, consisting of a name terminated by a colon, marks the start of the
5104ACL, and names it.
5105
5106 accept hosts = :
5107
5108This ACL statement accepts the recipient if the sending host matches the list.
5109But what does that strange list mean? It doesn't actually contain any host
5110names or IP addresses. The presence of the colon puts an empty item in the
5111list; Exim matches this only if the incoming message didn't come from a remote
5112host. The colon is important. Without it, the list itself is empty, and can
5113never match anything.
5114
5115What this statement is doing is to accept unconditionally all recipients in
5116messages that are submitted by SMTP from local processes using the standard
5117input and output (that is, not using TCP/IP). A number of MUAs operate in this
5118manner.
5119
5120 deny domains = +local_domains
5121 local_parts = ^[.] : ^.*[@%!/|]
5122
5123 deny domains = !+local_domains
5124 local_parts = ^[./|] : ^.*[@%!] : ^.*/\\.\\./
5125
5126These statements are concerned with local parts that contain any of the
5127characters ``@'', ``%'', ``!'', ``/'', ``|'', or dots in unusual places. Although these
5128characters are entirely legal in local parts (in the case of ``@'' and leading
5129dots, only if correctly quoted), they do not commonly occur in Internet mail
5130addresses.
5131
5132The first three have in the past been associated with explicitly routed
5133addresses (percent is still sometimes used -- see the %percent_hack_domains%
5134option). Addresses containing these characters are regularly tried by spammers
5135in an attempt to bypass relaying restrictions, and also by open relay testing
5136programs. Unless you really need them it is safest to reject these characters
5137at this early stage. This configuration is heavy-handed in rejecting these
5138characters for all messages it accepts from remote hosts. This is a deliberate
5139policy of being as safe as possible.
5140
5141The first rule above is stricter, and is applied to messages that are addressed
5142to one of the local domains handled by this host. This is implemented by the
5143first condition, which restricts it to domains that are listed in the
5144'local_domains' domain list. The ``+'' character is used to indicate a
5145reference to a named list. In this configuration, there is just one domain in
5146'local_domains', but in general there may be many.
5147
5148The second condition on the first statement uses two regular expressions to
5149block local parts that begin with a dot or contain ``@'', ``%'', ``!'', ``/'', or ``|''.
5150If you have local accounts that include these characters, you will have to
5151modify this rule.
5152
5153Empty components (two dots in a row) are not valid in RFC 2822, but Exim
5154allows them because they have been encountered in practice. (Consider local
5155parts constructed as ``first-initial.second-initial.family-name'' when applied to
5156someone like the author of Exim, who has no second initial.) However, a local
5157part starting with a dot or containing ``/../'' can cause trouble if it is used
5158as part of a file name (for example, for a mailing list). This is also true for
5159local parts that contain slashes. A pipe symbol can also be troublesome if the
5160local part is incorporated unthinkingly into a shell command line.
5161
5162The second rule above applies to all other domains, and is less strict. This
5163allows your own users to send outgoing messages to sites that use slashes
5164and vertical bars in their local parts. It blocks local parts that begin
5165with a dot, slash, or vertical bar, but allows these characters within the
5166local part. However, the sequence ``/../'' is barred. The use of ``@'', ``%'', and
5167``!'' is blocked, as before. The motivation here is to prevent your users (or
5168your users' viruses) from mounting certain kinds of attack on remote sites.
5169
5170 accept local_parts = postmaster
5171 domains = +local_domains
5172
5173This statement, which has two conditions, accepts an incoming address if the
5174local part is 'postmaster' and the domain is one of those listed in the
5175'local_domains' domain list. The ``+'' character is used to indicate a
5176reference to a named list. In this configuration, there is just one domain in
5177'local_domains', but in general there may be many.
5178
5179The presence of this statement means that mail to postmaster is never blocked
5180by any of the subsequent tests. This can be helpful while sorting out problems
5181in cases where the subsequent tests are incorrectly denying access.
5182
5183 require verify = sender
5184
5185This statement requires the sender address to be verified before any subsequent
5186ACL statement can be used. If verification fails, the incoming recipient
5187address is refused. Verification consists of trying to route the address, to
5188see if a
5189bounce
5190message could be delivered to it. In the case of remote addresses, basic
5191verification checks only the domain, but 'callouts' can be used for more
5192verification if required. Section <<SECTaddressverification>> discusses the
5193details of address verification.
5194
5195....
5196# deny message = rejected because $sender_host_address is \
5197# in a black list at $dnslist_domain\n\
5198# $dnslist_text
5199# dnslists = black.list.example
5200#
5201# warn message = X-Warning: $sender_host_address is \
5202# in a black list at $dnslist_domain
5203# log_message = found in $dnslist_domain
5204# dnslists = black.list.example
5205....
5206
5207These commented-out lines are examples of how you could configure Exim to check
5208sending hosts against a DNS black list. The first statement rejects messages
5209from blacklisted hosts, whereas the second merely inserts a warning header
5210line.
5211
5212 accept domains = +local_domains
5213 endpass
5214 message = unknown user
5215 verify = recipient
5216
5217This statement accepts the incoming recipient address if its domain is one of
5218the local domains, but only if the address can be verified. Verification of
5219local addresses normally checks both the local part and the domain. The
5220%endpass% line needs some explanation: if the condition above %endpass% fails,
5221that is, if the address is not in a local domain, control is passed to the next
5222ACL statement. However, if the condition below %endpass% fails, that is, if a
5223recipient in a local domain cannot be verified, access is denied and the
5224recipient is rejected.
5225
5226cindex:[customizing,ACL failure message]
5227The %message% modifier provides a customized error message for the failure.
5228
5229 accept domains = +relay_to_domains
5230 endpass
5231 message = unrouteable address
5232 verify = recipient
5233
5234This statement accepts the incoming recipient address if its domain is one of
5235the domains for which this host is a relay, but again, only if the address can
5236be verified.
5237
5238 accept hosts = +relay_from_hosts
5239
5240Control reaches this statement only if the recipient's domain is neither a
5241local domain, nor a relay domain. The statement accepts the address if the
5242message is coming from one of the hosts that are defined as being allowed to
5243relay through this host. Recipient verification is omitted here, because in
5244many cases the clients are dumb MUAs that do not cope well with SMTP error
5245responses. If you are actually relaying out from MTAs, you should probably add
5246recipient verification here.
5247
5248 accept authenticated = *
5249
5250Control reaches here for attempts to relay to arbitrary domains from arbitrary
5251hosts. The statement accepts the address only if the client host has
5252authenticated itself. The default configuration does not define any
5253authenticators, which means that no client can in fact authenticate. You will
5254need to add authenticator definitions if you want to make use of this ACL
5255statement.
5256
5257 deny message = relay not permitted
5258
5259The final statement denies access, giving a specific error message. Reaching
5260the end of the ACL also causes access to be denied, but with the generic
5261message ``administrative prohibition''.
5262
5263
5264
5265Router configuration
5266~~~~~~~~~~~~~~~~~~~~
5267cindex:[default,routers]
5268cindex:[routers,default]
5269The router configuration comes next in the default configuration, introduced
5270by the line
5271
5272 begin routers
5273
5274Routers are the modules in Exim that make decisions about where to send
5275messages. An address is passed to each router in turn, until it is either
5276accepted, or failed. This means that the order in which you define the routers
5277matters. Each router is fully described in its own chapter later in this
5278manual. Here we give only brief overviews.
5279
5280 # domain_literal:
5281 # driver = ipliteral
5282 # domains = !+local_domains
5283 # transport = remote_smtp
5284
5285cindex:[domain literal,default router]
5286This router is commented out because the majority of sites do not want to
5287support domain literal addresses (those of the form 'user@[10.9.8.7]'). If
5288you uncomment this router, you also need to uncomment the setting of
5289%allow_domain_literals% in the main part of the configuration.
5290
5291 dnslookup:
5292 driver = dnslookup
5293 domains = ! +local_domains
5294 transport = remote_smtp
5295 ignore_target_hosts = 0.0.0.0 : 127.0.0.0/8
5296 no_more
5297
5298The first uncommented router handles addresses that do not involve any local
5299domains. This is specified by the line
5300
5301 domains = ! +local_domains
5302
5303The %domains% option lists the domains to which this router applies, but the
5304exclamation mark is a negation sign, so the router is used only for domains
5305that are not in the domain list called 'local_domains' (which was defined at
5306the start of the configuration). The plus sign before 'local_domains'
5307indicates that it is referring to a named list. Addresses in other domains are
5308passed on to the following routers.
5309
5310The name of the router driver is ^dnslookup^,
5311and is specified by the %driver% option. Do not be confused by the fact that
5312the name of this router instance is the same as the name of the driver. The
5313instance name is arbitrary, but the name set in the %driver% option must be one
5314of the driver modules that is in the Exim binary.
5315
5316The ^dnslookup^ router routes addresses by looking up their domains in the
5317DNS in order to obtain a list of hosts to which the address is routed. If the
5318router succeeds, the address is queued for the ^remote_smtp^ transport, as
5319specified by the %transport% option. If the router does not find the domain in
5320the DNS, no further routers are tried because of the %no_more% setting, so the
5321address fails and is bounced.
5322
5323The %ignore_target_hosts% option specifies a list of IP addresses that are to
5324be entirely ignored. This option is present because a number of cases have been
5325encountered where MX records in the DNS point to host names
5326whose IP addresses are 0.0.0.0 or are in the 127 subnet (typically 127.0.0.1).
5327Completely ignoring these IP addresses causes Exim to fail to route the
5328email address, so it bounces. Otherwise, Exim would log a routing problem, and
5329continue to try to deliver the message periodically until the address timed
5330out.
5331
5332 system_aliases:
5333 driver = redirect
5334 allow_fail
5335 allow_defer
5336 data = ${lookup{$local_part}lsearch{/etc/aliases}}
5337 # user = exim
5338 file_transport = address_file
5339 pipe_transport = address_pipe
5340
5341Control reaches this and subsequent routers only for addresses in the local
5342domains. This router checks to see whether the local part is defined as an
5343alias in the _/etc/aliases_ file, and if so, redirects it according to the
5344data that it looks up from that file. If no data is found for the local part,
5345the value of the %data% option is empty, causing the address to be passed to
5346the next router.
5347
5348_/etc/aliases_ is a conventional name for the system aliases file that is
5349often used. That is why it is referenced by from the default configuration
5350file. However, you can change this by setting SYSTEM_ALIASES_FILE in
5351_Local/Makefile_ before building Exim.
5352
5353 userforward:
5354 driver = redirect
5355 check_local_user
5356 file = $home/.forward
5357 no_verify
5358 no_expn
5359 check_ancestor
5360 # allow_filter
5361 file_transport = address_file
5362 pipe_transport = address_pipe
5363 reply_transport = address_reply
5364
5365This is the most complicated router in the default configuration. It is another
5366redirection router, but this time it is looking for forwarding data set up by
5367individual users. The %check_local_user% setting means that the first thing it
5368does is to check that the local part of the address is the login name of a
5369local user. If it is not, the router is skipped. When a local user is found,
5370the file called _.forward_ in the user's home directory is consulted. If it
5371does not exist, or is empty, the router declines. Otherwise, the contents of
5372_.forward_ are interpreted as redirection data (see chapter <<CHAPredirect>>
5373for more details).
5374
5375cindex:[Sieve filter,enabling in default router]
5376Traditional _.forward_ files contain just a list of addresses, pipes, or
5377files. Exim supports this by default. However, if %allow_filter% is set (it is
5378commented out by default), the contents of the file are interpreted as a set of
5379Exim or Sieve filtering instructions, provided the file begins with ``#Exim
5380filter'' or ``#Sieve filter'', respectively. User filtering is discussed in the
5381separate document entitled 'Exim's interfaces to mail filtering'.
5382
5383The %no_verify% and %no_expn% options mean that this router is skipped when
5384verifying addresses, or when running as a consequence of an SMTP EXPN
5385command.
5386There are two reasons for doing this:
5387
5388. Whether or not a local user has a _.forward_ file is not really relevant when
5389checking an address for validity; it makes sense not to waste resources doing
5390unnecessary work.
5391
5392. More importantly, when Exim is verifying addresses or handling an EXPN
5393command during an SMTP session, it is running as the Exim user, not as root.
5394The group is the Exim group, and no additional groups are set up.
5395It may therefore not be possible for Exim to read users' _.forward_ files at
5396this time.
5397
5398
5399The setting of %check_ancestor% prevents the router from generating a new
5400address that is the same as any previous address that was redirected. (This
5401works round a problem concerning a bad interaction between aliasing and
5402forwarding -- see section <<SECTredlocmai>>).
5403
5404The final three option settings specify the transports that are to be used when
5405forwarding generates a direct delivery to a file, or to a pipe, or sets up an
5406auto-reply, respectively. For example, if a _.forward_ file contains
5407
5408 a.nother@elsewhere.example, /home/spqr/archive
5409
5410the delivery to _/home/spqr/archive_ is done by running the %address_file%
5411transport.
5412
5413 localuser:
5414 driver = accept
5415 check_local_user
5416 transport = local_delivery
5417
5418The final router sets up delivery into local mailboxes, provided that the local
5419part is the name of a local login, by accepting the address and queuing it for
5420the ^local_delivery^ transport. Otherwise, we have reached the end of the
5421routers, so the address is bounced.
5422
5423
5424
5425Transport configuration
5426~~~~~~~~~~~~~~~~~~~~~~~
5427cindex:[default,transports]
5428cindex:[transports,default]
5429Transports define mechanisms for actually delivering messages. They operate
5430only when referenced from routers, so the order in which they are defined does
5431not matter. The transports section of the configuration starts with
5432
5433 begin transports
5434
5435One remote transport and four local transports are defined.
5436
5437 remote_smtp:
5438 driver = smtp
5439
5440This transport is used for delivering messages over SMTP connections. All its
5441options are defaulted. The list of remote hosts comes from the router.
5442
5443 local_delivery:
5444 driver = appendfile
5445 file = /var/mail/$local_part
5446 delivery_date_add
5447 envelope_to_add
5448 return_path_add
5449 # group = mail
5450 # mode = 0660
5451
5452This ^appendfile^ transport is used for local delivery to user mailboxes in
5453traditional BSD mailbox format. By default it runs under the uid and gid of the
5454local user, which requires the sticky bit to be set on the _/var/mail_
5455directory. Some systems use the alternative approach of running mail deliveries
5456under a particular group instead of using the sticky bit. The commented options
5457show how this can be done.
5458
5459Exim adds three headers to the message as it delivers it: 'Delivery-date:',
5460'Envelope-to:' and 'Return-path:'. This action is requested by the three
5461similarly-named options above.
5462
5463 address_pipe:
5464 driver = pipe
5465 return_output
5466
5467This transport is used for handling deliveries to pipes that are generated by
5468redirection (aliasing or users' _.forward_ files). The %return_output%
5469option specifies that any output generated by the pipe is to be returned to the
5470sender.
5471
5472 address_file:
5473 driver = appendfile
5474 delivery_date_add
5475 envelope_to_add
5476 return_path_add
5477
5478This transport is used for handling deliveries to files that are generated by
5479redirection. The name of the file is not specified in this instance of
5480^appendfile^, because it comes from the ^redirect^ router.
5481
5482 address_reply:
5483 driver = autoreply
5484
5485This transport is used for handling automatic replies generated by users'
5486filter files.
5487
5488
5489
5490Default retry rule
5491~~~~~~~~~~~~~~~~~~
5492cindex:[retry,default rule]
5493cindex:[default,retry rule]
5494The retry section of the configuration file contains rules which affect the way
5495Exim retries deliveries that cannot be completed at the first attempt. It is
5496introduced by the line
5497
5498 begin retry
5499
5500In the default configuration, there is just one rule, which applies to all
5501errors:
5502
5503&&&
5504`\* \* F,2h,15m; G,16h,1h,1.5; F,4d,6h`
5505&&&
5506
5507This causes any temporarily failing address to be retried every 15 minutes for
55082 hours, then at intervals starting at one hour and increasing by a factor of
55091.5 until 16 hours have passed, then every 6 hours up to 4 days. If an address
5510is not delivered after 4 days of failure, it is bounced.
5511
5512
5513
5514Rewriting configuration
5515~~~~~~~~~~~~~~~~~~~~~~~
5516The rewriting section of the configuration, introduced by
5517
5518 begin rewrite
5519
5520contains rules for rewriting addresses in messages as they arrive. There are no
5521rewriting rules in the default configuration file.
5522
5523
5524
5525Authenticators configuration
5526~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5527cindex:[AUTH,configuration]
5528The authenticators section of the configuration, introduced by
5529
5530 begin authenticators
5531
5532defines mechanisms for the use of the SMTP AUTH command. No authenticators
5533are specified in the default configuration file.
5534
5535
5536
5537////////////////////////////////////////////////////////////////////////////
5538////////////////////////////////////////////////////////////////////////////
5539
5540[[CHAPregexp]]
5541Regular expressions
5542-------------------
5543
5544cindex:[regular expressions,library]
5545cindex:[PCRE]
5546Exim supports the use of regular expressions in many of its options. It
5547uses the PCRE regular expression library; this provides regular expression
5548matching that is compatible with Perl 5. The syntax and semantics of
5549regular expressions is discussed in many Perl reference books, and also in
5550Jeffrey Friedl's 'Mastering Regular Expressions', which is published by
5551O'Reilly (*http://www.oreilly.com/catalog/regex/[]*).
5552
5553The documentation for the syntax and semantics of the regular expressions that
5554are supported by PCRE is included in plain text in the file
5555_doc/pcrepattern.txt_ in the Exim distribution, and also in the HTML
5556tarbundle of Exim documentation, and as an appendix to the Exim book
5557(*http://www.uit.co.uk/exim-book/[]*).
5558
5559It describes in detail the features of the regular expressions that PCRE
5560supports, so no further description is included here. The PCRE functions are
5561called from Exim using the default option settings (that is, with no PCRE
5562options set), except that the PCRE_CASELESS option is set when the
5563matching is required to be case-insensitive.
5564
5565In most cases, when a regular expression is required in an Exim configuration,
5566it has to start with a circumflex, in order to distinguish it from plain text
5567or an ``ends with'' wildcard. In this example of a configuration setting, the
5568second item in the colon-separated list is a regular expression.
5569
5570 domains = a.b.c : ^\\d{3} : *.y.z : ...
5571
5572The doubling of the backslash is required because of string expansion that
5573precedes interpretation -- see section <<SECTlittext>> for more discussion of
5574this issue, and a way of avoiding the need for doubling backslashes. The
5575regular expression that is eventually used in this example contains just one
5576backslash. The circumflex is included in the regular expression, and has the
5577normal effect of ``anchoring'' it to the start of the string that is being
5578matched.
5579
5580There are, however, two cases where a circumflex is not required for the
5581recognition of a regular expression: these are the %match% condition in a
5582string expansion, and the %matches% condition in an Exim filter file. In these
5583cases, the relevant string is always treated as a regular expression; if it
5584does not start with a circumflex, the expression is not anchored, and can match
5585anywhere in the subject string.
5586
5587In all cases, if you want a regular expression to match at the end of a string,
5588you must code the \$ metacharacter to indicate this. For example:
5589
5590 domains = ^\\d{3}\\.example
5591
5592matches the domain '123.example', but it also matches '123.example.com'.
5593You need to use:
5594
5595 domains = ^\\d{3}\\.example\$
5596
5597if you want 'example' to be the top-level domain. (The backslash before the
5598\$ is another artefact of string expansion.)
5599
5600
5601
5602Testing regular expressions
5603~~~~~~~~~~~~~~~~~~~~~~~~~~~
5604cindex:[testing,regular expressions]
5605cindex:[regular expressions,testing]
5606cindex:['pcretest']
5607A program called 'pcretest' forms part of the PCRE distribution and is built
5608with PCRE during the process of building Exim. It is primarily intended for
5609testing PCRE itself, but it can also be used for experimenting with regular
5610expressions. After building Exim, the binary can be found in the build
5611directory (it is not installed anywhere automatically). There is documentation
5612of various options in _doc/pcretest.txt_, but for simple testing, none are
5613needed. This is the output of a sample run of 'pcretest':
5614
5615&&&
5616` re> `*`/^([^@]+)@.+\.(ac|edu)\.(?!kr)[a-z]{2}$/`*
5617`data> `*`x@y.ac.uk`*
5618` 0: x@y.ac.uk`
5619` 1: x`
5620` 2: ac`
5621`data> `*`x@y.ac.kr`*
5622`No match`
5623`data> `*`x@y.edu.com`*
5624`No match`
5625`data> `*`x@y.edu.co`*
5626` 0: x@y.edu.co`
5627` 1: x`
5628` 2: edu`
5629&&&
5630
5631Input typed by the user is shown in bold face. After the ``re>'' prompt, a
5632regular expression enclosed in delimiters is expected. If this compiles without
5633error, ``data>'' prompts are given for strings against which the expression is
5634matched. An empty data line causes a new regular expression to be read. If the
5635match is successful, the captured substring values (that is, what would be in
5636the variables $0$, $1$, $2$, etc.) are shown. The above example tests for an
5637email address whose domain ends with either ``ac'' or ``edu'' followed by a
5638two-character top-level domain that is not ``kr''. The local part is captured
5639in $1$ and the ``ac'' or ``edu'' in $2$.
5640
5641
5642
5643
5644
5645
5646////////////////////////////////////////////////////////////////////////////
5647////////////////////////////////////////////////////////////////////////////
5648
5649[[CHAPfdlookup]]
5650File and database lookups
5651-------------------------
5652cindex:[file,lookup]
5653cindex:[database lookups]
5654cindex:[lookup,description of]
5655Exim can be configured to look up data in files or databases as it processes
5656messages. Two different kinds of syntax are used:
5657
5658. A string that is to be expanded may contain explicit lookup requests. These
5659cause parts of the string to be replaced by data that is obtained from the
5660lookup.
5661
5662. Lists of domains, hosts, and email addresses can contain lookup requests as a
5663way of avoiding excessively long linear lists. In this case, the data that is
5664returned by the lookup is often (but not always) discarded; whether the lookup
5665succeeds or fails is what really counts. These kinds of list are described in
5666chapter <<CHAPdomhosaddlists>>.
5667
5668It is easy to confuse the two different kinds of lookup, especially as the
5669lists that may contain the second kind are always expanded before being
5670processed as lists. Therefore, they may also contain lookups of the first kind.
5671Be careful to distinguish between the following two examples:
5672
5673 domains = ${lookup{$sender_host_address}lsearch{/some/file}}
5674 domains = lsearch;/some/file
5675
5676The first uses a string expansion, the result of which must be a domain list.
5677String expansions are described in detail in chapter <<CHAPexpand>>. The
5678expansion takes place first, and the file that is searched could contain lines
5679like this:
5680
5681 192.168.3.4: domain1 : domain2 : ...
5682 192.168.1.9: domain3 : domain4 : ...
5683
5684Thus, the result of the expansion is a list of domains (and possibly other
5685types of item that are allowed in domain lists).
5686
5687In the second case, the lookup is a single item in a domain list. It causes
5688Exim to use a lookup to see if the domain that is being processed can be found
5689in the file. The file could contains lines like this:
5690
5691 domain1:
5692 domain2:
5693
5694Any data that follows the keys is not relevant when checking that the domain
5695matches the list item.
5696
5697It is possible to use both kinds of lookup at once. Consider a file containing
5698lines like this:
5699
5700 192.168.5.6: lsearch;/another/file
5701
5702If the value of $sender_host_address$ is 192.168.5.6, expansion of the
5703first %domains% setting above generates the second setting, which therefore
5704causes a second lookup to occur.
5705
5706The rest of this chapter describes the different lookup types that are
5707available. Any of them can be used in either of the circumstances described
5708above. The syntax requirements for the two cases are described in chapters
5709<<CHAPexpand>> and <<CHAPdomhosaddlists>>, respectively.
5710
5711
5712Lookup types
5713~~~~~~~~~~~~
5714cindex:[lookup,types of]
5715cindex:[single-key lookup,definition of]
5716Two different styles of data lookup are implemented:
5717
5718- The 'single-key' style requires the specification of a file in which to look,
5719and a single key to search for. The key must be a non-empty string for the
5720lookup to succeed. The lookup type determines how the file is searched.
5721
5722- cindex:[query-style lookup,definition of]
5723The 'query' style accepts a generalized database query.
5724No particular key value is assumed by Exim for query-style lookups. You can
5725use whichever Exim variable(s) you need to construct the database query.
5726
5727The code for each lookup type is in a separate source file that is included in
5728the binary of Exim only if the corresponding compile-time option is set. The
5729default settings in _src/EDITME_ are:
5730
5731 LOOKUP_DBM=yes
5732 LOOKUP_LSEARCH=yes
5733
5734which means that only linear searching and DBM lookups are included by default.
5735For some types of lookup (e.g. SQL databases), you need to install appropriate
5736libraries and header files before building Exim.
5737
5738
5739
5740
5741[[SECTsinglekeylookups]]
5742Single-key lookup types
5743~~~~~~~~~~~~~~~~~~~~~~~
5744cindex:[lookup,single-key types]
5745cindex:[single-key lookup,list of types]
5746The following single-key lookup types are implemented:
5747
5748- cindex:[cdb,description of]
5749cindex:[lookup,cdb]
5750cindex:[binary zero,in lookup key]
5751^cdb^: The given file is searched as a Constant DataBase file, using the key
5752string without a terminating binary zero. The cdb format is designed for
5753indexed files that are read frequently and never updated, except by total
5754re-creation. As such, it is particulary suitable for large files containing
5755aliases or other indexed data referenced by an MTA. Information about cdb can
5756be found in several places:
5757+
5758&&&
5759*http://www.pobox.com/~djb/cdb.html[]*
5760*ftp://ftp.corpit.ru/pub/tinycdb/[]*
5761*http://packages.debian.org/stable/utils/freecdb.html[]*
5762&&&
5763+
5764A cdb distribution is not needed in order to build Exim with cdb support,
5765because the code for reading cdb files is included directly in Exim itself.
5766However, no means of building or testing cdb files is provided with Exim, so
5767you need to obtain a cdb distribution in order to do this.
5768
5769- cindex:[DBM,lookup type]
5770cindex:[lookup,dbm]
5771cindex:[binary zero,in lookup key]
5772^dbm^: Calls to DBM library functions are used to extract data from the given
5773DBM file by looking up the record with the given key. A terminating binary
5774zero is included in the key that is passed to the DBM library. See section
5775<<SECTdb>> for a discussion of DBM libraries.
5776+
5777cindex:[Berkeley DB library,file format]
5778For all versions of Berkeley DB, Exim uses the DB_HASH style of database
5779when building DBM files using the %exim_dbmbuild% utility. However, when using
5780Berkeley DB versions 3 or 4, it opens existing databases for reading with the
5781DB_UNKNOWN option. This enables it to handle any of the types of database
5782that the library supports, and can be useful for accessing DBM files created by
5783other applications. (For earlier DB versions, DB_HASH is always used.)
5784
5785- cindex:[lookup,dbmnz]
5786cindex:[lookup,dbm -- terminating zero]
5787cindex:[binary zero,in lookup key]
5788cindex:[Courier]
5789cindex:[_/etc/userdbshadow.dat_]
5790cindex:[dmbnz lookup type]
5791^dbmnz^: This is the same as ^dbm^, except that a terminating binary zero
5792is not included in the key that is passed to the DBM library. You may need this
5793if you want to look up data in files that are created by or shared with some
5794other application that does not use terminating zeros. For example, you need to
5795use ^dbmnz^ rather than ^dbm^ if you want to authenticate incoming SMTP
5796calls using the passwords from Courier's _/etc/userdbshadow.dat_ file. Exim's
5797utility program for creating DBM files ('exim_dbmbuild') includes the zeros
5798by default, but has an option to omit them (see section <<SECTdbmbuild>>).
5799
5800- cindex:[lookup,dsearch]
5801cindex:[dsearch lookup type]
5802^dsearch^: The given file must be a directory; this is searched for a file
5803whose name is the key. The key may not contain any forward slash characters.
5804The result of a successful lookup is the name of the file. An example of how
5805this lookup can be used to support virtual domains is given in section
5806<<SECTvirtualdomains>>.
5807
5808- cindex:[lookup,iplsearch]
5809cindex:[iplsearch lookup type]
5810^iplsearch^: The given file is a text file containing keys and data. A key is
5811terminated by a colon or white space or the end of the line. The keys in the
5812file must be IP addresses, or IP addresses with CIDR masks. Keys that involve
5813IPv6 addresses must be enclosed in quotes to prevent the first internal colon
5814being interpreted as a key terminator. For example:
5815
5816 1.2.3.4: data for 1.2.3.4
5817 192.168.0.0/16 data for 192.168.0.0/16
5818 "abcd::cdab": data for abcd::cdab
5819 "abcd:abcd::/32" data for abcd:abcd::/32
5820+
5821The key for an ^iplsearch^ lookup must be an IP address (without a mask). The
5822file is searched linearly, using the CIDR masks where present, until a matching
5823key is found. The first key that matches is used; there is no attempt to find a
5824``best'' match. Apart from the way the keys are matched, the processing for
5825^iplsearch^ is the same as for ^lsearch^.
5826+
5827*Warning 1*: Unlike most other single-key lookup types, a file of data for
5828^iplsearch^ can 'not' be turned into a DBM or cdb file, because those
5829lookup types support only literal keys.
5830+
5831*Warning 2*: In a host list, you must always use ^net-iplsearch^ so that
5832the implicit key is the host's IP address rather than its name (see section
5833<<SECThoslispatsikey>>).
5834
5835- cindex:[linear search]
5836cindex:[lookup,lsearch]
5837cindex:[lsearch lookup type]
5838^lsearch^: The given file is a text file that is searched linearly for a
5839line beginning with the search key, terminated by a colon or white space or the
5840end of the line. The first occurrence that is found in the file is used. White
5841space between the key and the colon is permitted. The remainder of the line,
5842with leading and trailing white space removed, is the data. This can be
5843continued onto subsequent lines by starting them with any amount of white
5844space, but only a single space character is included in the data at such a
5845junction. If the data begins with a colon, the key must be terminated by a
5846colon, for example:
5847
5848 baduser: :fail:
5849+
5850Empty lines and lines beginning with # are ignored, even if they occur in the
5851middle of an item. This is the traditional textual format of alias files. Note
5852that the keys in an ^lsearch^ file are literal strings. There is no
5853wildcarding of any kind.
5854+
5855cindex:[lookup,lsearch -- colons in keys]
5856cindex:[whitespace,in lsearch key]
5857In most ^lsearch^ files, keys are not required to contain colons or #
5858characters, or whitespace. However, if you need this feature, it is available.
5859If a key begins with a doublequote character, it is terminated only by a
5860matching quote (or end of line), and the normal escaping rules apply to its
5861contents (see section <<SECTstrings>>). An optional colon is permitted after
5862quoted keys (exactly as for unquoted keys). There is no special handling of
5863quotes for the data part of an ^lsearch^ line.
5864
5865- cindex:[NIS lookup type]
5866cindex:[lookup,NIS]
5867cindex:[binary zero,in lookup key]
5868^nis^: The given file is the name of a NIS map, and a NIS lookup is done with
5869the given key, without a terminating binary zero. There is a variant called
5870^nis0^ which does include the terminating binary zero in the key. This is
5871reportedly needed for Sun-style alias files. Exim does not recognize NIS
5872aliases; the full map names must be used.
5873
5874- cindex:[wildlsearch lookup type]
5875cindex:[lookup,wildlsearch]
5876cindex:[nwildlsearch lookup type]
5877cindex:[lookup,nwildlsearch]
5878^wildlsearch^ or ^nwildlsearch^: These search a file linearly, like
5879^lsearch^, but instead of being interpreted as a literal string, each key may
5880be wildcarded. The difference between these two lookup types is that for
5881^wildlsearch^, each key in the file is string-expanded before being used,
5882whereas for ^nwildlsearch^, no expansion takes place.
5883+
5884Like ^lsearch^, the testing is done case-insensitively. The following forms
5885of wildcard are recognized:
5886+
5887--
5888.. The string may begin with an asterisk to mean ``ends with''. For example:
5889
5890 *.a.b.c data for anything.a.b.c
5891 *fish data for anythingfish
5892
5893.. The string may begin with a circumflex to indicate a regular expression. For
5894example, for ^wildlsearch^:
5895
5896 ^\N\d+\.a\.b\N data for <digits>.a.b
5897
5898Note the use of `\N` to disable expansion of the contents of the regular
5899expression. If you are using ^nwildlsearch^, where the keys are not
5900string-expanded, the equivalent entry is:
5901
5902 ^\d+\.a\.b data for <digits>.a.b
5903
5904If the regular expression contains white space or colon characters, you must
5905either quote it (see ^lsearch^ above), or represent these characters in other
5906ways. For example, `\s` can be used for white space and `\x3A` for a
5907colon. This may be easier than quoting, because if you quote, you have to
5908escape all the backslashes inside the quotes.
5909
5910.. Although I cannot see it being of much use, the general matching function
5911that is used to implement ^(n)wildlsearch^ means that the string may begin with
5912a lookup name terminated by a semicolon, and followed by lookup data. For
5913example:
5914
5915 cdb;/some/file data for keys that match the file
5916
5917The data that is obtained from the nested lookup is discarded.
5918--
5919+
5920Keys that do not match any of these patterns are interpreted literally. The
5921continuation rules for the data are the same as for ^lsearch^, and keys may
5922be followed by optional colons.
5923+
5924*Warning*: Unlike most other single-key lookup types, a file of data for
5925^(n)wildlsearch^ can 'not' be turned into a DBM or cdb file, because those
5926lookup types support only literal keys.
5927
5928
5929
5930Query-style lookup types
5931~~~~~~~~~~~~~~~~~~~~~~~~
5932cindex:[lookup,query-style types]
5933cindex:[query-style lookup,list of types]
5934The supported query-style lookup types are listed below. Further details about
5935many of them are given in later sections.
5936
5937- cindex:[DNS,as a lookup type]
5938cindex:[lookup,DNS]
5939^dnsdb^: This does a DNS search for one or more records whose domain names are
5940given in the supplied query. The resulting data is the contents of the records.
5941See section <<SECTdnsdb>>.
5942
5943- cindex:[Interbase lookup type]
5944cindex:[lookup,Interbase]
5945^ibase^: This does a lookup in an Interbase database.
5946
5947- cindex:[LDAP,lookup type]
5948cindex:[lookup,LDAP]
5949^ldap^: This does an LDAP lookup using a query in the form of a URL, and
5950returns attributes from a single entry. There is a variant called ^ldapm^
5951that permits values from multiple entries to be returned. A third variant
5952called ^ldapdn^ returns the Distinguished Name of a single entry instead of
5953any attribute values. See section <<SECTldap>>.
5954
5955- cindex:[MySQL,lookup type]
5956cindex:[lookup,MySQL]
5957^mysql^: The format of the query is an SQL statement that is passed to a MySQL
5958database. See section <<SECTsql>>.
5959
5960- cindex:[NIS+ lookup type]
5961cindex:[lookup,NIS+]
5962^nisplus^: This does a NIS+ lookup using a query that can specify the name of
5963the field to be returned. See section <<SECTnisplus>>.
5964
5965- cindex:[Oracle,lookup type]
5966cindex:[lookup,Oracle]
5967^oracle^: The format of the query is an SQL statement that is passed to an
5968Oracle database. See section <<SECTsql>>.
5969
5970- cindex:[lookup,passwd]
5971cindex:[passwd lookup type]
5972cindex:[_/etc/passwd_]
5973^passwd^ is a query-style lookup with queries that are just user names. The
5974lookup calls 'getpwnam()' to interrogate the system password data, and on
5975success, the result string is the same as you would get from an ^lsearch^
5976lookup on a traditional _/etc/passwd file_, though with `*` for the
5977password value. For example:
5978
5979 *:42:42:King Rat:/home/kr:/bin/bash
5980
5981- cindex:[PostgreSQL lookup type]
5982cindex:[lookup,PostgreSQL]
5983^pgsql^: The format of the query is an SQL statement that is passed to a
5984PostgreSQL database. See section <<SECTsql>>.
5985
5986- ^testdb^: This is a lookup type that is used for testing Exim. It is
5987not likely to be useful in normal operation.
5988
5989- cindex:[whoson lookup type]
5990cindex:[lookup,whoson]
5991^whoson^: 'Whoson' (*http://whoson.sourceforge.net[]*) is a proposed
5992Internet protocol that allows Internet server programs to check whether a
5993particular (dynamically allocated) IP address is currently allocated to a known
5994(trusted) user and, optionally, to obtain the identity of the said user. In
5995Exim, this can be used to implement ``POP before SMTP'' checking using ACL
5996statements such as
5997+
5998....
5999require condition = \
6000 ${lookup whoson {$sender_host_address}{yes}{no}}
6001....
6002+
6003The query consists of a single IP address. The value returned is the name of
6004the authenticated user.
6005
6006
6007
6008Temporary errors in lookups
6009~~~~~~~~~~~~~~~~~~~~~~~~~~~
6010cindex:[lookup,temporary error in]
6011Lookup functions can return temporary error codes if the lookup cannot be
6012completed. For example, a NIS or LDAP database might be unavailable. For this
6013reason, it is not advisable to use a lookup that might do this for critical
6014options such as a list of local domains.
6015
6016When a lookup cannot be completed in a router or transport, delivery
6017of the message (to the relevant address) is deferred, as for any other
6018temporary error. In other circumstances Exim may assume the lookup has failed,
6019or may give up altogether.
6020
6021
6022
6023[[SECTdefaultvaluelookups]]
6024Default values in single-key lookups
6025~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6026cindex:[wildcard lookups]
6027cindex:[lookup,default values]
6028cindex:[lookup,wildcard]
6029cindex:[lookup,\* added to type]
6030cindex:[default,in single-key lookups]
6031In this context, a ``default value'' is a value specified by the administrator
6032that is to be used if a lookup fails.
6033
6034If ``\*'' is added to a single-key lookup type (for example, %lsearch\*%) and
6035the initial lookup fails, the key ``\*'' is looked up in the file to provide
6036a default value. See also the section on partial matching below.
6037
6038cindex:[\*@ with single-key lookup]
6039cindex:[lookup,\*@ added to type]
6040cindex:[alias file,per-domain default]
6041Alternatively, if ``\*@'' is added to a single-key lookup type (for example
6042\dbm\*\) then, if the initial lookup fails and the key contains an @
6043character, a second lookup is done with everything before the last @ replaced
6044by \*. This makes it possible to provide per-domain defaults in alias files
6045that include the domains in the keys. If the second lookup fails (or doesn't
6046take place because there is no @ in the key), ``\*'' is looked up.
6047For example, a ^redirect^ router might contain:
6048
6049 data = ${lookup{$local_part@$domain}lsearch*@{/etc/mixed-aliases}}
6050
6051Suppose the address that is being processed is 'jane@eyre.example'. Exim
6052looks up these keys, in this order:
6053
6054 jane@eyre.example
6055 *@eyre.example
6056 *
6057
6058The data is taken from whichever key it finds first. *Note*: in an
6059^lsearch^ file, this does not mean the first of these keys in the file. A
6060complete scan is done for each key, and only if it is not found at all does
6061Exim move on to try the next key.
6062
6063
6064
6065[[SECTpartiallookup]]
6066Partial matching in single-key lookups
6067~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6068cindex:[partial matching]
6069cindex:[wildcard lookups]
6070cindex:[lookup,partial matching]
6071cindex:[lookup,wildcard]
6072cindex:[asterisk,in search type]
6073The normal operation of a single-key lookup is to search the file for an exact
6074match with the given key. However, in a number of situations where domains are
6075being looked up, it is useful to be able to do partial matching. In this case,
6076information in the file that has a key starting with ``\*.'' is matched by any
6077domain that ends with the components that follow the full stop. For example, if
6078a key in a DBM file is
6079
6080 *.dates.fict.example
6081
6082then when partial matching is enabled this is matched by (amongst others)
6083'2001.dates.fict.example' and '1984.dates.fict.example'. It is also matched
6084by 'dates.fict.example', if that does not appear as a separate key in the
6085file.
6086
6087*Note*: Partial matching is not available for query-style lookups. It is
6088also not available for any lookup items in address lists (see section
6089<<SECTaddresslist>>).
6090
6091Partial matching is implemented by doing a series of separate lookups using
6092keys constructed by modifying the original subject key. This means that it can
6093be used with any of the single-key lookup types, provided that
6094partial matching keys
6095beginning with a special prefix (default ``\*.'') are included in the data file.
6096Keys in the file that do not begin with the prefix are matched only by
6097unmodified subject keys when partial matching is in use.
6098
6099Partial matching is requested by adding the string ``partial-'' to the front of
6100the name of a single-key lookup type, for example, %partial-dbm%. When this is
6101done, the subject key is first looked up unmodified; if that fails, ``\*.''
6102is added at the start of the subject key, and it is looked up again. If that
6103fails, further lookups are tried with dot-separated components removed
6104from the start of the subject key, one-by-one, and ``\*.'' added on the front of
6105what remains.
6106
6107A minimum number of two non-\* components are required. This can be adjusted
6108by including a number before the hyphen in the search type. For example,
6109%partial3-lsearch% specifies a minimum of three non-\* components in the
6110modified keys. Omitting the number is equivalent to ``partial2-''. If the subject
6111key is '2250.dates.fict.example' then the following keys are looked up when
6112the minimum number of non-\* components is two:
6113
6114 2250.dates.fict.example
6115 *.2250.dates.fict.example
6116 *.dates.fict.example
6117 *.fict.example
6118
6119As soon as one key in the sequence is successfully looked up, the lookup
6120finishes.
6121
6122cindex:[lookup,partial matching -- changing prefix]
6123cindex:[prefix,for partial matching]
6124The use of ``\*.'' as the partial matching prefix is a default that can be
6125changed. The motivation for this feature is to allow Exim to operate with file
6126formats that are used by other MTAs. A different prefix can be supplied in
6127parentheses instead of the hyphen after ``partial''. For example:
6128
6129 domains = partial(.)lsearch;/some/file
6130
6131In this example, if the domain is 'a.b.c', the sequence of lookups is
6132`a.b.c`, `.a.b.c`, and `.b.c` (the default minimum of 2 non-wild
6133components is unchanged). The prefix may consist of any punctuation characters
6134other than a closing parenthesis. It may be empty, for example:
6135
6136 domains = partial1()cdb;/some/file
6137
6138For this example, if the domain is 'a.b.c', the sequence of lookups is
6139`a.b.c`, `b.c`, and `c`.
6140
6141If ``partial0'' is specified, what happens at the end (when the lookup with just
6142one non-wild component has failed, and the original key is shortened right down
6143to the null string) depends on the prefix:
6144
6145- If the prefix has zero length, the whole lookup fails.
6146
6147- If the prefix has length 1, a lookup for just the prefix is done. For
6148example, the final lookup for ``partial0(.)'' is for `.` alone.
6149
6150- Otherwise, if the prefix ends in a dot, the dot is removed, and the
6151remainder is looked up. With the default prefix, therefore, the final lookup is
6152for ``\*'' on its own.
6153
6154- Otherwise, the whole prefix is looked up.
6155
6156
6157If the search type ends in ``\*'' or ``\*@'' (see section
6158<<SECTdefaultvaluelookups>> above), the search for an ultimate default that this
6159implies happens after all partial lookups have failed. If ``partial0'' is
6160specified, adding ``\*'' to the search type has no effect with the default
6161prefix, because the ``\*'' key is already included in the sequence of partial
6162lookups. However, there might be a use for lookup types such as
6163``partial0(.)lsearch\*''.
6164
6165The use of ``\*'' in lookup partial matching differs from its use as a wildcard
6166in domain lists and the like. Partial matching works only in terms of
6167dot-separated components; a key such as `*fict.example`
6168in a database file is useless, because the asterisk in a partial matching
6169subject key is always followed by a dot.
6170
6171
6172
6173
6174Lookup caching
6175~~~~~~~~~~~~~~
6176cindex:[lookup,caching]
6177cindex:[caching,lookup data]
6178Exim caches all lookup results in order to avoid needless repetition of
6179lookups. However, because (apart from the daemon) Exim operates as a collection
6180of independent, short-lived processes, this caching applies only within a
6181single Exim process. There is no inter-process caching facility.
6182
6183For single-key lookups, Exim keeps the relevant files open in case there is
6184another lookup that needs them. In some types of configuration this can lead to
6185many files being kept open for messages with many recipients. To avoid hitting
6186the operating system limit on the number of simultaneously open files, Exim
6187closes the least recently used file when it needs to open more files than its
6188own internal limit, which can be changed via the %lookup_open_max% option.
6189
6190The single-key lookup files are closed and the lookup caches are flushed at
6191strategic points during delivery -- for example, after all routing is complete.
6192
6193
6194
6195
6196Quoting lookup data
6197~~~~~~~~~~~~~~~~~~~
6198cindex:[lookup,quoting]
6199cindex:[quoting,in lookups]
6200When data from an incoming message is included in a query-style lookup, there
6201is the possibility of special characters in the data messing up the syntax of
6202the query. For example, a NIS+ query that contains
6203
6204 [name=$local_part]
6205
6206will be broken if the local part happens to contain a closing square bracket.
6207For NIS+, data can be enclosed in double quotes like this:
6208
6209 [name="$local_part"]
6210
6211but this still leaves the problem of a double quote in the data. The rule for
6212NIS+ is that double quotes must be doubled. Other lookup types have different
6213rules, and to cope with the differing requirements, an expansion operator
6214of the following form is provided:
6215
6216 \$\{quote_<lookup-type>:<string>\}
6217
6218For example, the safest way to write the NIS+ query is
6219
6220 [name="${quote_nisplus:$local_part}"]
6221
6222See chapter <<CHAPexpand>> for full coverage of string expansions. The quote
6223operator can be used for all lookup types, but has no effect for single-key
6224lookups, since no quoting is ever needed in their key strings.
6225
6226
6227
6228
6229[[SECTdnsdb]]
6230More about dnsdb
6231~~~~~~~~~~~~~~~~
6232cindex:[dnsdb lookup]
6233cindex:[lookup,dnsdb]
6234cindex:[DNS,as a lookup type]
6235The ^dnsdb^ lookup type uses the DNS as its database. A simple query consists
6236of a record type and a domain name, separated by an equals sign. For example,
6237an expansion string could contain:
6238
6239 ${lookup dnsdb{mx=a.b.example}{$value}fail}
6240
6241The supported DNS record types are A, CNAME, MX, NS, PTR, SRV, and TXT, and,
6242when Exim is compiled with IPv6 support, AAAA (and A6 if that is also
6243configured). If no type is given, TXT is assumed. When the type is PTR,
6244the data can be an IP address, written as normal; inversion and the addition of
6245%in-addr.arpa% or %ip6.arpa% happens automatically. For example:
6246
6247 ${lookup dnsdb{ptr=192.168.4.5}{$value}fail}
6248
6249If the data for a PTR record is not a syntactically valid IP address, it is not
6250altered and nothing is added.
6251
6252For any record type, if multiple records are found (or, for A6 lookups, if a
6253single record leads to multiple addresses), the data is returned as a
6254concatenation, with newline as the default separator. The order, of course,
6255depends on the DNS resolver. You can specify a different separator character
6256between multiple records by putting a right angle-bracket followed immediately
6257by the new separator at the start of the query. For example:
6258
6259 ${lookup dnsdb{>: a=host1.example}}
6260
6261It is permitted to specify a space as the separator character. Further
6262whitespace is ignored.
6263
6264cindex:[SRV record,in ^dnsdb^ lookup]
6265For SRV records, the priority, weight, port, and host name are returned for
6266each record, separated by spaces.
6267
6268cindex:[MX record,in ^dnsdb^ lookup]
6269For MX records, both the preference value and the host name are returned for
6270each record, separated by a space. However, if you want only host names, you
6271can use the pseudo-type MXH:
6272
6273 ${lookup dnsdb{mxh=a.b.example}}
6274
6275In this case, the preference values are omitted.
6276
6277cindex:[name server,for enclosing domain]
6278Another pseudo-type is ZNS (for ``zone NS''). It performs a lookup for NS
6279records on the given domain, but if none are found, it removes the first
6280component of the domain name, and tries again. This process continues until NS
6281records are found or there are no more components left (or there is a DNS
6282error). In other words, it may return the name servers for a top-level domain,
6283but it never returns the root name servers. If there are no NS records for the
6284top-level domain, the lookup fails. Consider these examples:
6285
6286 ${lookup dnsdb{zns=xxx.quercite.com}}
6287 ${lookup dnsdb{zns=xxx.edu}}
6288
6289Assuming that in each case there are no NS records for the full domain name,
6290the first returns the name servers for %quercite.com%, and the second returns
6291the name servers for %edu%.
6292
6293You should be careful about how you use this lookup because, unless the
6294top-level domain does not exist, the lookup always returns some host names. The
6295sort of use to which this might be put is for seeing if the name servers for a
6296given domain are on a blacklist. You can probably assume that the name servers
6297for the high-level domains such as %com% or %co.uk% are not going to be on such
6298a list.
6299
6300
6301
6302Multiple dnsdb lookups
6303~~~~~~~~~~~~~~~~~~~~~~
6304In the previous section, ^dnsdb^ lookups for a single domain are described.
6305However, you can specify a list of domains or IP addresses in a single
6306^dnsdb^ lookup. The list is specified in the normal Exim way, with colon as
6307the default separator, but with the ability to change this. For example:
6308
6309 ${lookup dnsdb{one.domain.com:two.domain.com}}
6310 ${lookup dnsdb{a=one.host.com:two.host.com}}
6311 ${lookup dnsdb{ptr = <; 1.2.3.4 ; 4.5.6.8}}
6312
6313In order to retain backwards compatibility, there is one special case: if
6314the lookup type is PTR and no change of separator is specified, Exim looks
6315to see if the rest of the string is precisely one IPv6 address. In this
6316case, it does not treat it as a list.
6317
6318The data from each lookup is concatenated, with newline separators by default,
6319in the same way that multiple DNS records for a single item are handled. A
6320different separator can be specified, as described above.
6321
6322The ^dnsdb^ lookup fails only if all the DNS lookups fail. If there is a
6323temporary DNS error for any of them, the behaviour is controlled by
6324an optional keyword followed by a comma that may appear before the record
6325type. The possible keywords are ``defer_strict'', ``defer_never'', and
6326``defer_lax''. With ``strict'' behaviour, any temporary DNS error causes the
6327whole lookup to defer. With ``never'' behaviour, a temporary DNS error is
6328ignored, and the behaviour is as if the DNS lookup failed to find anything.
6329With ``lax'' behaviour, all the queries are attempted, but a temporary DNS
6330error causes the whole lookup to defer only if none of the other lookups
6331succeed. The default is ``lax'', so the following lookups are equivalent:
6332
6333 ${lookup dnsdb{defer_lax,a=one.host.com:two.host.com}}
6334 ${lookup dnsdb{a=one.host.com:two.host.com}}
6335
6336Thus, in the default case, as long as at least one of the DNS lookups
6337yields some data, the lookup succeeds.
6338
6339
6340
6341
6342[[SECTldap]]
6343More about LDAP
6344~~~~~~~~~~~~~~~
6345cindex:[LDAP lookup]
6346cindex:[lookup,LDAP]
6347cindex:[Solaris,LDAP]
6348The original LDAP implementation came from the University of Michigan; this has
6349become ``Open LDAP'', and there are now two different releases. Another
6350implementation comes from Netscape, and Solaris 7 and subsequent releases
6351contain inbuilt LDAP support. Unfortunately, though these are all compatible at
6352the lookup function level, their error handling is different. For this reason
6353it is necessary to set a compile-time variable when building Exim with LDAP, to
6354indicate which LDAP library is in use. One of the following should appear in
6355your _Local/Makefile_:
6356
6357 LDAP_LIB_TYPE=UMICHIGAN
6358 LDAP_LIB_TYPE=OPENLDAP1
6359 LDAP_LIB_TYPE=OPENLDAP2
6360 LDAP_LIB_TYPE=NETSCAPE
6361 LDAP_LIB_TYPE=SOLARIS
6362
6363If LDAP_LIB_TYPE is not set, Exim assumes `OPENLDAP1`, which has the
6364same interface as the University of Michigan version.
6365
6366There are three LDAP lookup types in Exim. These behave slightly differently in
6367the way they handle the results of a query:
6368
6369- ^ldap^ requires the result to contain just one entry; if there are more, it
6370gives an error.
6371
6372- ^ldapdn^ also requires the result to contain just one entry, but it is the
6373Distinguished Name that is returned rather than any attribute values.
6374
6375- ^ldapm^ permits the result to contain more than one entry; the attributes from
6376all of them are returned.
6377
6378
6379For ^ldap^ and ^ldapm^, if a query finds only entries with no attributes,
6380Exim behaves as if the entry did not exist, and the lookup fails. The format of
6381the data returned by a successful lookup is described in the next section.
6382First we explain how LDAP queries are coded.
6383
6384
6385[[SECTforldaque]]
6386Format of LDAP queries
6387~~~~~~~~~~~~~~~~~~~~~~
6388cindex:[LDAP,query format]
6389An LDAP query takes the form of a URL as defined in RFC 2255. For example, in
6390the configuration of a ^redirect^ router one might have this setting:
6391
6392....
6393data = ${lookup ldap \
6394 {ldap:///cn=$local_part,o=University%20of%20Cambridge,\
6395 c=UK?mailbox?base?}}
6396....
6397
6398cindex:[LDAP,with TLS]
6399The URL may begin with `ldap` or `ldaps` if your LDAP library supports
6400secure (encrypted) LDAP connections. The second of these ensures that an
6401encrypted TLS connection is used.
6402
6403
6404LDAP quoting
6405~~~~~~~~~~~~
6406cindex:[LDAP,quoting]
6407Two levels of quoting are required in LDAP queries, the first for LDAP itself
6408and the second because the LDAP query is represented as a URL. Furthermore,
6409within an LDAP query, two different kinds of quoting are required. For this
6410reason, there are two different LDAP-specific quoting operators.
6411
6412The %quote_ldap% operator is designed for use on strings that are part of
6413filter specifications. Conceptually, it first does the following conversions on
6414the string:
6415
6416....
6417* => \2A
6418( => \28
6419) => \29
6420\ => \5C
6421....
6422
6423in accordance with RFC 2254. The resulting string is then quoted according
6424to the rules for URLs, that is, all characters except
6425
6426 ! $ ' - . _ ( ) * +
6427
6428are converted to their hex values, preceded by a percent sign. For example:
6429
6430 ${quote_ldap: a(bc)*, a<yz>; }
6431
6432yields
6433
6434 %20a%5C28bc%5C29%5C2A%2C%20a%3Cyz%3E%3B%20
6435
6436Removing the URL quoting, this is (with a leading and a trailing space):
6437
6438 a\28bc\29\2A, a<yz>;
6439
6440
6441The %quote_ldap_dn% operator is designed for use on strings that are part of
6442base DN specifications in queries. Conceptually, it first converts the string
6443by inserting a backslash in front of any of the following characters:
6444
6445 , + " \ < > ;
6446
6447It also inserts a backslash before any leading spaces or # characters, and
6448before any trailing spaces. (These rules are in RFC 2253.) The resulting string
6449is then quoted according to the rules for URLs. For example:
6450
6451 ${quote_ldap_dn: a(bc)*, a<yz>; }
6452
6453yields
6454
6455 %5C%20a(bc)*%5C%2C%20a%5C%3Cyz%5C%3E%5C%3B%5C%20
6456
6457Removing the URL quoting, this is (with a trailing space):
6458
6459....
6460\ a(bc)*\, a\<yz\>\;\
6461....
6462
6463There are some further comments about quoting in the section on LDAP
6464authentication below.
6465
6466
6467LDAP connections
6468~~~~~~~~~~~~~~~~
6469cindex:[LDAP,connections]
6470The connection to an LDAP server may either be over TCP/IP, or, when OpenLDAP
6471is in use, via a Unix domain socket. The example given above does not specify
6472an LDAP server. A server that is reached by TCP/IP can be specified in a query
6473by starting it with
6474
6475 ldap://<hostname>:<port>/...
6476
6477If the port (and preceding colon) are omitted, the standard LDAP port (389) is
6478used. When no server is specified in a query, a list of default servers is
6479taken from the %ldap_default_servers% configuration option. This supplies a
6480colon-separated list of servers which are tried in turn until one successfully
6481handles a query, or there is a serious error. Successful handling either
6482returns the requested data, or indicates that it does not exist. Serious errors
6483are syntactical, or multiple values when only a single value is expected.
6484Errors which cause the next server to be tried are connection failures, bind
6485failures, and timeouts.
6486
6487For each server name in the list, a port number can be given. The standard way
6488of specifing a host and port is to use a colon separator (RFC 1738). Because
6489%ldap_default_servers% is a colon-separated list, such colons have to be
6490doubled. For example
6491
6492 ldap_default_servers = ldap1.example.com::145:ldap2.example.com
6493
6494If %ldap_default_servers% is unset, a URL with no server name is passed
6495to the LDAP library with no server name, and the library's default (normally
6496the local host) is used.
6497
6498If you are using the OpenLDAP library, you can connect to an LDAP server using
6499a Unix domain socket instead of a TCP/IP connection. This is specified by using
6500`ldapi` instead of `ldap` in LDAP queries. What follows here applies only
6501to OpenLDAP. If Exim is compiled with a different LDAP library, this feature is
6502not available.
6503
6504For this type of connection, instead of a host name for the server, a pathname
6505for the socket is required, and the port number is not relevant. The pathname
6506can be specified either as an item in %ldap_default_servers%, or inline in
6507the query. In the former case, you can have settings such as
6508
6509 ldap_default_servers = /tmp/ldap.sock : backup.ldap.your.domain
6510
6511When the pathname is given in the query, you have to escape the slashes as
6512`%2F` to fit in with the LDAP URL syntax. For example:
6513
6514 ${lookup ldap {ldapi://%2Ftmp%2Fldap.sock/o=...
6515
6516When Exim processes an LDAP lookup and finds that the ``hostname'' is really
6517a pathname, it uses the Unix domain socket code, even if the query actually
6518specifies `ldap` or `ldaps`. In particular, no encryption is used for a
6519socket connection. This behaviour means that you can use a setting of
6520%ldap_default_servers% such as in the example above with traditional `ldap`
6521or `ldaps` queries, and it will work. First, Exim tries a connection via
6522the Unix domain socket; if that fails, it tries a TCP/IP connection to the
6523backup host.
6524
6525If an explicit `ldapi` type is given in a query when a host name is
6526specified, an error is diagnosed. However, if there are more items in
6527%ldap_default_servers%, they are tried. In other words:
6528
6529- Using a pathname with `ldap` or `ldaps` forces the use of the Unix domain
6530interface.
6531
6532- Using `ldapi` with a host name causes an error.
6533
6534
6535Using `ldapi` with no host or path in the query, and no setting of
6536%ldap_default_servers%, does whatever the library does by default.
6537
6538
6539
6540LDAP authentication and control information
6541~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6542cindex:[LDAP,authentication]
6543The LDAP URL syntax provides no way of passing authentication and other control
6544information to the server. To make this possible, the URL in an LDAP query may
6545be preceded by any number of ``<''name'>=<'value'>' settings, separated by
6546spaces. If a value contains spaces it must be enclosed in double quotes, and
6547when double quotes are used, backslash is interpreted in the usual way inside
6548them. The following names are recognized:
6549
6550&&&
6551`DEREFERENCE` set the dereferencing parameter
6552`NETTIME ` set a timeout for a network operation
6553`USER ` set the DN, for authenticating the LDAP bind
6554`PASS ` set the password, likewise
6555`SIZE ` set the limit for the number of entries returned
6556`TIME ` set the maximum waiting time for a query
6557&&&
6558
6559The value of the DEREFERENCE parameter must be one of the words ``never'',
6560``searching'', ``finding'', or ``always''.
6561
6562The name CONNECT is an obsolete name for NETTIME, retained for
6563backwards compatibility. This timeout (specified as a number of seconds) is
6564enforced from the client end for operations that can be carried out over a
6565network. Specifically, it applies to network connections and calls to the
6566'ldap_result()' function. If the value is greater than zero, it is used if
6567LDAP_OPT_NETWORK_TIMEOUT is defined in the LDAP headers (OpenLDAP), or
6568if LDAP_X_OPT_CONNECT_TIMEOUT is defined in the LDAP headers (Netscape
6569SDK 4.1). A value of zero forces an explicit setting of ``no timeout'' for
6570Netscape SDK; for OpenLDAP no action is taken.
6571
6572The TIME parameter (also a number of seconds) is passed to the server to
6573set a server-side limit on the time taken to complete a search.
6574
6575
6576Here is an example of an LDAP query in an Exim lookup that uses some of these
6577values. This is a single line, folded for ease of reading:
6578
6579 ${lookup ldap
6580 {user="cn=manager,o=University of Cambridge,c=UK" pass=secret
6581 ldap:///o=University%20of%20Cambridge,c=UK?sn?sub?(cn=foo)}
6582 {$value}fail}
6583
6584The encoding of spaces as {pc}20 is a URL thing which should not be done for any
6585of the auxiliary data. Exim configuration settings that include lookups which
6586contain password information should be preceded by ``hide'' to prevent non-admin
6587users from using the %-bP% option to see their values.
6588
6589The auxiliary data items may be given in any order. The default is no
6590connection timeout (the system timeout is used), no user or password, no limit
6591on the number of entries returned, and no time limit on queries.
6592
6593When a DN is quoted in the USER= setting for LDAP authentication, Exim
6594removes any URL quoting that it may contain before passing it LDAP. Apparently
6595some libraries do this for themselves, but some do not. Removing the URL
6596quoting has two advantages:
6597
6598- It makes it possible to use the same %quote_ldap_dn% expansion for USER=
6599DNs as with DNs inside actual queries.
6600
6601- It permits spaces inside USER= DNs.
6602
6603For example, a setting such as
6604
6605 USER=cn=${quote_ldap_dn:$1}
6606
6607should work even if $1$ contains spaces.
6608
6609Expanded data for the PASS= value should be quoted using the %quote%
6610expansion operator, rather than the LDAP quote operators. The only reason this
6611field needs quoting is to ensure that it conforms to the Exim syntax, which
6612does not allow unquoted spaces. For example:
6613
6614 PASS=${quote:$3}
6615
6616
6617The LDAP authentication mechanism can be used to check passwords as part of
6618SMTP authentication. See the %ldapauth% expansion string condition in chapter
6619<<CHAPexpand>>.
6620
6621
6622
6623Format of data returned by LDAP
6624~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6625cindex:[LDAP,returned data formats]
6626The ^ldapdn^ lookup type returns the Distinguished Name from a single entry as
6627a sequence of values, for example
6628
6629 cn=manager, o=University of Cambridge, c=UK
6630
6631
6632The ^ldap^ lookup type generates an error if more than one entry matches the
6633search filter, whereas ^ldapm^ permits this case, and inserts a newline in
6634the result between the data from different entries. It is possible for multiple
6635values to be returned for both ^ldap^ and ^ldapm^, but in the former case
6636you know that whatever values are returned all came from a single entry in the
6637directory.
6638
6639In the common case where you specify a single attribute in your LDAP query, the
6640result is not quoted, and does not contain the attribute name. If the attribute
6641has multiple values, they are separated by commas.
6642
6643If you specify multiple attributes, the result contains space-separated, quoted
6644strings, each preceded by the attribute name and an equals sign. Within the
6645quotes, the quote character, backslash, and newline are escaped with
6646backslashes, and commas are used to separate multiple values for the attribute.
6647Apart from the escaping, the string within quotes takes the same form as the
6648output when a single attribute is requested. Specifying no attributes is the
6649same as specifying all of an entry's attributes.
6650
6651Here are some examples of the output format. The first line of each pair is an
6652LDAP query, and the second is the data that is returned. The attribute called
6653%attr1% has two values, whereas %attr2% has only one value:
6654
6655 ldap:///o=base?attr1?sub?(uid=fred)
6656 value1.1, value1.2
6657
6658 ldap:///o=base?attr2?sub?(uid=fred)
6659 value two
6660
6661 ldap:///o=base?attr1,attr2?sub?(uid=fred)
6662 attr1="value1.1, value1.2" attr2="value two"
6663
6664 ldap:///o=base??sub?(uid=fred)
6665 objectClass="top" attr1="value1.1, value1.2" attr2="value two"
6666
6667The %extract% operator in string expansions can be used to pick out individual
6668fields from data that consists of 'key'='value' pairs. You can make use
6669of Exim's %-be% option to run expansion tests and thereby check the results of
6670LDAP lookups.
6671
6672
6673
6674
6675[[SECTnisplus]]
6676More about NIS+
6677~~~~~~~~~~~~~~~
6678cindex:[NIS+ lookup type]
6679cindex:[lookup,NIS+]
6680NIS+ queries consist of a NIS+ 'indexed name' followed by an optional colon
6681and field name. If this is given, the result of a successful query is the
6682contents of the named field; otherwise the result consists of a concatenation
6683of 'field-name=field-value' pairs, separated by spaces. Empty values and
6684values containing spaces are quoted. For example, the query
6685
6686 [name=mg1456],passwd.org_dir
6687
6688might return the string
6689
6690 name=mg1456 passwd="" uid=999 gid=999 gcos="Martin Guerre"
6691 home=/home/mg1456 shell=/bin/bash shadow=""
6692
6693(split over two lines here to fit on the page), whereas
6694
6695 [name=mg1456],passwd.org_dir:gcos
6696
6697would just return
6698
6699 Martin Guerre
6700
6701with no quotes. A NIS+ lookup fails if NIS+ returns more than one table entry
6702for the given indexed key. The effect of the %quote_nisplus% expansion
6703operator is to double any quote characters within the text.
6704
6705
6706
6707[[SECTsql]]
6708More about MySQL, PostgreSQL, Oracle, and Interbase
6709~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6710cindex:[MySQL,lookup type]
6711cindex:[PostgreSQL lookup type]
6712cindex:[lookup,MySQL]
6713cindex:[lookup,PostgreSQL]
6714cindex:[Oracle,lookup type]
6715cindex:[lookup,Oracle]
6716cindex:[Interbase lookup type]
6717cindex:[lookup,Interbase]
6718If any MySQL, PostgreSQL, Oracle, or Interbase lookups are used, the
6719%mysql_servers%, %pgsql_servers%, %oracle_servers%, or %ibase_servers%
6720option (as appropriate) must be set to a colon-separated list of server
6721information. Each item in the list is a slash-separated list of four items:
6722host name, database name, user name, and password. In the case of Oracle, the
6723host name field is used for the ``service name'', and the database name field is
6724not used and should be empty. For example:
6725
6726 hide oracle_servers = oracle.plc.example//ph10/abcdwxyz
6727
6728Because password data is sensitive, you should always precede the setting with
6729``hide'', to prevent non-admin users from obtaining the setting via the %-bP%
6730option. Here is an example where two MySQL servers are listed:
6731
6732....
6733hide mysql_servers = localhost/users/root/secret:\
6734 otherhost/users/root/othersecret
6735....
6736
6737For MySQL and PostgreSQL, a host may be specified as <'name'>:<'port'> but
6738because this is a colon-separated list, the colon has to be doubled.
6739
6740For each query, these parameter groups are tried in order until a connection
6741and a query succeeds. Queries for these databases are SQL statements, so an
6742example might be
6743
6744....
6745${lookup mysql{select mailbox from users where id='ph10'}\
6746 {$value}fail}
6747....
6748
6749If the result of the query contains more than one field, the data for
6750each field in the row is returned, preceded by its name, so the result
6751of
6752
6753....
6754${lookup pgsql{select home,name from users where id='ph10'}\
6755 {$value}}
6756....
6757
6758might be
6759
6760 home=/home/ph10 name="Philip Hazel"
6761
6762Values containing spaces and empty values are double quoted, with embedded
6763quotes escaped by a backslash.
6764
6765If the result of the query contains just one field, the value is passed back
6766verbatim, without a field name, for example:
6767
6768 Philip Hazel
6769
6770If the result of the query yields more than one row, it is all concatenated,
6771with a newline between the data for each row.
6772
6773The %quote_mysql%, %quote_pgsql%, and %quote_oracle% expansion operators
6774convert newline, tab, carriage return, and backspace to \n, \t, \r, and \b
6775respectively, and the characters single-quote, double-quote, and backslash
6776itself are escaped with backslashes. The %quote_pgsql% expansion operator, in
6777addition, escapes the percent and underscore characters. This cannot be done
6778for MySQL because these escapes are not recognized in contexts where these
6779characters are not special.
6780
6781
6782
6783Special MySQL features
6784~~~~~~~~~~~~~~~~~~~~~~
6785For MySQL, an empty host name or the use of ``localhost'' in %mysql_servers%
6786causes a connection to the server on the local host by means of a Unix domain
6787socket. An alternate socket can be specified in parentheses. The full syntax of
6788each item in %mysql_servers% is:
6789
6790&&&
6791<'hostname'>::<'port'>(<'socket name'>)/<'database'>/<'user'>/<'password'>
6792&&&
6793
6794Any of the three sub-parts of the first field can be omitted. For normal use on
6795the local host it can be left blank or set to just ``localhost''.
6796
6797No database need be supplied -- but if it is absent here, it must be given in
6798the queries.
6799
6800If a MySQL query is issued that does not request any data (an insert, update,
6801or delete command), the result of the lookup is the number of rows affected.
6802
6803*Warning*: this can be misleading. If an update does not actually change
6804anything (for example, setting a field to the value it already has), the result
6805is zero because no rows are affected.
6806
6807
6808
6809
6810Special PostgreSQL features
6811~~~~~~~~~~~~~~~~~~~~~~~~~~~
6812PostgreSQL lookups can also use Unix domain socket connections to the database.
6813This is usually faster and costs less CPU time than a TCP/IP connection.
6814However it can be used only if the mail server runs on the same machine as the
6815database server. A configuration line for PostgreSQL via Unix domain sockets
6816looks like this:
6817
6818 hide pgsql_servers = (/tmp/.s.PGSQL.5432)/db/user/password : ...
6819
6820In other words, instead of supplying a host name, a path to the socket is
6821given. The path name is enclosed in parentheses so that its slashes aren't
6822visually confused with the delimiters for the other server parameters.
6823
6824If a PostgreSQL query is issued that does not request any data (an insert,
6825update, or delete command), the result of the lookup is the number of rows
6826affected.
6827
6828
6829
6830
6831////////////////////////////////////////////////////////////////////////////
6832////////////////////////////////////////////////////////////////////////////
6833
6834[[CHAPdomhosaddlists]]
6835[titleabbrev="Domain, host, and address lists"]
6836Domain, host, address, and local part lists
6837-------------------------------------------
6838cindex:[list of domains; hosts; etc.]
6839A number of Exim configuration options contain lists of domains, hosts,
6840email addresses, or local parts. For example, the %hold_domains% option
6841contains a list of domains whose delivery is currently suspended. These lists
6842are also used as data in ACL statements (see chapter <<CHAPACL>>).
6843
6844Each item in one of these lists is a pattern to be matched against a domain,
6845host, email address, or local part, respectively. In the sections below, the
6846different types of pattern for each case are described, but first we cover some
6847general facilities that apply to all four kinds of list.
6848
6849
6850
6851Expansion of lists
6852~~~~~~~~~~~~~~~~~~
6853cindex:[expansion,of lists]
6854Each list is expanded as a single string before it is used. The result of
6855expansion must be a list, possibly containing empty items, which is split up
6856into separate items for matching. By default, colon is the separator character,
6857but this can be varied if necessary. See sections <<SECTlistconstruct>> and
6858<<SECTempitelis>> for details of the list syntax; the second of these discusses
6859the way you specify empty list items.
6860
6861
6862If the string expansion is forced to fail, Exim behaves as if the item it is
6863testing (domain, host, address, or local part) is not in the list. Other
6864expansion failures cause temporary errors.
6865
6866If an item in a list is a regular expression, backslashes, dollars and possibly
6867other special characters in the expression must be protected against
6868misinterpretation by the string expander. The easiest way to do this is to use
6869the `\N` expansion feature to indicate that the contents of the regular
6870expression should not be expanded. For example, in an ACL you might have:
6871
6872....
6873deny senders = \N^\d{8}\w@.*\.baddomain\.example$\N : \
6874 ${lookup{$domain}lsearch{/badsenders/bydomain}}
6875....
6876
6877The first item is a regular expression that is protected from expansion by
6878`\N`, whereas the second uses the expansion to obtain a list of unwanted
6879senders based on the receiving domain.
6880
6881
6882
6883
6884Negated items in lists
6885~~~~~~~~~~~~~~~~~~~~~~
6886cindex:[list,negation]
6887cindex:[negation in lists]
6888Items in a list may be positive or negative. Negative items are indicated by a
6889leading exclamation mark, which may be followed by optional white space. A list
6890defines a set of items (domains, etc). When Exim processes one of these lists,
6891it is trying to find out whether a domain, host, address, or local part
6892(respectively) is in the set that is defined by the list. It works like this:
6893
6894The list is scanned from left to right. If a positive item is matched, the
6895subject that is being checked is in the set; if a negative item is matched, the
6896subject is not in the set. If the end of the list is reached without the
6897subject having matched any of the patterns, it is in the set if the last item
6898was a negative one, but not if it was a positive one. For example, the list in
6899
6900 domainlist relay_domains = !a.b.c : *.b.c
6901
6902matches any domain ending in '.b.c' except for 'a.b.c'. Domains that match
6903neither 'a.b.c' nor '*.b.c' do not match, because the last item in the
6904list is positive. However, if the setting were
6905
6906 domainlist relay_domains = !a.b.c
6907
6908then all domains other than 'a.b.c' would match because the last item in the
6909list is negative. In other words, a list that ends with a negative item behaves
6910as if it had an extra item `:*` on the end.
6911
6912Another way of thinking about positive and negative items in lists is to read
6913the connector as ``or'' after a positive item and as ``and'' after a negative
6914item.
6915
6916
6917
6918[[SECTfilnamlis]]
6919File names in lists
6920~~~~~~~~~~~~~~~~~~~
6921cindex:[list,file name in]
6922If an item in a domain, host, address, or local part list is an absolute file
6923name (beginning with a slash character), each line of the file is read and
6924processed as if it were an independent item in the list, except that further
6925file names are not allowed,
6926and no expansion of the data from the file takes place.
6927Empty lines in the file are ignored, and the file may also contain comment
6928lines:
6929
6930- For domain and host lists, if a # character appears anywhere in a line of the
6931file, it and all following characters are ignored.
6932
6933- Because local parts may legitimately contain # characters, a comment in an
6934address list or local part list file is recognized only if # is preceded by
6935white space or the start of the line. For example:
6936
6937 not#comment@x.y.z # but this is a comment
6938
6939Putting a file name in a list has the same effect as inserting each line of the
6940file as an item in the list (blank lines and comments excepted). However, there
6941is one important difference: the file is read each time the list is processed,
6942so if its contents vary over time, Exim's behaviour changes.
6943
6944If a file name is preceded by an exclamation mark, the sense of any match
6945within the file is inverted. For example, if
6946
6947 hold_domains = !/etc/nohold-domains
6948
6949and the file contains the lines
6950
6951 !a.b.c
6952 *.b.c
6953
6954then 'a.b.c' is in the set of domains defined by %hold_domains%, whereas any
6955domain matching `*.b.c` is not.
6956
6957
6958
6959An lsearch file is not an out-of-line list
6960~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6961As will be described in the sections that follow, lookups can be used in lists
6962to provide indexed methods of checking list membership. There has been some
6963confusion about the way ^lsearch^ lookups work in lists. Because
6964an ^lsearch^ file contains plain text and is scanned sequentially, it is
6965sometimes thought that it is allowed to contain wild cards and other kinds of
6966non-constant pattern. This is not the case. The keys in an ^lsearch^ file are
6967always fixed strings, just as for any other single-key lookup type.
6968
6969If you want to use a file to contain wild-card patterns that form part of a
6970list, just give the file name on its own, without a search type, as described
6971in the previous section.
6972
6973
6974
6975
6976[[SECTnamedlists]]
6977Named lists
6978~~~~~~~~~~~
6979cindex:[named lists]
6980cindex:[list,named]
6981A list of domains, hosts, email addresses, or local parts can be given a name
6982which is then used to refer to the list elsewhere in the configuration. This is
6983particularly convenient if the same list is required in several different
6984places. It also allows lists to be given meaningful names, which can improve
6985the readability of the configuration. For example, it is conventional to define
6986a domain list called 'local_domains' for all the domains that are handled
6987locally on a host, using a configuration line such as
6988
6989 domainlist local_domains = localhost:my.dom.example
6990
6991Named lists are referenced by giving their name preceded by a plus sign, so,
6992for example, a router that is intended to handle local domains would be
6993configured with the line
6994
6995 domains = +local_domains
6996
6997The first router in a configuration is often one that handles all domains
6998except the local ones, using a configuration with a negated item like this:
6999
7000 dnslookup:
7001 driver = dnslookup
7002 domains = ! +local_domains
7003 transport = remote_smtp
7004 no_more
7005
7006The four kinds of named list are created by configuration lines starting with
7007the words %domainlist%, %hostlist%, %addresslist%, or %localpartlist%,
7008respectively. Then there follows the name that you are defining, followed by an
7009equals sign and the list itself. For example:
7010
7011 hostlist relay_hosts = 192.168.23.0/24 : my.friend.example
7012 addresslist bad_senders = cdb;/etc/badsenders
7013
7014A named list may refer to other named lists:
7015
7016 domainlist dom1 = first.example : second.example
7017 domainlist dom2 = +dom1 : third.example
7018 domainlist dom3 = fourth.example : +dom2 : fifth.example
7019
7020
7021*Warning*: If the last item in a referenced list is a negative one, the
7022effect may not be what you intended, because the negation does not propagate
7023out to the higher level. For example, consider:
7024
7025 domainlist dom1 = !a.b
7026 domainlist dom2 = +dom1 : *.b
7027
7028The second list specifies ``either in the %dom1% list or '*.b'##''. The first
7029list specifies just ``not 'a.b'##'', so the domain 'x.y' matches it. That means
7030it matches the second list as well. The effect is not the same as
7031
7032 domainlist dom2 = !a.b : *.b
7033
7034where 'x.y' does not match. It's best to avoid negation altogether in
7035referenced lists if you can.
7036
7037Named lists may have a performance advantage. When Exim is routing an
7038address or checking an incoming message, it caches the result of tests on named
7039lists. So, if you have a setting such as
7040
7041 domains = +local_domains
7042
7043on several of your routers
7044or in several ACL statements,
7045the actual test is done only for the first one. However, the caching works only
7046if there are no expansions within the list itself or any sublists that it
7047references. In other words, caching happens only for lists that are known to be
7048the same each time they are referenced.
7049
7050By default, there may be up to 16 named lists of each type. This limit can be
7051extended by changing a compile-time variable. The use of domain and host lists
7052is recommended for concepts such as local domains, relay domains, and relay
7053hosts. The default configuration is set up like this.
7054
7055
7056
7057Named lists compared with macros
7058~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7059cindex:[list,named compared with macro]
7060cindex:[macro,compared with named list]
7061At first sight, named lists might seem to be no different from macros in the
7062configuration file. However, macros are just textual substitutions. If you
7063write
7064
7065 ALIST = host1 : host2
7066 auth_advertise_hosts = !ALIST
7067
7068it probably won't do what you want, because that is exactly the same as
7069
7070 auth_advertise_hosts = !host1 : host2
7071
7072Notice that the second host name is not negated. However, if you use a host
7073list, and write
7074
7075 hostlist alist = host1 : host2
7076 auth_advertise_hosts = ! +alist
7077
7078the negation applies to the whole list, and so that is equivalent to
7079
7080 auth_advertise_hosts = !host1 : !host2
7081
7082
7083
7084
7085Named list caching
7086~~~~~~~~~~~~~~~~~~
7087cindex:[list,caching of named]
7088cindex:[caching,named lists]
7089While processing a message, Exim caches the result of checking a named list if
7090it is sure that the list is the same each time. In practice, this means that
7091the cache operates only if the list contains no \$ characters, which guarantees
7092that it will not change when it is expanded. Sometimes, however, you may have
7093an expanded list that you know will be the same each time within a given
7094message. For example:
7095
7096....
7097domainlist special_domains = \
7098 ${lookup{$sender_host_address}cdb{/some/file}}
7099....
7100
7101This provides a list of domains that depends only on the sending host's IP
7102address. If this domain list is referenced a number of times (for example,
7103in several ACL lines, or in several routers) the result of the check is not
7104cached by default, because Exim does not know that it is going to be the
7105same list each time.
7106
7107By appending `_cache` to `domainlist` you can tell Exim to go ahead and
7108cache the result anyway. For example:
7109
7110 domainlist_cache special_domains = ${lookup{...
7111
7112If you do this, you should be absolutely sure that caching is going to do
7113the right thing in all cases. When in doubt, leave it out.
7114
7115
7116
7117[[SECTdomainlist]]
7118Domain lists
7119~~~~~~~~~~~~
7120cindex:[domain list,patterns for]
7121cindex:[list,domain list]
7122Domain lists contain patterns that are to be matched against a mail domain.
7123The following types of item may appear in domain lists:
7124
7125- cindex:[primary host name]
7126cindex:[host name, matched in domain list]
7127cindex:[%primary_hostname%]
7128cindex:[domain list,matching primary host name]
7129cindex:[@ in a domain list]
7130If a pattern consists of a single @ character, it matches the local host name,
7131as set by the %primary_hostname% option (or defaulted). This makes it possible
7132to use the same configuration file on several different hosts that differ only
7133in their names.
7134
7135- cindex:[@{bk} in a domain list]
7136cindex:[domain list,matching local IP interfaces]
7137cindex:[domain literal]
7138If a pattern consists of the string `@[]` it matches any local IP interface
7139address, enclosed in square brackets, as in an email address that contains a
7140domain literal.
7141In today's Internet, the use of domain literals is controversial.
7142
7143- cindex:[@mx_any]
7144cindex:[@mx_primary]
7145cindex:[@mx_secondary]
7146cindex:[domain list,matching MX pointers to local host]
7147If a pattern consists of the string `@mx_any` it matches any domain that
7148has an MX record pointing to the local host or to any host that is listed in
7149cindex:[%hosts_treat_as_local%]
7150%hosts_treat_as_local%. The items `@mx_primary` and `@mx_secondary`
7151are similar, except that the first matches only when a primary MX target is the
7152local host, and the second only when no primary MX target is the local host,
7153but a secondary MX target is. ``Primary'' means an MX record with the lowest
7154preference value -- there may of course be more than one of them.
7155+
7156The MX lookup that takes place when matching a pattern of this type is
7157performed with the resolver options for widening names turned off. Thus, for
7158example, a single-component domain will 'not' be expanded by adding the
7159resolver's default domain. See the %qualify_single% and %search_parents%
7160options of the ^dnslookup^ router for a discussion of domain widening.
7161+
7162Sometimes you may want to ignore certain IP addresses when using one of these
7163patterns. You can specify this by following the pattern with `/ignore=`<'ip
7164list'>, where <'ip list'> is a list of IP addresses. These addresses are
7165ignored when processing the pattern (compare the %ignore_target_hosts% option
7166on a router). For example:
7167
7168 domains = @mx_any/ignore=127.0.0.1
7169+
7170This example matches any domain that has an MX record pointing to one of
7171the local host's IP addresses other than 127.0.0.1.
7172+
7173The list of IP addresses is in fact processed by the same code that processes
7174host lists, so it may contain CIDR-coded network specifications and it may also
7175contain negative items.
7176+
7177Because the list of IP addresses is a sublist within a domain list, you have to
7178be careful about delimiters if there is more than one address. Like any other
7179list, the default delimiter can be changed. Thus, you might have:
7180+
7181....
7182domains = @mx_any/ignore=<;127.0.0.1;0.0.0.0 : \
7183 an.other.domain : ...
7184....
7185+
7186so that the sublist uses semicolons for delimiters. When IPv6 addresses are
7187involved, it is easiest to change the delimiter for the main list as well:
7188+
7189....
7190domains = <? @mx_any/ignore=<;127.0.0.1;::1 ? \
7191 an.other.domain ? ...
7192....
7193
7194- cindex:[asterisk,in domain list]
7195cindex:[domain list,asterisk in]
7196cindex:[domain list,matching ``ends with'']
7197If a pattern starts with an asterisk, the remaining characters of the pattern
7198are compared with the terminating characters of the domain. The use of ``\*'' in
7199domain lists differs from its use in partial matching lookups. In a domain
7200list, the character following the asterisk need not be a dot, whereas partial
7201matching works only in terms of dot-separated components. For example, a domain
7202list item such as `*key.ex` matches 'donkey.ex' as well as
7203'cipher.key.ex'.
7204
7205- cindex:[regular expressions,in domain list]
7206cindex:[domain list,matching regular expression]
7207If a pattern starts with a circumflex character, it is treated as a regular
7208expression, and matched against the domain using a regular expression matching
7209function. The circumflex is treated as part of the regular expression.
7210References to descriptions of the syntax of regular expressions are given in
7211chapter <<CHAPregexp>>.
7212+
7213*Warning*: Because domain lists are expanded before being processed, you
7214must escape any backslash and dollar characters in the regular expression, or
7215use the special `\N` sequence (see chapter <<CHAPexpand>>) to specify that it
7216is not to be expanded (unless you really do want to build a regular expression
7217by expansion, of course).
7218
7219- cindex:[lookup,in domain list]
7220cindex:[domain list,matching by lookup]
7221If a pattern starts with the name of a single-key lookup type followed by a
7222semicolon (for example, ``dbm;'' or ``lsearch;''), the remainder of the pattern
7223must be a file name in a suitable format for the lookup type. For example, for
7224``cdb;'' it must be an absolute path:
7225
7226 domains = cdb;/etc/mail/local_domains.cdb
7227+
7228The appropriate type of lookup is done on the file using the domain name as the
7229key. In most cases, the data that is looked up is not used; Exim is interested
7230only in whether or not the key is present in the file. However, when a lookup
7231is used for the %domains% option on a router
7232or a %domains% condition in an ACL statement, the data is preserved in the
7233$domain_data$ variable and can be referred to in other router options or
7234other statements in the same ACL.
7235
7236- Any of the single-key lookup type names may be preceded by ``partial<''n'>-',
7237where the <'n'> is optional, for example,
7238
7239 domains = partial-dbm;/partial/domains
7240+
7241This causes partial matching logic to be invoked; a description of how this
7242works is given in section <<SECTpartiallookup>>.
7243
7244- cindex:[asterisk,in lookup type]
7245Any of the single-key lookup types may be followed by an asterisk. This causes
7246a default lookup for a key consisting of a single asterisk to be done if the
7247original lookup fails. This is not a useful feature when using a domain list to
7248select particular domains (because any domain would match), but it might have
7249value if the result of the lookup is being used via the $domain_data$
7250expansion variable.
7251
7252- If the pattern starts with the name of a query-style lookup type followed by a
7253semicolon (for example, ``nisplus;'' or ``ldap;''), the remainder of the pattern
7254must be an appropriate query for the lookup type, as described in chapter
7255<<CHAPfdlookup>>. For example:
7256+
7257....
7258hold_domains = mysql;select domain from holdlist \
7259 where domain = '$domain';
7260....
7261+
7262In most cases, the data that is looked up is not used (so for an SQL query, for
7263example, it doesn't matter what field you select). Exim is interested only in
7264whether or not the query succeeds. However, when a lookup is used for the
7265%domains% option on a router, the data is preserved in the $domain_data$
7266variable and can be referred to in other options.
7267
7268- cindex:[domain list,matching literal domain name]
7269If none of the above cases apply, a caseless textual comparison is made
7270between the pattern and the domain.
7271
7272
7273Here is an example that uses several different kinds of pattern:
7274
7275....
7276domainlist funny_domains = \
7277 @ : \
7278 lib.unseen.edu : \
7279 *.foundation.fict.example : \
7280 \N^[1-2]\d{3}\.fict\.example$\N : \
7281 partial-dbm;/opt/data/penguin/book : \
7282 nis;domains.byname : \
7283 nisplus;[name=$domain,status=local],domains.org_dir
7284....
7285
7286There are obvious processing trade-offs among the various matching modes. Using
7287an asterisk is faster than a regular expression, and listing a few names
7288explicitly probably is too. The use of a file or database lookup is expensive,
7289but may be the only option if hundreds of names are required. Because the
7290patterns are tested in order, it makes sense to put the most commonly matched
7291patterns earlier.
7292
7293
7294
7295[[SECThostlist]]
7296Host lists
7297~~~~~~~~~~
7298cindex:[host list,patterns in]
7299cindex:[list,host list]
7300Host lists are used to control what remote hosts are allowed to do. For
7301example, some hosts may be allowed to use the local host as a relay, and some
7302may be permitted to use the SMTP ETRN command. Hosts can be identified in
7303two different ways, by name or by IP address. In a host list, some types of
7304pattern are matched to a host name, and some are matched to an IP address.
7305You need to be particularly careful with this when single-key lookups are
7306involved, to ensure that the right value is being used as the key.
7307
7308
7309Special host list patterns
7310~~~~~~~~~~~~~~~~~~~~~~~~~~
7311cindex:[empty item in hosts list]
7312cindex:[host list,empty string in]
7313If a host list item is the empty string, it matches only when no remote host is
7314involved. This is the case when a message is being received from a local
7315process using SMTP on the standard input, that is, when a TCP/IP connection is
7316not used.
7317
7318cindex:[asterisk,in host list]
7319The special pattern ``\*'' in a host list matches any host or no host. Neither
7320the IP address nor the name is actually inspected.
7321
7322
7323
7324[[SECThoslispatip]]
7325Host list patterns that match by IP address
7326~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7327cindex:[host list,matching IP addresses]
7328If an IPv4 host calls an IPv6 host and the call is accepted on an IPv6 socket,
7329the incoming address actually appears in the IPv6 host as
7330``::`ffff`:<''v4address'>'. When such an address is tested against a host
7331list, it is converted into a traditional IPv4 address first. (Not all operating
7332systems accept IPv4 calls on IPv6 sockets, as there have been some security
7333concerns.)
7334
7335The following types of pattern in a host list check the remote host by
7336inspecting its IP address:
7337
7338- If the pattern is a plain domain name (not a regular expression, not starting
7339with \*, not a lookup of any kind), Exim calls the operating system function
7340to find the associated IP address(es). Exim uses the newer
7341'getipnodebyname()' function when available, otherwise 'gethostbyname()'.
7342This typically causes a forward DNS lookup of the name. The result is compared
7343with the IP address of the subject host.
7344+
7345If there is a temporary problem (such as a DNS timeout) with the host name
7346lookup, a temporary error occurs. For example, if the list is being used in an
7347ACL condition, the ACL gives a ``defer'' response, usually leading to a temporary
7348SMTP error code. If no IP address can be found for the host name, what happens
7349is described in section <<SECTbehipnot>> below.
7350
7351- cindex:[@ in a host list]
7352If the pattern is ``@'', the primary host name is substituted and used as a
7353domain name, as just described.
7354
7355- If the pattern is an IP address, it is matched against the IP address of the
7356subject host. IPv4 addresses are given in the normal ``dotted-quad'' notation.
7357IPv6 addresses can be given in colon-separated format, but the colons have to
7358be doubled so as not to be taken as item separators when the default list
7359separator is used. IPv6 addresses are recognized even when Exim is compiled
7360without IPv6 support. This means that if they appear in a host list on an
7361IPv4-only host, Exim will not treat them as host names. They are just addresses
7362that can never match a client host.
7363
7364- cindex:[@{bk} in a host list]
7365If the pattern is ``@[]'', it matches the IP address of any IP interface on
7366the local host. For example, if the local host is an IPv4 host with one
7367interface address 10.45.23.56, these two ACL statements have the same effect:
7368
7369 accept hosts = 127.0.0.1 : 10.45.23.56
7370 accept hosts = @[]
7371
7372- cindex:[CIDR notation]
7373If the pattern is an IP address followed by a slash and a mask length (for
7374example 10.11.42.0/24), it is matched against the IP address of the subject
7375host under the given mask. This allows, an entire network of hosts to be
7376included (or excluded) by a single item. The mask uses CIDR notation; it
7377specifies the number of address bits that must match, starting from the most
7378significant end of the address.
7379+
7380*Note*: the mask is 'not' a count of addresses, nor is it the high number
7381of a range of addresses. It is the number of bits in the network portion of the
7382address. The above example specifies a 24-bit netmask, so it matches all 256
7383addresses in the 10.11.42.0 network. An item such as
7384
7385 192.168.23.236/31
7386+
7387matches just two addresses, 192.168.23.236 and 192.168.23.237. A mask value of
738832 for an IPv4 address is the same as no mask at all; just a single address
7389matches.
7390+
7391Here is another example which shows an IPv4 and an IPv6 network:
7392+
7393....
7394recipient_unqualified_hosts = 192.168.0.0/16: \
7395 3ffe::ffff::836f::::/48
7396....
7397+
7398The doubling of list separator characters applies only when these items
7399appear inline in a host list. It is not required when indirecting via a file.
7400For example,
7401
7402 recipient_unqualified_hosts = /opt/exim/unqualnets
7403+
7404could make use of a file containing
7405
7406 172.16.0.0/12
7407 3ffe:ffff:836f::/48
7408+
7409to have exactly the same effect as the previous example. When listing IPv6
7410addresses inline, it is usually more convenient to use the facility for
7411changing separator characters. This list contains the same two networks:
7412+
7413....
7414recipient_unqualified_hosts = <; 172.16.0.0/12; \
7415 3ffe:ffff:836f::/48
7416....
7417+
7418The separator is changed to semicolon by the leading ``<;'' at the start of the
7419list.
7420
7421
7422
7423
7424[[SECThoslispatsikey]]
7425Host list patterns for single-key lookups by host address
7426~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7427cindex:[host list,lookup of IP address]
7428When a host is to be identified by a single-key lookup of its complete IP
7429address, the pattern takes this form:
7430
7431 net-<single-key-search-type>;<search-data>
7432
7433For example:
7434
7435 hosts_lookup = net-cdb;/hosts-by-ip.db
7436
7437The text form of the IP address of the subject host is used as the lookup key.
7438IPv6 addresses are converted to an unabbreviated form, using lower case
7439letters, with dots as separators because colon is the key terminator in
7440^lsearch^ files. [Colons can in fact be used in keys in ^lsearch^ files by
7441quoting the keys, but this is a facility that was added later.] The data
7442returned by the lookup is not used.
7443
7444cindex:[IP address,masking]
7445cindex:[host list,masked IP address]
7446Single-key lookups can also be performed using masked IP addresses, using
7447patterns of this form:
7448
7449 net<number>-<single-key-search-type>;<search-data>
7450
7451For example:
7452
7453 net24-dbm;/networks.db
7454
7455The IP address of the subject host is masked using <'number'> as the mask
7456length. A textual string is constructed from the masked value, followed by the
7457mask, and this is used as the lookup key. For example, if the host's IP address
7458is 192.168.34.6, the key that is looked up for the above example is
7459``192.168.34.0/24''. IPv6 addresses are converted to a text value using lower
7460case letters and dots as separators instead of the more usual colon, because
7461colon is the key terminator in ^lsearch^ files. Full, unabbreviated IPv6
7462addresses are always used.
7463
7464*Warning*: Specifing %net32-% (for an IPv4 address) or %net128-% (for an
7465IPv6 address) is not the same as specifing just %net-% without a number. In
7466the former case the key strings include the mask value, whereas in the latter
7467case the IP address is used on its own.
7468
7469
7470
7471[[SECThoslispatnam]]
7472Host list patterns that match by host name
7473~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7474cindex:[host,lookup failures]
7475cindex:[unknown host name]
7476cindex:[host list,matching host name]
7477There are several types of pattern that require Exim to know the name of the
7478remote host. These are either wildcard patterns or lookups by name. (If a
7479complete hostname is given without any wildcarding, it is used to find an IP
7480address to match against, as described in the section <<SECThoslispatip>> above.)
7481
7482If the remote host name is not already known when Exim encounters one of these
7483patterns, it has to be found from the IP address.
7484Although many sites on the Internet are conscientious about maintaining reverse
7485DNS data for their hosts, there are also many that do not do this.
7486Consequently, a name cannot always be found, and this may lead to unwanted
7487effects. Take care when configuring host lists with wildcarded name patterns.
7488Consider what will happen if a name cannot be found.
7489
7490Because of the problems of determining host names from IP addresses, matching
7491against host names is not as common as matching against IP addresses.
7492
7493By default, in order to find a host name, Exim first does a reverse DNS lookup;
7494if no name is found in the DNS, the system function ('gethostbyaddr()' or
7495'getipnodebyaddr()' if available) is tried. The order in which these lookups
7496are done can be changed by setting the %host_lookup_order% option.
7497
7498There are some options that control what happens if a host name cannot be
7499found. These are described in section <<SECTbehipnot>> below.
7500
7501cindex:[host,alias for]
7502cindex:[alias for host]
7503As a result of aliasing, hosts may have more than one name. When processing any
7504of the following types of pattern, all the host's names are checked:
7505
7506- cindex:[asterisk,in host list]
7507If a pattern starts with ``\*'' the remainder of the item must match the end of
7508the host name. For example, `*.b.c` matches all hosts whose names end in
7509'.b.c'. This special simple form is provided because this is a very common
7510requirement. Other kinds of wildcarding require the use of a regular
7511expression.
7512
7513- cindex:[regular expressions,in host list]
7514cindex:[host list,regular expression in]
7515If the item starts with ``^'' it is taken to be a regular expression which is
7516matched against the host name. For example,
7517
7518 ^(a|b)\.c\.d$
7519+
7520is a regular expression that matches either of the two hosts 'a.c.d' or
7521'b.c.d'. When a regular expression is used in a host list, you must take care
7522that backslash and dollar characters are not misinterpreted as part of the
7523string expansion. The simplest way to do this is to use `\N` to mark that
7524part of the string as non-expandable. For example:
7525
7526 sender_unqualified_hosts = \N^(a|b)\.c\.d$\N : ....
7527+
7528*Warning*: If you want to match a complete host name, you must include the
7529`\$` terminating metacharacter in the regular expression, as in the above
7530example. Without it, a match at the start of the host name is all that is
7531required.
7532
7533
7534
7535
7536[[SECTbehipnot]]
7537Behaviour when an IP address or name cannot be found
7538~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7539cindex:[host,lookup failures]
7540While processing a host list, Exim may need to look up an IP address from a
7541name (see section <<SECThoslispatip>>), or it may need to look up a host name
7542from an IP address (see section <<SECThoslispatnam>>). In either case, the
7543behaviour when it fails to find the information it is seeking is the same.
7544
7545cindex:[`+include_unknown`]
7546cindex:[`+ignore_unknown`]
7547By default, Exim behaves as if the host does not match the list. This may not
7548always be what you want to happen. To change Exim's behaviour, the special
7549items `+include_unknown` or `+ignore_unknown` may appear in the list (at
7550top level -- they are not recognized in an indirected file).
7551
7552- If any item that follows `+include_unknown` requires information that
7553cannot found, Exim behaves as if the host does match the list. For example,
7554
7555 host_reject_connection = +include_unknown:*.enemy.ex
7556+
7557rejects connections from any host whose name matches `*.enemy.ex`, and also
7558any hosts whose name it cannot find.
7559
7560- If any item that follows `+ignore_unknown` requires information that cannot
7561be found, Exim ignores that item and proceeds to the rest of the list. For
7562example:
7563+
7564....
7565accept hosts = +ignore_unknown : friend.example : \
7566 192.168.4.5
7567....
7568+
7569accepts from any host whose name is 'friend.example' and from 192.168.4.5,
7570whether or not its host name can be found. Without `+ignore_unknown`, if no
7571name can be found for 192.168.4.5, it is rejected.
7572
7573Both `+include_unknown` and `+ignore_unknown` may appear in the same
7574list. The effect of each one lasts until the next, or until the end of the
7575list.
7576
7577*Note*: This section applies to permanent lookup failures. It does 'not'
7578apply to temporary DNS errors. They always cause a defer action.
7579
7580
7581
7582[[SECThoslispatnamsk]]
7583Host list patterns for single-key lookups by host name
7584~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7585cindex:[host,lookup failures]
7586cindex:[unknown host name]
7587cindex:[host list,matching host name]
7588If a pattern is of the form
7589
7590 <single-key-search-type>;<search-data>
7591
7592for example
7593
7594 dbm;/host/accept/list
7595
7596a single-key lookup is performend, using the host name as its key. If the
7597lookup succeeds, the host matches the item. The actual data that is looked up
7598is not used.
7599
7600*Reminder*: With this kind of pattern, you must have host 'names' as
7601keys in the file, not IP addresses. If you want to do lookups based on IP
7602addresses, you must precede the search type with ``net-'' (see section
7603<<SECThoslispatsikey>>). There is, however, no reason why you could not use two
7604items in the same list, one doing an address lookup and one doing a name
7605lookup, both using the same file.
7606
7607
7608
7609Host list patterns for query-style lookups
7610~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7611If a pattern is of the form
7612
7613 <query-style-search-type>;<query>
7614
7615the query is obeyed, and if it succeeds, the host matches the item. The actual
7616data that is looked up is not used. The variables $sender_host_address$ and
7617$sender_host_name$ can be used in the query. For example:
7618
7619....
7620hosts_lookup = pgsql;\
7621 select ip from hostlist where ip='$sender_host_address'
7622....
7623
7624The value of $sender_host_address$ for an IPv6 address contains colons. You
7625can use the %sg% expansion item to change this if you need to. If you want to
7626use masked IP addresses in database queries, you can use the %mask% expansion
7627operator.
7628
7629If the query contains a reference to $sender_host_name$, Exim automatically
7630looks up the host name if has not already done so. (See section
7631<<SECThoslispatnam>> for comments on finding host names.)
7632
7633Historical note: prior to release 4.30, Exim would always attempt to find a
7634host name before running the query, unless the search type was preceded by
7635`net-`. This is no longer the case. For backwards compatibility, `net-` is
7636still recognized for query-style lookups, but its presence or absence has no
7637effect. (Of course, for single-key lookups, `net-` 'is' important.
7638See section <<SECThoslispatsikey>>.)
7639
7640
7641
7642[[SECTmixwilhos]]
7643Mixing wildcarded host names and addresses in host lists
7644~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7645cindex:[host list,mixing names and addresses in]
7646If you have name lookups or wildcarded host names and IP addresses in the same
7647host list, you should normally put the IP addresses first. For example, in an
7648ACL you could have:
7649
7650 accept hosts = 10.9.8.7 : *.friend.example
7651
7652The reason for this lies in the left-to-right way that Exim processes lists.
7653It can test IP addresses without doing any DNS lookups, but when it reaches an
7654item that requires a host name, it fails if it cannot find a host name to
7655compare with the pattern. If the above list is given in the opposite order, the
7656%accept% statement fails for a host whose name cannot be found, even if its
7657IP address is 10.9.8.7.
7658
7659If you really do want to do the name check first, and still recognize the IP
7660address, you can rewrite the ACL like this:
7661
7662 accept hosts = *.friend.example
7663 accept hosts = 10.9.8.7
7664
7665If the first %accept% fails, Exim goes on to try the second one. See chapter
7666<<CHAPACL>> for details of ACLs.
7667
7668
7669
7670
7671
7672[[SECTaddresslist]]
7673Address lists
7674~~~~~~~~~~~~~
7675cindex:[list,address list]
7676cindex:[address list,empty item]
7677cindex:[address list,patterns]
7678Address lists contain patterns that are matched against mail addresses. There
7679is one special case to be considered: the sender address of a bounce message is
7680always empty. You can test for this by providing an empty item in an address
7681list. For example, you can set up a router to process bounce messages by
7682using this option setting:
7683
7684 senders = :
7685
7686The presence of the colon creates an empty item. If you do not provide any
7687data, the list is empty and matches nothing. The empty sender can also be
7688detected by a regular expression that matches an empty string,
7689
7690and by a query-style lookup that succeeds when $sender_address$ is empty.
7691
7692The following kinds of address list pattern can match any address, including
7693the empty address that is characteristic of bounce message senders:
7694
7695- As explained above, if a pattern item is empty, it matches the empty address
7696(and no others).
7697
7698- cindex:[regular expressions,in address list]
7699cindex:[address list,regular expression in]
7700If (after expansion) a pattern starts with ``^'', a regular expression match is
7701done against the complete address, with the pattern as the regular expression.
7702You must take care that backslash and dollar characters are not misinterpreted
7703as part of the string expansion. The simplest way to do this is to use `\N`
7704to mark that part of the string as non-expandable. For example:
7705
7706 deny senders = \N^\d{8}.+@spamhaus.example$\N : ...
7707+
7708The `\N` sequences are removed by the expansion, so the item does start
7709with ``^'' by the time it is being interpreted as an address pattern.
7710
7711- cindex:[address list,lookup for complete address]
7712Complete addresses can be looked up by using a pattern that starts with a
7713lookup type terminated by a semicolon, followed by the data for the lookup. For
7714example:
7715+
7716....
7717deny senders = cdb;/etc/blocked.senders : \
7718 mysql;select address from blocked where \
7719 address='${quote_mysql:$sender_address}'
7720....
7721+
7722Both query-style and single-key lookup types can be used. For a single-key
7723lookup type, Exim uses the complete address as the key. However, empty keys are
7724not supported for single-key lookups, so a match against the empty address
7725always fails. This restriction does not apply to query-style lookups.
7726+
7727Partial matching for single-key lookups (section <<SECTpartiallookup>>) cannot
7728be used, and is ignored if specified, with an entry being written to the panic
7729log.
7730+
7731cindex:[\*@ with single-key lookup]
7732However, you can configure lookup defaults, as described in section
7733<<SECTdefaultvaluelookups>>, but this is useful only for the ``\*@'' type of
7734default. For example, with this lookup:
7735
7736 accept senders = lsearch*@;/some/file
7737+
7738the file could contains lines like this:
7739
7740 user1@domain1.example
7741 *@domain2.example
7742+
7743and for the sender address 'nimrod@jaeger.example', the sequence of keys
7744that are tried is:
7745
7746 nimrod@jaeger.example
7747 *@jaeger.example
7748 *
7749+
7750*Warning 1*: Do not include a line keyed by ``\*'' in the file, because that
7751would mean that every address matches, thus rendering the test useless.
7752+
7753*Warning 2*: Do not confuse these two kinds of item:
7754
7755 deny recipients = dbm*@;/some/file
7756 deny recipients = *@dbm;/some/file
7757+
7758The first does a whole address lookup, with defaulting, as just described,
7759because it starts with a lookup type. The second matches the local part and
7760domain independently, as described in a bullet point below.
7761
7762
7763
7764The following kinds of address list pattern can match only non-empty addresses.
7765If the subject address is empty, a match against any of these pattern types
7766always fails.
7767
7768
7769- cindex:[@@ with single-key lookup]
7770cindex:[address list,@@ lookup type]
7771cindex:[address list,split local part and domain]
7772If a pattern starts with ``@@'' followed by a single-key lookup item
7773(for example, `@@lsearch;/some/file`), the address that is being checked is
7774split into a local part and a domain. The domain is looked up in the file. If
7775it is not found, there is no match. If it is found, the data that is looked up
7776from the file is treated as a colon-separated list of local part patterns, each
7777of which is matched against the subject local part in turn.
7778+
7779cindex:[asterisk,in address list]
7780The lookup may be a partial one, and/or one involving a search for a default
7781keyed by ``\*'' (see section <<SECTdefaultvaluelookups>>). The local part patterns
7782that are looked up can be regular expressions or begin with ``\*'', or even be
7783further lookups. They may also be independently negated. For example, with
7784
7785 deny senders = @@dbm;/etc/reject-by-domain
7786+
7787the data from which the DBM file is built could contain lines like
7788
7789 baddomain.com: !postmaster : *
7790+
7791to reject all senders except %postmaster% from that domain.
7792+
7793cindex:[local part,starting with !]
7794If a local part that actually begins with an exclamation mark is required, it
7795has to be specified using a regular expression. In ^lsearch^ files, an entry
7796may be split over several lines by indenting the second and subsequent lines,
7797but the separating colon must still be included at line breaks. White space
7798surrounding the colons is ignored. For example:
7799
7800 aol.com: spammer1 : spammer2 : ^[0-9]+$ :
7801 spammer3 : spammer4
7802+
7803As in all colon-separated lists in Exim, a colon can be included in an item by
7804doubling.
7805+
7806If the last item in the list starts with a right angle-bracket, the remainder
7807of the item is taken as a new key to look up in order to obtain a continuation
7808list of local parts. The new key can be any sequence of characters. Thus one
7809might have entries like
7810
7811 aol.com: spammer1 : spammer 2 : >*
7812 xyz.com: spammer3 : >*
7813 *: ^\d{8}$
7814+
7815in a file that was searched with %@@dbm\*%, to specify a match for 8-digit
7816local parts for all domains, in addition to the specific local parts listed for
7817each domain. Of course, using this feature costs another lookup each time a
7818chain is followed, but the effort needed to maintain the data is reduced.
7819+
7820cindex:[loop,in lookups]
7821It is possible to construct loops using this facility, and in order to catch
7822them, the chains may be no more than fifty items long.
7823
7824- The @@<'lookup'> style of item can also be used with a query-style
7825lookup, but in this case, the chaining facility is not available. The lookup
7826can only return a single list of local parts.
7827
7828- If a pattern contains an @ character, but is not a regular expression and does
7829not begin with a lookup type as described above, the local part of the subject
7830address is compared with the local part of the pattern, which may start with an
7831asterisk. If the local parts match, the domain is checked in exactly the same
7832way as for a pattern in a domain list. For example, the domain can be
7833wildcarded, refer to a named list, or be a lookup:
7834+
7835....
7836deny senders = *@*.spamming.site:\
7837 *@+hostile_domains:\
7838 bozo@partial-lsearch;/list/of/dodgy/sites:\
7839 *@dbm;/bad/domains.db
7840....
7841+
7842cindex:[local part,starting with !]
7843cindex:[address list,local part starting with !]
7844If a local part that begins with an exclamation mark is required, it has to be
7845specified using a regular expression, because otherwise the exclamation mark is
7846treated as a sign of negation.
7847
7848- If a pattern is not one of the above syntax forms, that is, if a
7849non-empty pattern that is not a regular expression or a lookup does not contain
7850an @ character, it is matched against the domain part of the subject address.
7851The only two formats that are recognized this way are a literal domain, or a
7852domain pattern that starts with \*. In both these cases, the effect is the same
7853as if `*@` preceded the pattern.
7854
7855*Warning*: there is an important difference between the address list items
7856in these two examples:
7857
7858 senders = +my_list
7859 senders = *@+my_list
7860
7861In the first one, `my_list` is a named address list, whereas in the second
7862example it is a named domain list.
7863
7864
7865
7866
7867[[SECTcasletadd]]
7868Case of letters in address lists
7869~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7870cindex:[case of local parts]
7871cindex:[address list,case forcing]
7872cindex:[case forcing in address lists]
7873Domains in email addresses are always handled caselessly, but for local parts
7874case may be significant on some systems (see %caseful_local_part% for how
7875Exim deals with this when routing addresses). However, RFC 2505 ('Anti-Spam
7876Recommendations for SMTP MTAs') suggests that matching of addresses to blocking
7877lists should be done in a case-independent manner. Since most address lists in
7878Exim are used for this kind of control, Exim attempts to do this by default.
7879
7880The domain portion of an address is always lowercased before matching it to an
7881address list. The local part is lowercased by default, and any string
7882comparisons that take place are done caselessly. This means that the data in
7883the address list itself, in files included as plain file names, and in any file
7884that is looked up using the ``@@'' mechanism, can be in any case. However, the
7885keys in files that are looked up by a search type other than ^lsearch^ (which
7886works caselessly) must be in lower case, because these lookups are not
7887case-independent.
7888
7889cindex:[`+caseful`]
7890To allow for the possibility of caseful address list matching, if an item in
7891an address list is the string ``+caseful'', the original case of the local
7892part is restored for any comparisons that follow, and string comparisons are no
7893longer case-independent. This does not affect the domain, which remains in
7894lower case. However, although independent matches on the domain alone are still
7895performed caselessly, regular expressions that match against an entire address
7896become case-sensitive after ``+caseful'' has been seen.
7897
7898
7899
7900[[SECTlocparlis]]
7901Local part lists
7902~~~~~~~~~~~~~~~~
7903cindex:[list,local part list]
7904cindex:[local part,list]
7905Case-sensitivity in local part lists is handled in the same way as for address
7906lists, as just described. The ``+caseful'' item can be used if required. In a
7907setting of the %local_parts% option in a router with %caseful_local_part%
7908set false, the subject is lowercased and the matching is initially
7909case-insensitive. In this case, ``+caseful'' will restore case-sensitive matching
7910in the local part list, but not elsewhere in the router. If
7911%caseful_local_part% is set true in a router, matching in the %local_parts%
7912option is case-sensitive from the start.
7913
7914If a local part list is indirected to a file (see section <<SECTfilnamlis>>),
7915comments are handled in the same way as address lists -- they are recognized
7916only if the # is preceded by white space or the start of the line.
7917Otherwise, local part lists are matched in the same way as domain lists, except
7918that the special items that refer to the local host (`@`, `@[]`,
7919`@mx_any`, `@mx_primary`, and `@mx_secondary`) are not recognized.
7920Refer to section <<SECTdomainlist>> for details of the other available item
7921types.
7922
7923
7924
7925
7926////////////////////////////////////////////////////////////////////////////
7927////////////////////////////////////////////////////////////////////////////
7928
7929[[CHAPexpand]]
7930String expansions
7931-----------------
7932cindex:[expansion,of strings]
7933Many strings in Exim's run time configuration are expanded before use. Some of
7934them are expanded every time they are used; others are expanded only once.
7935
7936When a string is being expanded it is copied verbatim from left to right except
7937when a dollar or backslash character is encountered. A dollar specifies the
7938start of a portion of the string which is interpreted and replaced as described
7939below in section <<SECTexpansionitems>> onwards. Backslash is used as an escape
7940character, as described in the following section.
7941
7942
7943
7944[[SECTlittext]]
7945Literal text in expanded strings
7946~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7947cindex:[expansion,including literal text]
7948An uninterpreted dollar can be included in an expanded string by putting a
7949backslash in front of it. A backslash can be used to prevent any special
7950character being treated specially in an expansion, including itself. If the
7951string appears in quotes in the configuration file, two backslashes are
7952required because the quotes themselves cause interpretation of backslashes when
7953the string is read in (see section <<SECTstrings>>).
7954
7955cindex:[expansion,non-expandable substrings]
7956A portion of the string can specified as non-expandable by placing it between
7957two occurrences of `\N`. This is particularly useful for protecting regular
7958expressions, which often contain backslashes and dollar signs. For example:
7959
7960 deny senders = \N^\d{8}[a-z]@some\.site\.example$\N
7961
7962On encountering the first `\N`, the expander copies subsequent characters
7963without interpretation until it reaches the next `\N` or the end of the
7964string.
7965
7966
7967
7968Character escape sequences in expanded strings
7969~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7970cindex:[expansion,escape sequences]
7971A backslash followed by one of the letters ``n'', ``r'', or ``t'' in an expanded
7972string is recognized as an escape sequence for the character newline, carriage
7973return, or tab, respectively. A backslash followed by up to three octal digits
7974is recognized as an octal encoding for a single character, and a backslash
7975followed by ``x'' and up to two hexadecimal digits is a hexadecimal encoding.
7976
7977These escape sequences are also recognized in quoted strings when they are read
7978in. Their interpretation in expansions as well is useful for unquoted strings,
7979and for other cases such as looked-up strings that are then expanded.
7980
7981
7982Testing string expansions
7983~~~~~~~~~~~~~~~~~~~~~~~~~
7984cindex:[expansion,testing]
7985cindex:[testing,string expansion]
7986cindex:[%-be% option]
7987Many expansions can be tested by calling Exim with the %-be% option. This takes
7988the command arguments, or lines from the standard input if there are no
7989arguments, runs them through the string expansion code, and writes the results
7990to the standard output. Variables based on configuration values are set up, but
7991since no message is being processed, variables such as $local_part$ have no
7992value. Nevertheless the %-be% option can be useful for checking out file and
7993database lookups, and the use of expansion operators such as %sg%, %substr% and
7994%nhash%.
7995
7996Exim gives up its root privilege when it is called with the %-be% option, and
7997instead runs under the uid and gid it was called with, to prevent users from
7998using %-be% for reading files to which they do not have access.
7999
8000
8001
8002[[SECTforexpfai]]
8003Forced expansion failure
8004~~~~~~~~~~~~~~~~~~~~~~~~
8005cindex:[expansion,forced failure]
8006A number of expansions that are described in the following section have
8007alternative ``true'' and ``false'' substrings, enclosed in curly brackets. Which
8008one is used depends on some condition that is evaluated as part of the
8009expansion. If, instead of a ``false'' substring, the word ``fail'' is used (not in
8010curly brackets), the entire string expansion fails in a way that can be
8011detected by the code that requested the expansion. This is called ``forced
8012expansion failure'', and its consequences depend on the circumstances. In some
8013cases it is no different from any other expansion failure, but in others a
8014different action may be taken. Such variations are mentioned in the
8015documentation of the option that is being expanded.
8016
8017
8018
8019
8020[[SECTexpansionitems]]
8021Expansion items
8022~~~~~~~~~~~~~~~
8023The following items are recognized in expanded strings. White space may be used
8024between sub-items that are keywords or substrings enclosed in braces inside an
8025outer set of braces, to improve readability. *Warning*: Within braces,
8026white space is significant.
8027
8028*\$*<'variable~name'>~or~*\$\{*<'variable~name'>*\}*::
8029cindex:[expansion,variables]
8030Substitute the contents of the named variable, for example
8031
8032 $local_part
8033 ${domain}
8034+
8035The second form can be used to separate the name from subsequent alphanumeric
8036characters. This form (using curly brackets) is available only for variables;
8037it does 'not' apply to message headers. The names of the variables are given
8038in section <<SECTexpvar>> below. If the name of a non-existent variable is given,
8039the expansion fails.
8040
8041*\$\{*<'op'>*:*<'string'>*\}*::
8042cindex:[expansion,operators]
8043The string is first itself expanded, and then the operation specified by <'op'>
8044is applied to it. For example,
8045
8046 ${lc:$local_part}
8047+
8048The string starts with the first character after the colon, which may be
8049leading white space. A list of operators is given in section <<SECTexpop>>
8050below. The operator notation is used for simple expansion items that have just
8051one argument, because it reduces the number of braces and therefore makes the
8052string easier to understand.
8053
8054*\$\{extract\{*<'key'>*\}\{*<'string1'>*\}\{*<'string2'>*\}\{*<'string3'>*\}\}*::
8055cindex:[expansion,extracting substrings by key]
8056The key and <'string1'> are first expanded separately. Leading and trailing
8057whitespace is removed from the key (but not from any of the strings). The key
8058must not consist entirely of digits. The expanded <'string1'> must be of the
8059form:
8060
8061 <key1> = <value1> <key2> = <value2> ...
8062+
8063where the equals signs and spaces (but not both) are optional. If any of the
8064values contain white space, they must be enclosed in double quotes, and any
8065values that are enclosed in double quotes are subject to escape processing as
8066described in section <<SECTstrings>>. The expanded <'string1'> is searched for
8067the value that corresponds to the key. The search is case-insensitive. If the
8068key is found, <'string2'> is expanded, and replaces the whole item; otherwise
8069<'string3'> is used. During the expansion of <'string2'> the variable $value$
8070contains the value that has been extracted. Afterwards, it is restored to any
8071previous value it might have had.
8072+
8073If \{<'string3'>\} is omitted, the item is replaced by an empty string if the
8074key is not found. If \{<'string2'>\} is also omitted, the value that was
8075extracted is used. Thus, for example, these two expansions are identical, and
8076yield ``2001'':
8077
8078 ${extract{gid}{uid=1984 gid=2001}}
8079 ${extract{gid}{uid=1984 gid=2001}{$value}}
8080+
8081Instead of \{<'string3'>\} the word ``fail'' (not in curly brackets) can
8082appear, for example:
8083
8084 ${extract{Z}{A=... B=...}{$value} fail }
8085+
8086This forces an expansion failure (see section <<SECTforexpfai>>);
8087{<'string2'>\} must be present for ``fail'' to be recognized.
8088
8089
8090*\$\{extract\{*<'number'>*\}\{*<'separators'>*\}\{*<'string1'>*\}\{*<'string2'>*\}\{*<'string3'>*\}\}*::
8091cindex:[expansion,extracting substrings by number]
8092The <'number'> argument must consist entirely of decimal digits,
8093apart from leading and trailing whitespace, which is ignored.
8094This is what distinguishes this form of %extract% from the previous kind. It
8095behaves in the same way, except that, instead of extracting a named field, it
8096extracts from <'string1'> the field whose number is given as the first
8097argument. You can use $value$ in <'string2'> or `fail` instead of
8098<'string3'> as before.
8099+
8100The fields in the string are separated by any one of the characters in the
8101separator string. These may include space or tab characters.
8102The first field is numbered one. If the number is negative, the fields are
8103counted from the end of the string, with the rightmost one numbered -1. If the
8104number given is zero, the entire string is returned. If the modulus of the
8105number is greater than the number of fields in the string, the result is the
8106expansion of <'string3'>, or the empty string if <'string3'> is not provided.
8107For example:
8108
8109 ${extract{2}{:}{x:42:99:& Mailer::/bin/bash}}
8110+
8111yields ``42'', and
8112
8113 ${extract{-4}{:}{x:42:99:& Mailer::/bin/bash}}
8114+
8115yields ``99''. Two successive separators mean that the field between them is
8116empty (for example, the fifth field above).
8117
8118
8119*\$\{hash\{*<'string1'>*\}\{*<'string2'>*\}\{*<'string3'>*\}\}*::
8120cindex:[hash function,textual]
8121cindex:[expansion,textual hash]
8122This is a textual hashing function, and was the first to be implemented in
8123early versions of Exim. In current releases, there are other hashing functions
8124(numeric, MD5, and SHA-1), which are described below.
8125+
8126The first two strings, after expansion, must be numbers. Call them <'m'> and
8127<'n'>. If you are using fixed values for these numbers, that is, if <'string1'>
8128and <'string2'> do not change when they are expanded, you can use the
8129simpler operator notation that avoids some of the braces:
8130
8131 ${hash_<n>_<m>:<string>}
8132+
8133The second number is optional (in both notations).
8134+
8135If <'n'> is greater than or equal to the length of the string, the expansion
8136item returns the string. Otherwise it computes a new string of length <'n'> by
8137applying a hashing function to the string. The new string consists of
8138characters taken from the first <'m'> characters of the string
8139
8140 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQWRSTUVWXYZ0123456789
8141+
8142If <'m'> is not present the value 26 is used, so that only lower case
8143letters appear. For example:
8144+
8145&&&
8146`\${hash{3}{monty}} ` yields `jmg`
8147`\${hash{5}{monty}} ` yields `monty`
8148`\${hash{4}{62}{monty python}}` yields `fbWx`
8149&&&
8150
8151
8152*\$header_*<'header~name'>*:*~or~*\$h_*<'header~name'>*:*::
8153See *\$rheader* below.
8154
8155*\$bheader_*<'header~name'>*:*~or~*\$bh_*<'header~name'>*:*::
8156See *\$rheader* below.
8157
8158*\$rheader_*<'header~name'>*:*~or~*\$rh_*<'header~name'>*:*::
8159cindex:[expansion,header insertion]
8160cindex:[$header_$]
8161cindex:[$bheader_$]
8162cindex:[$rheader_$]
8163cindex:[header lines,in expansion strings]
8164cindex:[header lines,character sets]
8165cindex:[header lines,decoding]
8166Substitute the contents of the named message header line, for example
8167
8168 $header_reply-to:
8169+
8170The newline that terminates a header line is not included in the expansion, but
8171internal newlines (caused by splitting the header line over several physical
8172lines) may be present.
8173+
8174The difference between %rheader%, %bheader%, and %header% is in the way the
8175data in the header line is interpreted.
8176+
8177--
8178- cindex:[whitespace,in header lines]
8179%rheader% gives the original ``raw'' content of the header line, with no
8180processing at all, and without the removal of leading and trailing whitespace.
8181
8182- cindex:[base64 encoding,in header lines]
8183%bheader% removes leading and trailing whitespace, and then decodes base64 or
8184quoted-printable MIME ``words'' within the header text, but does no character
8185set translation. If decoding of what looks superficially like a MIME ``word''
8186fails, the raw string is returned. If decoding
8187cindex:[binary zero,in header line]
8188produces a binary zero character, it is replaced by a question mark -- this is
8189what Exim does for binary zeros that are actually received in header lines.
8190
8191- %header% tries to translate the string as decoded by %bheader% to a standard
8192character set. This is an attempt to produce the same string as would be
8193displayed on a user's MUA. If translation fails, the %bheader% string is
8194returned. Translation is attempted only on operating systems that support the
8195'iconv()' function. This is indicated by the compile-time macro
8196HAVE_ICONV in a system Makefile or in _Local/Makefile_.
8197--
8198+
8199In a filter file, the target character set for %header% can be specified by a
8200command of the following form:
8201
8202 headers charset "UTF-8"
8203+
8204This command affects all references to $h_$ (or $header_$) expansions in
8205subsequently obeyed filter commands. In the absence of this command, the target
8206character set in a filter is taken from the setting of the %headers_charset%
8207option in the runtime configuration. The value of this option defaults to the
8208value of HEADERS_CHARSET in _Local/Makefile_. The ultimate default is
8209ISO-8859-1.
8210+
8211Header names follow the syntax of RFC 2822, which states that they may contain
8212any printing characters except space and colon. Consequently, curly brackets
8213'do not' terminate header names, and should not be used to enclose them as
8214if they were variables. Attempting to do so causes a syntax error.
8215+
8216Only header lines that are common to all copies of a message are visible to
8217this mechanism. These are the original header lines that are received with the
8218message, and any that are added by an ACL %warn% statement or by a system
8219filter. Header lines that are added to a particular copy of a message by a
8220router or transport are not accessible.
8221+
8222For incoming SMTP messages, no header lines are visible in ACLs that are obeyed
8223before the DATA ACL, because the header structure is not set up until the
8224message is received. Header lines that are added by %warn% statements in a
8225RCPT ACL (for example) are saved until the message's incoming header lines
8226are available, at which point they are added. When a DATA ACL is running,
8227however, header lines added by earlier ACLs are visible.
8228+
8229Upper case and lower case letters are synonymous in header names. If the
8230following character is white space, the terminating colon may be omitted, but
8231this is not recommended, because you may then forget it when it is needed. When
8232white space terminates the header name, it is included in the expanded string.
8233If the message does not contain the given header, the expansion item is
8234replaced by an empty string. (See the %def% condition in section <<SECTexpcond>>
8235for a means of testing for the existence of a header.)
8236+
8237If there is more than one header with the same name, they are all
8238concatenated to form the substitution string, up to a maximum length of 64K. A
8239newline character is inserted between each line. For the %header% expansion,
8240for those headers that contain lists of addresses, a comma is also inserted at
8241the junctions between lines. This does not happen for the %rheader% expansion.
8242
8243
8244
8245*\$\{hmac\{*<'hashname'>*\}\{*<'secret'>*\}\{*<'string'>*\}\}*::
8246cindex:[expansion,hmac hashing]
8247This function uses cryptographic hashing (either MD5 or SHA-1) to convert a
8248shared secret and some text into a message authentication code, as specified in
8249RFC 2104. This differs from `\$\{md5:secret_text...\}` or
8250`\$\{sha1:secret_text...\}` in that the hmac step adds a signature to the
8251cryptographic hash, allowing for authentication that is not possible with MD5
8252or SHA-1 alone. The hash name must expand to either `md5` or `sha1` at present.
8253For example:
8254
8255 ${hmac{md5}{somesecret}{$primary_hostname $tod_log}}
8256+
8257For the hostname 'mail.example.com' and time 2002-10-17 11:30:59, this
8258produces:
8259
8260 dd97e3ba5d1a61b5006108f8c8252953
8261+
8262As an example of how this might be used, you might put in the main part of
8263an Exim configuration:
8264
8265 SPAMSCAN_SECRET=cohgheeLei2thahw
8266+
8267In a router or a transport you could then have:
8268+
8269....
8270headers_add = \
8271 X-Spam-Scanned: ${primary_hostname} ${message_id} \
8272 ${hmac{md5}{SPAMSCAN_SECRET}\
8273 {${primary_hostname},${message_id},$h_message-id:}}
8274....
8275+
8276Then given a message, you can check where it was scanned by looking at the
8277'X-Spam-Scanned:' header line. If you know the secret, you can check that this
8278header line is authentic by recomputing the authentication code from the host
8279name, message ID and the 'Message-id:' header line. This can be done using
8280Exim's %-be% option, or by other means, for example by using the
8281'hmac_md5_hex()' function in Perl.
8282
8283
8284*\$\{if~*<'condition'>*~\{*<'string1'>*\}\{*<'string2'>*\}\}*::
8285cindex:[expansion,conditional]
8286If <'condition'> is true, <'string1'> is expanded and replaces the whole item;
8287otherwise <'string2'> is used. The available conditions are described in
8288section <<SECTexpcond>> below. For example:
8289
8290 ${if eq {$local_part}{postmaster} {yes}{no} }
8291+
8292The second string need not be present; if it is not and the condition is not
8293true, the item is replaced with nothing. Alternatively, the word ``fail'' may be
8294present instead of the second string (without any curly brackets). In this
8295case, the expansion is forced to fail if the condition is not true (see section
8296<<SECTforexpfai>>).
8297+
8298If both strings are omitted, the result is the string `true` if the condition
8299is true, and the empty string if the condition is false. This makes it less
8300cumbersome to write custom ACL and router conditions. For example, instead of
8301
8302 condition = ${if >{$acl_m4}{3}{true}{false}}
8303+
8304you can use
8305
8306 condition = ${if >{$acl_m4}{3}}
8307
8308
8309
8310*\$\{length\{*<'string1'>*\}\{*<'string2'>*\}\}*::
8311cindex:[expansion,string truncation]
8312The %length% item is used to extract the initial portion of a string. Both
8313strings are expanded, and the first one must yield a number, <'n'>, say. If you
8314are using a fixed value for the number, that is, if <'string1'> does not change
8315when expanded, you can use the simpler operator notation that avoids some of
8316the braces:
8317
8318 ${length_<n>:<string>}
8319+
8320The result of this item is either the first <'n'> characters or the whole
8321of <'string2'>, whichever is the shorter. Do not confuse %length% with
8322%strlen%, which gives the length of a string.
8323
8324
8325*\$\{lookup\{*<'key'>*\}~*<'search~type'>*~\{*<'file'>*\}~\{*<'string1'>*\}~\{*<'string2'>*\}\}*::
8326This is the first of one of two different types of lookup item, which are both
8327described in the next item.
8328
8329*\$\{lookup~*<'search~type'>*~\{*<'query'>*\}~\{*<'string1'>*\}~\{*<'string2'>*\}\}*::
8330cindex:[expansion,lookup in]
8331cindex:[file,lookup]
8332cindex:[lookup,in expanded string]
8333The two forms of lookup item specify data lookups in files and databases, as
8334discussed in chapter <<CHAPfdlookup>>. The first form is used for single-key
8335lookups, and the second is used for query-style lookups. The <'key'>, <'file'>,
8336and <'query'> strings are expanded before use.
8337+
8338If there is any white space in a lookup item which is part of a filter command,
8339a retry or rewrite rule, a routing rule for the ^manualroute^ router, or any
8340other place where white space is significant, the lookup item must be enclosed
8341in double quotes. The use of data lookups in users' filter files may be locked
8342out by the system administrator.
8343+
8344cindex:[$value$]
8345If the lookup succeeds, <'string1'> is expanded and replaces the entire item.
8346During its expansion, the variable $value$ contains the data returned by the
8347lookup. Afterwards it reverts to the value it had previously (at the outer
8348level it is empty). If the lookup fails, <'string2'> is expanded and replaces
8349the entire item. If \{<'string2'>\} is omitted, the replacement is the empty
8350string on failure. If <'string2'> is provided, it can itself be a nested
8351lookup, thus providing a mechanism for looking up a default value when the
8352original lookup fails.
8353+
8354If a nested lookup is used as part of <'string1'>, $value$ contains the data
8355for the outer lookup while the parameters of the second lookup are expanded,
8356and also while <'string2'> of the second lookup is expanded, should the second
8357lookup fail. + Instead of \{<'string2'>\} the word ``fail'' can appear, and in
8358this case, if the lookup fails, the entire expansion is forced to fail (see
8359section <<SECTforexpfai>>). If both \{<'string1'>\} and \{<'string2'>\} are
8360omitted, the result is the looked up value in the case of a successful lookup,
8361and nothing in the case of failure.
8362+
8363For single-key lookups, the string ``partial'' is permitted to precede the
8364search type in order to do partial matching, and \* or \*@ may follow a search
8365type to request default lookups if the key does not match (see sections
8366<<SECTdefaultvaluelookups>> and <<SECTpartiallookup>> for details).
8367+
8368cindex:[numerical variables ($1$ $2$ etc),in lookup expansion]
8369If a partial search is used, the variables $1$ and $2$ contain the wild
8370and non-wild parts of the key during the expansion of the replacement text.
8371They return to their previous values at the end of the lookup item.
8372+
8373This example looks up the postmaster alias in the conventional alias file:
8374
8375 ${lookup {postmaster} lsearch {/etc/aliases} {$value}}
8376+
8377This example uses NIS+ to look up the full name of the user corresponding to
8378the local part of an address, forcing the expansion to fail if it is not found:
8379+
8380....
8381${lookup nisplus {[name=$local_part],passwd.org_dir:gcos} \
8382 {$value}fail}
8383....
8384
8385
8386*\$\{nhash\{*<'string1'>*\}\{*<'string2'>*\}\{*<'string3'>*\}\}*::
8387cindex:[expansion,numeric hash]
8388cindex:[hash function,numeric]
8389The three strings are expanded; the first two must yield numbers. Call them
8390<'n'> and <'m'>. If you are using fixed values for these numbers, that is, if
8391<'string1'> and <'string2'> do not change when they are expanded, you can use
8392the simpler operator notation that avoids some of the braces:
8393
8394 ${nhash_<n>_<m>:<string>}
8395+
8396The second number is optional (in both notations). If there is only one number,
8397the result is a number in the range 0--<'n'>-1. Otherwise, the string is
8398processed by a div/mod hash function that returns two numbers, separated by a
8399slash, in the ranges 0 to <'n'>-1 and 0 to <'m'>-1, respectively. For example,
8400
8401 ${nhash{8}{64}{supercalifragilisticexpialidocious}}
8402+
8403returns the string ``6/33''.
8404
8405
8406
8407*\$\{perl\{*<'subroutine'>*\}\{*<'arg'>*\}\{*<'arg'>*\}...\}*::
8408cindex:[Perl,use in expanded string]
8409cindex:[expansion,calling Perl from]
8410This item is available only if Exim has been built to include an embedded Perl
8411interpreter. The subroutine name and the arguments are first separately
8412expanded, and then the Perl subroutine is called with those arguments. No
8413additional arguments need be given; the maximum number permitted, including the
8414name of the subroutine, is nine.
8415+
8416The return value of the subroutine is inserted into the expanded string, unless
8417the return value is %undef%. In that case, the expansion fails in the same way
8418as an explicit ``fail'' on a lookup item.
8419The return value is a scalar. Whatever you return is evaluated in a scalar
8420context. For example, if you return the name of a Perl vector, the
8421return value is the size of the vector, not its contents.
8422+
8423If the subroutine exits by calling Perl's %die% function, the expansion fails
8424with the error message that was passed to %die%. More details of the embedded
8425Perl facility are given in chapter <<CHAPperl>>.
8426+
8427The ^redirect^ router has an option called %forbid_filter_perl% which locks
8428out the use of this expansion item in filter files.
8429
8430
8431*\$\{readfile\{*<'file~name'>*\}\{*<'eol~string'>*\}\}*::
8432cindex:[expansion,inserting an entire file]
8433cindex:[file,inserting into expansion]
8434The file name and end-of-line string are first expanded separately. The file is
8435then read, and its contents replace the entire item. All newline characters in
8436the file are replaced by the end-of-line string if it is present. Otherwise,
8437newlines are left in the string.
8438String expansion is not applied to the contents of the file. If you want this,
8439you must wrap the item in an %expand% operator. If the file cannot be read, the
8440string expansion fails.
8441+
8442The ^redirect^ router has an option called %forbid_filter_readfile% which
8443locks out the use of this expansion item in filter files.
8444
8445
8446
8447*\$\{readsocket\{*<'name'>*\}\{*<'request'>*\}\{*<'timeout'>*\}\{*<'eol~string'>*\}\{*<'fail~string'>*\}\}*::
8448cindex:[expansion,inserting from a socket]
8449cindex:[socket, use of in expansion]
8450This item inserts data that is read from a Unix domain socket into the expanded
8451string. The minimal way of using it uses just two arguments:
8452
8453 ${readsocket{/socket/name}{request string}}
8454+
8455Exim connects to the socket, writes the request string (unless it is an
8456empty string) and reads from the socket until an end-of-file is read. A timeout
8457of 5 seconds is applied. Additional, optional arguments extend what can be
8458done. Firstly, you can vary the timeout. For example:
8459
8460 ${readsocket{/socket/name}{request-string}{3s}}
8461+
8462A fourth argument allows you to change any newlines that are in the data
8463that is read, in the same way as for %readfile% (see above). This example turns
8464them into spaces:
8465
8466 ${readsocket{/socket/name}{request-string}{3s}{ }}
8467+
8468As with all expansions, the substrings are expanded before the processing
8469happens. Errors in these sub-expansions cause the expansion to fail. In
8470addition, the following errors can occur:
8471+
8472--
8473- Failure to create a socket file descriptor;
8474
8475- Failure to connect the socket;
8476
8477- Failure to write the request-string;
8478
8479- Timeout on reading from the socket.
8480--
8481+
8482By default, any of these errors causes the expansion to fail. However, if
8483you supply a fifth substring, it is expanded and used when any of the above
8484errors occurs. For example:
8485+
8486....
8487 ${readsocket{/socket/name}{request-string}{3s}{\n}\
8488 {socket failure}}
8489....
8490+
8491You can test for the existence of the socket by wrapping this expansion in
8492`\$\{if exists`, but there is a race condition between that test and the
8493actual opening of the socket, so it is safer to use the fifth argument if you
8494want to be absolutely sure of avoiding an expansion error for a non-existent
8495socket.
8496+
8497The ^redirect^ router has an option called %forbid_filter_readsocket% which
8498locks out the use of this expansion item in filter files.
8499
8500*\$rheader_*<'header~name'>*:~or~\$rh_*<'header~name'>*:*::
8501This item inserts ``raw'' header lines. It is described with the %header%
8502expansion item above.
8503
8504
8505
8506*\$\{run\{*<'command'>*~*<'args'>*\}\{*<'string1'>*\}\{*<'string2'>*\}\}*::
8507cindex:[expansion,running a command]
8508The command and its arguments are first expanded separately, and then the
8509command is run in a separate process, but under the same uid and gid. As in
8510other command executions from Exim, a shell is not used by default. If you want
8511a shell, you must explicitly code it.
8512+
8513cindex:[return code,from %run% expansion]
8514If the command succeeds (gives a zero return code) <'string1'> is expanded and
8515replaces the entire item; during this expansion, the standard output from the
8516command is in the variable $value$. If the command fails, <'string2'>, if
8517present, is expanded. If it is absent, the result is empty. Alternatively,
8518<'string2'> can be the word ``fail'' (not in braces) to force expansion failure
8519if the command does not succeed. If both strings are omitted, the result is the
8520standard output on success, and nothing on failure.
8521+
8522The return code from the command is put in the variable $runrc$, and this
8523remains set afterwards, so in a filter file you can do things like this:
8524
8525 if "${run{x y z}{}}$runrc" is 1 then ...
8526 elif $runrc is 2 then ...
8527 ...
8528 endif
8529+
8530If execution of the command fails (for example, the command does not exist),
8531the return code is 127 -- the same code that shells use for non-existent
8532commands.
8533+
8534*Warning*: In a router or transport, you cannot assume the order in which
8535option values are expanded, except for those pre-conditions whose order of
8536testing is documented. Therefore, you cannot reliably expect to set $runrc$
8537by the expansion of one option, and use it in another.
8538+
8539The ^redirect^ router has an option called %forbid_filter_run% which locks
8540out the use of this expansion item in filter files.
8541
8542
8543*\$\{sg\{*<'subject'>*\}\{*<'regex'>*\}\{*<'replacement'>*\}\}*::
8544cindex:[expansion,string substitution]
8545This item works like Perl's substitution operator (s) with the global (/g)
8546option; hence its name. However, unlike the Perl equivalent, Exim does not
8547modify the subject string; instead it returns the modified string for insertion
8548into the overall expansion. The item takes three arguments: the subject string,
8549a regular expression, and a substitution string. For example
8550
8551 ${sg{abcdefabcdef}{abc}{xyz}}
8552+
8553yields ``xyzdefxyzdef''. Because all three arguments are expanded before use, if
8554any \$ or \ characters are required in the regular expression or in the
8555substitution string, they have to be escaped. For example
8556
8557 ${sg{abcdef}{^(...)(...)\$}{\$2\$1}}
8558+
8559yields ``defabc'', and
8560
8561 ${sg{1=A 4=D 3=C}{\N(\d+)=\N}{K\$1=}}
8562+
8563yields ``K1=A K4=D K3=C''. Note the use of `\N` to protect the contents of
8564the regular expression from string expansion.
8565
8566
8567
8568*\$\{substr\{*<'string1'>*\}\{*<'string2'>*\}\{*<'string3'>*\}\}*::
8569cindex:[%substr%]
8570cindex:[substring extraction]
8571cindex:[expansion,substring extraction]
8572The three strings are expanded; the first two must yield numbers. Call them
8573<'n'> and <'m'>. If you are using fixed values for these numbers, that is, if
8574<'string1'> and <'string2'> do not change when they are expanded, you can use
8575the simpler operator notation that avoids some of the braces:
8576
8577 ${substr_<n>_<m>:<string>}
8578+
8579The second number is optional (in both notations).
8580If it is absent in the simpler format, the preceding underscore must also be
8581omitted.
8582+
8583The %substr% item can be used to extract more general substrings than
8584%length%. The first number, <'n'>, is a starting offset, and <'m'> is the
8585length required. For example
8586
8587 ${substr{3}{2}{$local_part}}
8588+
8589If the starting offset is greater than the string length the result is the
8590null string; if the length plus starting offset is greater than the string
8591length, the result is the right-hand part of the string, starting from the
8592given offset. The first character in the string has offset zero.
8593+
8594The %substr% expansion item can take negative offset values to count
8595from the right-hand end of its operand. The last character is offset -1, the
8596second-last is offset -2, and so on. Thus, for example,
8597
8598 ${substr{-5}{2}{1234567}}
8599+
8600yields ``34''. If the absolute value of a negative offset is greater than the
8601length of the string, the substring starts at the beginning of the string, and
8602the length is reduced by the amount of overshoot. Thus, for example,
8603
8604 ${substr{-5}{2}{12}}
8605+
8606yields an empty string, but
8607
8608 ${substr{-3}{2}{12}}
8609+
8610yields ``1''.
8611+
8612When the second number is omitted from %substr%, the remainder of the string
8613is taken if the offset is positive. If it is negative, all characters in the
8614string preceding the offset point are taken. For example, an offset of -1 and
8615no length, as in these semantically identical examples:
8616
8617 ${substr_-1:abcde}
8618 ${substr{-1}{abcde}}
8619+
8620yields all but the last character of the string, that is, ``abcd''.
8621
8622
8623
8624*\$\{tr\{*<'subject'>*\}\{*<'characters'>*\}\{*<'replacements'>*\}\}*::
8625cindex:[expansion,character translation]
8626This item does single-character translation on its subject string. The second
8627argument is a list of characters to be translated in the subject string. Each
8628matching character is replaced by the corresponding character from the
8629replacement list. For example
8630
8631 ${tr{abcdea}{ac}{13}}
8632+
8633yields `1b3de1`. If there are duplicates in the second character string, the
8634last occurrence is used. If the third string is shorter than the second, its
8635last character is replicated. However, if it is empty, no translation takes
8636place.
8637
8638
8639
8640[[SECTexpop]]
8641Expansion operators
8642~~~~~~~~~~~~~~~~~~~
8643cindex:[expansion,operators]
8644For expansion items that perform transformations on a single argument string,
8645the ``operator'' notation is used because it is simpler and uses fewer braces.
8646The substring is first expanded before the operation is applied to it. The
8647following operations can be performed:
8648
8649*\$\{address:*<'string'>*\}*::
8650cindex:[expansion,RFC 2822 address handling]
8651The string is interpreted as an RFC 2822 address, as it might appear in a
8652header line, and the effective address is extracted from it. If the string does
8653not parse successfully, the result is empty.
8654
8655
8656*\$\{base62:*<'digits'>*\}*::
8657cindex:[base62]
8658cindex:[expansion,conversion to base 62]
8659The string must consist entirely of decimal digits. The number is converted to
8660base 62 (sic) and output as a string of six characters, including leading
8661zeros. *Note*: Just to be absolutely clear: this is 'not' base64
8662encoding.
8663
8664*\$\{base62d:*<'base-62~digits'>*\}*::
8665cindex:[base62]
8666cindex:[expansion,conversion to base 62]
8667The string must consist entirely of base-62 digits. The number is converted to
8668decimal and output as a string.
8669
8670
8671*\$\{domain:*<'string'>*\}*::
8672cindex:[domain,extraction]
8673cindex:[expansion,domain extraction]
8674The string is interpreted as an RFC 2822 address and the domain is extracted
8675from it. If the string does not parse successfully, the result is empty.
8676
8677
8678*\$\{escape:*<'string'>*\}*::
8679cindex:[expansion,escaping non-printing characters]
8680If the string contains any non-printing characters, they are converted to
8681escape sequences starting with a backslash. Whether characters with the most
8682significant bit set (so-called ``8-bit characters'') count as printing or not is
8683controlled by the %print_topbitchars% option.
8684
8685
8686*\$\{eval:*<'string'>*\}*::
8687*\$\{eval10:*<'string'>*\}*::
8688cindex:[expansion,expression evaluation]
8689cindex:[expansion,arithmetic expression]
8690These items supports simple arithmetic in expansion strings. The string (after
8691expansion) must be a conventional arithmetic expression, but it is limited to
8692the four basic operators (plus, minus, times, divide) and parentheses. All
8693operations are carried out using integer arithmetic. Plus and minus have a
8694lower priority than times and divide; operators with the same priority are
8695evaluated from left to right.
8696+
8697For %eval%, numbers may be decimal, octal (starting with ``0'') or hexadecimal
8698(starting with ``0x''). For %eval10%, all numbers are taken as decimal, even if
8699they start with a leading zero. This can be useful when processing numbers
8700extracted from dates or times, which often do have leading zeros.
8701+
8702A number may be followed by ``K'' or ``M'' to multiply it by 1024 or 1024\*1024,
8703respectively. Negative numbers are supported. The result of the computation is
8704a decimal representation of the answer (without ``K'' or ``M''). For example:
8705+
8706&&&
8707`\${eval:1+1} ` yields 2
8708`\${eval:1+2*3} ` yields 7
8709`\${eval:(1+2)*3} ` yields 9
8710&&&
8711+
8712As a more realistic example, in an ACL you might have
8713+
8714....
8715deny message = Too many bad recipients
8716 condition = \
8717 ${if and { \
8718 {>{$rcpt_count}{10}} \
8719 { \
8720 < \
8721 {$recipients_count} \
8722 {${eval:$rcpt_count/2}} \
8723 } \
8724 }{yes}{no}}
8725....
8726+
8727The condition is true if there have been more than 10 RCPT commands and
8728fewer than half of them have resulted in a valid recipient.
8729
8730
8731*\$\{expand:*<'string'>*\}*::
8732cindex:[expansion,re-expansion of substring]
8733The %expand% operator causes a string to be expanded for a second time. For
8734example,
8735
8736 ${expand:${lookup{$domain}dbm{/some/file}{$value}}}
8737+
8738first looks up a string in a file while expanding the operand for %expand%, and
8739then re-expands what it has found.
8740
8741
8742*\$\{from_utf8:*<'string'>*\}*::
8743cindex:[Unicode]
8744cindex:[UTF-8,conversion from]
8745cindex:[expansion,UTF-8 conversion]
8746The world is slowly moving towards Unicode, although there are no standards for
8747email yet. However, other applications (including some databases) are starting
8748to store data in Unicode, using UTF-8 encoding. This operator converts from a
8749UTF-8 string to an ISO-8859-1 string. UTF-8 code values greater than 255 are
8750converted to underscores. The input must be a valid UTF-8 string. If it is not,
8751the result is an undefined sequence of bytes.
8752+
8753Unicode code points with values less than 256 are compatible with ASCII and
8754ISO-8859-1 (also known as Latin-1).
8755For example, character 169 is the copyright symbol in both cases, though the
8756way it is encoded is different. In UTF-8, more than one byte is needed for
8757characters with code values greater than 127, whereas ISO-8859-1 is a
8758single-byte encoding (but thereby limited to 256 characters). This makes
8759translation from UTF-8 to ISO-8859-1 straightforward.
8760
8761
8762*\$\{hash_*<'n'>*_*<'m'>*:*<'string'>*\}*::
8763cindex:[hash function,textual]
8764cindex:[expansion,textual hash]
8765The %hash% operator is a simpler interface to the hashing function that can be
8766used when the two parameters are fixed numbers (as opposed to strings that
8767change when expanded). The effect is the same as
8768
8769 ${hash{<n>}{<m>}{<string>}}
8770+
8771See the description of the general %hash% item above for details. The
8772abbreviation %h% can be used when %hash% is used as an operator.
8773
8774
8775
8776*\$\{hex2b64:*<'hexstring'>*\}*::
8777cindex:[base64 encoding,conversion from hex]
8778cindex:[expansion,hex to base64]
8779This operator converts a hex string into one that is base64 encoded. This can
8780be useful for processing the output of the MD5 and SHA-1 hashing functions.
8781
8782
8783*\$\{lc:*<'string'>*\}*::
8784cindex:[case forcing in strings]
8785cindex:[string,case forcing]
8786cindex:[lower casing]
8787cindex:[expansion,case forcing]
8788This forces the letters in the string into lower-case, for example:
8789
8790 ${lc:$local_part}
8791
8792
8793
8794*\$\{length_*<'number'>*:*<'string'>*\}*::
8795cindex:[expansion,string truncation]
8796The %length% operator is a simpler interface to the %length% function that can
8797be used when the parameter is a fixed number (as opposed to a string that
8798changes when expanded). The effect is the same as
8799
8800 ${length{<number>}{<string>}}
8801+
8802See the description of the general %length% item above for details. Note that
8803%length% is not the same as %strlen%. The abbreviation %l% can be used when
8804%length% is used as an operator.
8805
8806
8807*\$\{local_part:*<'string'>*\}*::
8808cindex:[expansion,local part extraction]
8809The string is interpreted as an RFC 2822 address and the local part is
8810extracted from it. If the string does not parse successfully, the result is
8811empty.
8812
8813
8814*\$\{mask:*<'IP~address'>*/*<'bit~count'>*\}*::
8815cindex:[masked IP address]
8816cindex:[IP address,masking]
8817cindex:[CIDR notation]
8818cindex:[expansion,IP address masking]
8819If the form of the string to be operated on is not an IP address followed by a
8820slash and an integer (that is, a network address in CIDR notation), the
8821expansion fails. Otherwise, this operator converts the IP address to binary,
8822masks off the least significant bits according to the bit count, and converts
8823the result back to text, with mask appended. For example,
8824
8825 ${mask:10.111.131.206/28}
8826+
8827returns the string ``10.111.131.192/28''. Since this operation is expected to be
8828mostly used for looking up masked addresses in files, the result for an IPv6
8829address uses dots to separate components instead of colons, because colon
8830terminates a key string in lsearch files. So, for example,
8831
8832 ${mask:3ffe:ffff:836f:0a00:000a:0800:200a:c031/99}
8833+
8834returns the string
8835
8836 3ffe.ffff.836f.0a00.000a.0800.2000.0000/99
8837+
8838Letters in IPv6 addresses are always output in lower case.
8839
8840
8841*\$\{md5:*<'string'>*\}*::
8842cindex:[MD5 hash]
8843cindex:[expansion,MD5 hash]
8844The %md5% operator computes the MD5 hash value of the string, and returns it as
8845a 32-digit hexadecimal number,
8846in which any letters are in lower case.
8847
8848
8849*\$\{nhash_*<'n'>*_*<'m'>*:*<'string'>*\}*::
8850cindex:[expansion,numeric hash]
8851cindex:[hash function,numeric]
8852The %nhash% operator is a simpler interface to the numeric hashing function
8853that can be used when the two parameters are fixed numbers (as opposed to
8854strings that change when expanded). The effect is the same as
8855
8856 ${nhash{<n>}{<m>}{<string>}}
8857+
8858See the description of the general %nhash% item above for details.
8859
8860
8861*\$\{quote:*<'string'>*\}*::
8862cindex:[quoting,in string expansions]
8863cindex:[expansion,quoting]
8864The %quote% operator puts its argument into double quotes if it
8865is an empty string or
8866contains anything other than letters, digits, underscores, dots, and hyphens.
8867Any occurrences of double quotes and backslashes are escaped with a backslash.
8868Newlines and carriage returns are converted to `\n` and `\r`,
8869respectively For example,
8870
8871 ${quote:ab"*"cd}
8872+
8873becomes
8874
8875 "ab\"*\"cd"
8876+
8877The place where this is useful is when the argument is a substitution from a
8878variable or a message header.
8879
8880*\$\{quote_local_part:*<'string'>*\}*::
8881This operator is like %quote%, except that it quotes the string only if
8882required to do so by the rules of RFC 2822 for quoting local parts. For
8883example, a plus sign would not cause quoting (but it would for %quote%).
8884If you are creating a new email address from the contents of $local_part$
8885(or any other unknown data), you should always use this operator.
8886
8887
8888*\$\{quote_*<'lookup-type'>*:*<'string'>*\}*::
8889cindex:[quoting,lookup-specific]
8890This operator applies lookup-specific quoting rules to the string. Each
8891query-style lookup type has its own quoting rules which are described with
8892the lookups in chapter <<CHAPfdlookup>>. For example,
8893
8894 ${quote_ldap:two * two}
8895+
8896returns
8897
8898 two%20%5C2A%20two
8899+
8900For single-key lookup types, no quoting is ever necessary and this operator
8901yields an unchanged string.
8902
8903
8904*\$\{rxquote:*<'string'>*\}*::
8905cindex:[quoting,in regular expressions]
8906cindex:[regular expressions,quoting]
8907The %rxquote% operator inserts a backslash before any non-alphanumeric
8908characters in its argument. This is useful when substituting the values of
8909variables or headers inside regular expressions.
8910
8911
8912*\$\{rfc2047:*<'string'>*\}*::
8913cindex:[expansion,RFC 2047]
8914This operator encodes text according to the rules of RFC 2047. This is an
8915encoding that is used in header lines to encode non-ASCII characters. It is
8916assumed that the input string is in the encoding specified by the
8917%headers_charset% option, which defaults to ISO-8859-1. If the string contains
8918only characters in the range 33--126, and no instances of the characters
8919
8920 ? = ( ) < > @ , ; : \ " . [ ] _
8921+
8922it is not modified. Otherwise, the result is the RFC 2047 encoding of the
8923string, using as many ``coded words'' as necessary to encode all the
8924characters.
8925
8926
8927
8928*\$\{sha1:*<'string'>*\}*::
8929cindex:[SHA-1 hash]
8930cindex:[expansion,SHA-1 hashing]
8931The %sha1% operator computes the SHA-1 hash value of the string, and returns it
8932as a 40-digit hexadecimal number, in which any letters are in upper case.
8933
8934
8935*\$\{stat:*<'string'>*\}*::
8936cindex:[expansion,statting a file]
8937cindex:[file,extracting characteristics]
8938The string, after expansion, must be a file path. A call to the 'stat()'
8939function is made for this path. If 'stat()' fails, an error occurs and the
8940expansion fails. If it succeeds, the data from the stat replaces the item, as a
8941series of <'name'>=<'value'> pairs, where the values are all numerical,
8942except for the value of ``smode''. The names are: ``mode'' (giving the mode as a
89434-digit octal number), ``smode'' (giving the mode in symbolic format as a
894410-character string, as for the 'ls' command), ``inode'', ``device'', ``links'',
8945``uid'', ``gid'', ``size'', ``atime'', ``mtime'', and ``ctime''. You can extract individual
8946fields using the %extract% expansion item. *Warning*: The file size may be
8947incorrect on 32-bit systems for files larger than 2GB.
8948
8949
8950*\$\{str2b64:*<'string'>*\}*::
8951cindex:[expansion,base64 encoding]
8952cindex:[base64 encoding,in string expansion]
8953This operator converts a string into one that is base64 encoded.
8954
8955
8956
8957*\$\{strlen:*<'string'>*\}*::
8958cindex:[expansion,string length]
8959cindex:[string,length in expansion]
8960The item is replace by the length of the expanded string, expressed as a
8961decimal number. *Note*: Do not confuse %strlen% with %length%.
8962
8963
8964*\$\{substr_*<'start'>*_*<'length'>*:*<'string'>*\}*::
8965cindex:[%substr%]
8966cindex:[substring extraction]
8967cindex:[expansion,substring expansion]
8968The %substr% operator is a simpler interface to the %substr% function that can
8969be used when the two parameters are fixed numbers (as opposed to strings that
8970change when expanded). The effect is the same as
8971
8972 ${substr{<start>}{<length>}{<string>}}
8973+
8974See the description of the general %substr% item above for details. The
8975abbreviation %s% can be used when %substr% is used as an operator.
8976
8977*\$\{time_interval:*<'string'>*\}*::
8978cindex:[%time_interval%]
8979cindex:[time interval,formatting]
8980The argument (after sub-expansion) must be a sequence of decimal digits that
8981represents an interval of time as a number of seconds. It is converted into a
8982number of larger units and output in Exim's normal time format, for example,
8983`1w3d4h2m6s`.
8984
8985*\$\{uc:*<'string'>*\}*::
8986cindex:[case forcing in strings]
8987cindex:[string,case forcing]
8988cindex:[upper casing]
8989cindex:[expansion,case forcing]
8990This forces the letters in the string into upper-case.
8991
8992
8993
8994
8995
8996
8997[[SECTexpcond]]
8998Expansion conditions
8999~~~~~~~~~~~~~~~~~~~~
9000cindex:[expansion,conditions]
9001The following conditions are available for testing by the %\$\{if% construct
9002while expanding strings:
9003
9004*!*<'condition'>::
9005cindex:[expansion,negating a condition]
9006Preceding any condition with an exclamation mark negates the result of the
9007condition.
9008
9009<'symbolic~operator'>~*\{*<'string1'>*\}\{*<'string2'>*\}*::
9010cindex:[numeric comparison]
9011cindex:[expansion,numeric comparison]
9012There are a number of symbolic operators for doing numeric comparisons. They
9013are:
9014+
9015&&&
9016`= ` equal
9017`== ` equal
9018`> ` greater
9019`>= ` greater or equal
9020`< ` less
9021`<= ` less or equal
9022&&&
9023+
9024For example,
9025
9026 ${if >{$message_size}{10M} ...
9027+
9028Note that the general negation operator provides for inequality testing. The
9029two strings must take the form of optionally signed decimal integers,
9030optionally followed by one of the letters ``K'' or ``M'' (in either upper or
9031lower case), signifying multiplication by 1024 or 1024\*1024, respectively.
9032
9033*crypteq~\{*<'string1'>*\}\{*<'string2'>*\}*::
9034cindex:[expansion,encrypted comparison]
9035cindex:[encrypted strings, comparing]
9036This condition is included in the Exim binary if it is built to support any
9037authentication mechanisms (see chapter <<CHAPSMTPAUTH>>). Otherwise, it is
9038necessary to define SUPPORT_CRYPTEQ in _Local/Makefile_ to get %crypteq%
9039included in the binary.
9040+
9041The %crypteq% condition has two arguments. The first is encrypted and compared
9042against the second, which is already encrypted. The second string may be in the
9043LDAP form for storing encrypted strings, which starts with the encryption type
9044in curly brackets, followed by the data. If the second string does not begin
9045with ``\{'' it is assumed to be encrypted with 'crypt()' or 'crypt16()' (see
9046below), since such strings cannot begin with ``\{''. Typically this will be a
9047field from a password file.
9048+
9049An example of an encrypted string in LDAP form is:
9050
9051 {md5}CY9rzUYh03PK3k6DJie09g==
9052+
9053If such a string appears directly in an expansion, the curly brackets have to
9054be quoted, because they are part of the expansion syntax. For example:
9055
9056 ${if crypteq {test}{\{md5\}CY9rzUYh03PK3k6DJie09g==}{yes}{no}}
9057+
9058The following encryption types (whose names are matched case-independently) are
9059supported:
9060+
9061--
9062- cindex:[MD5 hash]
9063cindex:[base64 encoding,in encrypted password]
9064%\{md5\}% computes the MD5 digest of the first string, and expresses this as
9065printable characters to compare with the remainder of the second string. If the
9066length of the comparison string is 24, Exim assumes that it is base64 encoded
9067(as in the above example). If the length is 32, Exim assumes that it is a
9068hexadecimal encoding of the MD5 digest. If the length not 24 or 32, the
9069comparison fails.
9070
9071- cindex:[SHA-1 hash]
9072%\{sha1\}% computes the SHA-1 digest of the first string, and expresses this as
9073printable characters to compare with the remainder of the second string. If the
9074length of the comparison string is 28, Exim assumes that it is base64 encoded.
9075If the length is 40, Exim assumes that it is a hexadecimal encoding of the
9076SHA-1 digest. If the length is not 28 or 40, the comparison fails.
9077
9078- cindex:['crypt()']
9079%\{crypt\}% calls the 'crypt()' function, which traditionally used to use only
9080the first eight characters of the password. However, in modern operating
9081systems this is no longer true, and in many cases the entire password is used,
9082whatever its length.
9083
9084- cindex:['crypt16()']
9085%\{crypt16\}% calls the 'crypt16()' function (also known as 'bigcrypt()'),
9086which was orginally created to use up to 16 characters of the password. Again,
9087in modern operating systems, more characters may be used.
9088--
9089+
9090Exim has its own version of 'crypt16()' (which is just a double call to
9091'crypt()'). For operating systems that have their own version, setting
9092HAVE_CRYPT16 in _Local/Makefile_ when building Exim causes it to use the
9093operating system version instead of its own. This option is set by default in
9094the OS-dependent _Makefile_ for those operating systems that are known to
9095support 'crypt16()'.
9096+
9097If you do not put any curly bracket encryption type in a %crypteq% comparison,
9098the default is either `\{crypt\}` or `\{crypt16\}`, as determined by the
9099setting of DEFAULT_CRYPT in _Local/Makefile_. The default default is
9100`\{crypt\}`. Whatever the default, you can always use either function by
9101specifying it explicitly in curly brackets.
9102+
9103Note that if a password is no longer than 8 characters, the results of
9104encrypting it with 'crypt()' and 'crypt16()' are identical. That means that
9105'crypt16()' is backwards compatible, as long as nobody feeds it a password
9106longer than 8 characters.
9107
9108
9109*def:*<'variable~name'>*::
9110cindex:[expansion,checking for empty variable]
9111The %def% condition must be followed by the name of one of the expansion
9112variables defined in section <<SECTexpvar>>. The condition is true if the named
9113expansion variable does not contain the empty string, for example
9114
9115 ${if def:sender_ident {from $sender_ident}}
9116+
9117Note that the variable name is given without a leading %\$% character. If the
9118variable does not exist, the expansion fails.
9119
9120*def:header_*<'header~name'>*:*~~or~~*def:h_*<'header~name'>*:*::
9121cindex:[expansion,checking header line existence]
9122This condition is true if a message is being processed and the named header
9123exists in the message. For example,
9124
9125 ${if def:header_reply-to:{$h_reply-to:}{$h_from:}}
9126+
9127Note that no %\$% appears before %header_% or %h_% in the condition,
9128and that header names must be terminated by colons if white space does not
9129follow.
9130
9131*eq~\{*<'string1'>*\}\{*<'string2'>*\}*::
9132cindex:[string,comparison]
9133cindex:[expansion,string comparison]
9134The two substrings are first expanded. The condition is true if the two
9135resulting strings are identical, including the case of letters.
9136
9137*eqi~\{*<'string1'>*\}\{*<'string2'>*\}*::
9138cindex:[string,comparison]
9139cindex:[expansion,string comparison]
9140The two substrings are first expanded. The condition is true if the two
9141resulting strings are identical when compared in a case-independent way.
9142
9143*exists~\{*<'file~name'>*\}*::
9144cindex:[expansion,file existence test]
9145cindex:[file,existence test]
9146The substring is first expanded and then interpreted as an absolute path. The
9147condition is true if the named file (or directory) exists. The existence test
9148is done by calling the 'stat()' function. The use of the %exists% test in
9149users' filter files may be locked out by the system administrator.
9150
9151*first_delivery*::
9152cindex:[delivery,first]
9153cindex:[first delivery]
9154cindex:[expansion,first delivery test]
9155This condition, which has no data, is true during a message's first delivery
9156attempt. It is false during any subsequent delivery attempts.
9157
9158*ge~\{*<'string1'>*\}\{*<'string2'>*\}*::
9159See *gei*.
9160
9161*gei~\{*<'string1'>*\}\{*<'string2'>*\}*::
9162cindex:[string,comparison]
9163cindex:[expansion,string comparison]
9164The two substrings are first expanded. The condition is true if the first
9165string is lexically greater than or equal to the second string: for %ge% the
9166comparison includes the case of letters, whereas for %gei% the comparison is
9167case-independent.
9168
9169*gt~\{*<'string1'>*\}\{*<'string2'>*\}*::
9170See *gti*.
9171
9172*gti~\{*<'string1'>*\}\{*<'string2'>*\}*::
9173cindex:[string,comparison]
9174cindex:[expansion,string comparison]
9175The two substrings are first expanded. The condition is true if the first
9176string is lexically greater than the second string: for %gt% the comparison
9177includes the case of letters, whereas for %gti% the comparison is
9178case-independent.
9179
9180*isip~\{*<'string'>*\}*::
9181See *isip6*.
9182
9183*isip4~\{*<'string'>*\}*::
9184See *isip6*.
9185
9186*isip6~\{*<'string'>*\}*::
9187cindex:[IP address,testing string format]
9188cindex:[string,testing for IP address]
9189The substring is first expanded, and then tested to see if it has the form of
9190an IP address. Both IPv4 and IPv6 addresses are valid for %isip%, whereas
9191%isip4% and %isip6% test just for IPv4 or IPv6 addresses, respectively. For
9192example, you could use
9193
9194 ${if isip4{$sender_host_address}...
9195+
9196to test which version of IP an incoming SMTP connection is using.
9197
9198
9199*ldapauth~\{*<'ldap~query'>*\}*::
9200cindex:[LDAP,use for authentication]
9201cindex:[expansion,LDAP authentication test]
9202This condition supports user authentication using LDAP. See section
9203<<SECTldap>> for details of how to use LDAP in lookups and the syntax of
9204queries. For this use, the query must contain a user name and password. The
9205query itself is not used, and can be empty. The condition is true if the
9206password is not empty, and the user name and password are accepted by the LDAP
9207server. An empty password is rejected without calling LDAP because LDAP binds
9208with an empty password are considered anonymous regardless of the username, and
9209will succeed in most configurations. See chapter <<CHAPSMTPAUTH>> for details
9210of SMTP authentication, and chapter <<CHAPplaintext>> for an example of how
9211this can be used.
9212
9213
9214*le~\{*<'string1'>*\}\{*<'string2'>*\}*::
9215See *lei*.
9216
9217*lei~\{*<'string1'>*\}\{*<'string2'>*\}*::
9218cindex:[string,comparison]
9219cindex:[expansion,string comparison]
9220The two substrings are first expanded. The condition is true if the first
9221string is lexically less than or equal to the second string: for %le% the
9222comparison includes the case of letters, whereas for %lei% the comparison is
9223case-independent.
9224
9225*lt~\{*<'string1'>*\}\{*<'string2'>*\}*::
9226See *lti*.
9227
9228*lti~\{*<'string1'>*\}\{*<'string2'>*\}*::
9229cindex:[string,comparison]
9230cindex:[expansion,string comparison]
9231The two substrings are first expanded. The condition is true if the first
9232string is lexically less than the second string: for %lt% the comparison
9233includes the case of letters, whereas for %lti% the comparison is
9234case-independent.
9235
9236
9237*match~\{*<'string1'>*\}\{*<'string2'>*\}*::
9238cindex:[expansion,regular expression comparison]
9239cindex:[regular expressions,match in expanded string]
9240The two substrings are first expanded. The second is then treated as a regular
9241expression and applied to the first. Because of the pre-expansion, if the
9242regular expression contains dollar, or backslash characters, they must be
9243escaped. Care must also be taken if the regular expression contains braces
9244(curly brackets). A closing brace must be escaped so that it is not taken as a
9245premature termination of <'string2'>. The easiest approach is to use the
9246`\N` feature to disable expansion of the regular expression.
9247For example,
9248
9249 ${if match {$local_part}{\N^\d{3}\N} ...
9250+
9251If the whole expansion string is in double quotes, further escaping of
9252backslashes is also required.
9253+
9254The condition is true if the regular expression match succeeds.
9255The regular expression is not required to begin with a circumflex
9256metacharacter, but if there is no circumflex, the expression is not anchored,
9257and it may match anywhere in the subject, not just at the start. If you want
9258the pattern to match at the end of the subject, you must include the `\$`
9259metacharacter at an appropriate point.
9260+
9261cindex:[numerical variables ($1$ $2$ etc),in %if% expansion]
9262At the start of an %if% expansion the values of the numeric variable
9263substitutions $1$ etc. are remembered. Obeying a %match% condition that
9264succeeds causes them to be reset to the substrings of that condition and they
9265will have these values during the expansion of the success string. At the end
9266of the %if% expansion, the previous values are restored. After testing a
9267combination of conditions using %or%, the subsequent values of the numeric
9268variables are those of the condition that succeeded.
9269
9270*match_domain~\{*<'string1'>*\}\{*<'string2'>*\}*::
9271See *match_local_part*.
9272
9273*match_address~\{*<'string1'>*\}\{*<'string2'>*\}*::
9274See *match_local_part*.
9275
9276*match_local_part~\{*<'string1'>*\}\{*<'string2'>*\}*::
9277cindex:[domain list,in expansion condition]
9278cindex:[address list,in expansion condition]
9279cindex:[local part list,in expansion condition]
9280These conditions make it possible to test domain, address, and local
9281part lists within expansions. Each condition requires two arguments: an item
9282and a list to match. A trivial example is:
9283
9284 ${if match_domain{a.b.c}{x.y.z:a.b.c:p.q.r}{yes}{no}}
9285+
9286In each case, the second argument may contain any of the allowable items for a
9287list of the appropriate type. Also, because the second argument (after
9288expansion) is a standard form of list, it is possible to refer to a named list.
9289Thus, you can use conditions like this:
9290
9291 ${if match_domain{$domain}{+local_domains}{...
9292+
9293cindex:[`+caseful`]
9294For address lists, the matching starts off caselessly, but the `+caseful`
9295item can be used, as in all address lists, to cause subsequent items to
9296have their local parts matched casefully. Domains are always matched
9297caselessly.
9298+
9299*Note*: Host lists are 'not' supported in this way. This is because
9300hosts have two identities: a name and an IP address, and it is not clear
9301how to specify cleanly how such a test would work. At least, I haven't come
9302up with anything yet.
9303
9304*pam~\{*<'string1'>*:*<'string2'>*:...\}*::
9305cindex:[PAM authentication]
9306cindex:[AUTH,with PAM]
9307cindex:[Solaris,PAM support]
9308cindex:[expansion,PAM authentication test]
9309'Pluggable Authentication Modules'
9310(*http://www.kernel.org/pub/linux/libs/pam/[]*)
9311are a facility that is available in the latest releases of Solaris and in some
9312GNU/Linux distributions. The Exim support, which is intended for use in
9313conjunction with the SMTP AUTH command, is available only if Exim is
9314compiled with
9315
9316 SUPPORT_PAM=yes
9317+
9318in _Local/Makefile_. You probably need to add %-lpam% to EXTRALIBS, and
9319in some releases of GNU/Linux %-ldl% is also needed.
9320+
9321The argument string is first expanded, and the result must be a
9322colon-separated list of strings. Leading and trailing whitespace is ignored.
9323The PAM module is initialized with the service name ``exim'' and the user name
9324taken from the first item in the colon-separated data string (<'string1'>). The
9325remaining items in the data string are passed over in response to requests from
9326the authentication function. In the simple case there will only be one request,
9327for a password, so the data consists of just two strings.
9328+
9329There can be problems if any of the strings are permitted to contain colon
9330characters. In the usual way, these have to be doubled to avoid being taken as
9331separators. If the data is being inserted from a variable, the %sg% expansion
9332item can be used to double any existing colons. For example, the configuration
9333of a LOGIN authenticator might contain this setting:
9334
9335 server_condition = ${if pam{$1:${sg{$2}{:}{::}}}{yes}{no}}
9336+
9337For a PLAIN authenticator you could use:
9338
9339 server_condition = ${if pam{$2:${sg{$3}{:}{::}}}{yes}{no}}
9340+
9341In some operating systems, PAM authentication can be done only from a process
9342running as root. Since Exim is running as the Exim user when receiving
9343messages, this means that PAM cannot be used directly in those systems.
9344A patched version of the 'pam_unix' module that comes with the
9345Linux PAM package is available from *http://www.e-admin.de/pam_exim/[]*.
9346The patched module allows one special uid/gid combination, in addition to root,
9347to authenticate. If you build the patched module to allow the Exim user and
9348group, PAM can then be used from an Exim authenticator.
9349
9350
9351*pwcheck~\{*<'string1'>*:*<'string2'>*\}*::
9352cindex:['pwcheck' daemon]
9353cindex:[Cyrus]
9354cindex:[expansion,'pwcheck' authentication test]
9355This condition supports user authentication using the Cyrus 'pwcheck' daemon.
9356This is one way of making it possible for passwords to be checked by a process
9357that is not running as root. *Note:* The use of 'pwcheck' is now deprecated.
9358Its replacement is 'saslauthd' (see below).
9359+
9360The pwcheck support is not included in Exim by default. You need to specify
9361the location of the pwcheck daemon's socket in _Local/Makefile_ before
9362building Exim. For example:
9363
9364 CYRUS_PWCHECK_SOCKET=/var/pwcheck/pwcheck
9365+
9366You do not need to install the full Cyrus software suite in order to use
9367the pwcheck daemon. You can compile and install just the daemon alone
9368from the Cyrus SASL library. Ensure that 'exim' is the only user that has
9369access to the _/var/pwcheck_ directory.
9370+
9371The %pwcheck% condition takes one argument, which must be the user name and
9372password, separated by a colon. For example, in a LOGIN authenticator
9373configuration, you might have this:
9374
9375 server_condition = ${if pwcheck{$1:$2}{1}{0}}
9376
9377
9378*queue_running*::
9379cindex:[queue runner,detecting when delivering from]
9380cindex:[expansion,queue runner test]
9381This condition, which has no data, is true during delivery attempts that are
9382initiated by queue runner processes, and false otherwise.
9383
9384
9385*radius~\{*<'authentication~string'>*\}*::
9386cindex:[Radius]
9387cindex:[expansion,Radius authentication]
9388Radius authentication (RFC 2865) is supported in a similar way to PAM. You must
9389set RADIUS_CONFIG_FILE in _Local/Makefile_ to specify the location of
9390the Radius client configuration file in order to build Exim with Radius
9391support.
9392+
9393With just that one setting, Exim expects to be linked with the %radiusclient%
9394library. You can also link Exim with the %libradius% library that comes with
9395FreeBSD. To do this, set
9396
9397 RADIUS_LIB_TYPE=RADLIB
9398+
9399in _Local/Makefile_, in addition to setting RADIUS_CONFIGURE_FILE.
9400You may also have to supply a suitable setting in EXTRALIBS so that the
9401Radius library can be found when Exim is linked.
9402+
9403The string specified by RADIUS_CONFIG_FILE is expanded and passed to the
9404Radius client library, which calls the Radius server. The condition is true if
9405the authentication is successful. For example
9406
9407 server_condition = \$\{if radius\{<arguments>\}\{yes\}\{no\}\}
9408
9409
9410
9411
9412*saslauthd~\{\{*<'user'>*\}\{*<'password'>*\}\{*<'service'>*\}\{*<'realm'>*\}\}*::
9413cindex:['saslauthd' daemon]
9414cindex:[Cyrus]
9415cindex:[expansion,'saslauthd' authentication test]
9416This condition supports user authentication using the Cyrus 'saslauthd'
9417daemon. This replaces the older 'pwcheck' daemon, which is now deprecated.
9418Using this daemon is one way of making it possible for passwords to be checked
9419by a process that is not running as root.
9420+
9421The saslauthd support is not included in Exim by default. You need to specify
9422the location of the saslauthd daemon's socket in _Local/Makefile_ before
9423building Exim. For example:
9424
9425 CYRUS_SASLAUTHD_SOCKET=/var/state/saslauthd/mux
9426+
9427You do not need to install the full Cyrus software suite in order to use
9428the saslauthd daemon. You can compile and install just the daemon alone
9429from the Cyrus SASL library.
9430+
9431Up to four arguments can be supplied to the %saslauthd% condition, but only two
9432are mandatory. For example:
9433
9434 server_condition = ${if saslauthd{{$1}{$2}}{1}{0}}
9435+
9436The service and the realm are optional (which is why the arguments are enclosed
9437in their own set of braces). For details of the meaning of the service and
9438realm, and how to run the daemon, consult the Cyrus documentation.
9439
9440
9441
9442Combining expansion conditions
9443~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9444cindex:[expansion,combining conditions]
9445Several conditions can be tested at once by combining them using the %and% and
9446%or% combination conditions. Note that %and% and %or% are complete conditions
9447on their own, and precede their lists of sub-conditions. Each sub-condition
9448must be enclosed in braces within the overall braces that contain the list. No
9449repetition of %if% is used.
9450
9451
9452*or~\{\{*<'cond1'>*\}\{*<'cond2'>*\}...\}*::
9453cindex:[``or'' expansion condition]
9454cindex:[expansion,``or'' of conditions]
9455The sub-conditions are evaluated from left to right. The condition is true if
9456any one of the sub-conditions is true.
9457For example,
9458
9459 ${if or {{eq{$local_part}{spqr}}{eq{$domain}{testing.com}}}...
9460+
9461When a true sub-condition is found, the following ones are parsed but not
9462evaluated. If there are several ``match'' sub-conditions the values of the
9463numeric variables afterwards are taken from the first one that succeeds.
9464
9465*and~\{\{*<'cond1'>*\}\{*<'cond2'>*\}...\}*::
9466cindex:[``and'' expansion condition]
9467cindex:[expansion,``and'' of conditions]
9468The sub-conditions are evaluated from left to right. The condition is true if
9469all of the sub-conditions are true. If there are several ``match''
9470sub-conditions, the values of the numeric variables afterwards are taken from
9471the last one. When a false sub-condition is found, the following ones are
9472parsed but not evaluated.
9473
9474
9475
9476
9477[[SECTexpvar]]
9478Expansion variables
9479~~~~~~~~~~~~~~~~~~~
9480cindex:[expansion variables, list of]
9481This section contains an alphabetical list of all the expansion variables. Some
9482of them are available only when Exim is compiled with specific options such as
9483support for TLS or the content scanning extension.
9484
9485$0$, $1$, etc::
9486cindex:[numerical variables ($1$ $2$ etc)]
9487When a %match% expansion condition succeeds, these variables contain the
9488captured substrings identified by the regular expression during subsequent
9489processing of the success string of the containing %if% expansion item. They
9490may also be set externally by some other matching process which precedes the
9491expansion of the string. For example, the commands available in Exim filter
9492files include an %if% command with its own regular expression matching
9493condition.
9494
9495$acl_c0$ -- $acl_c9$::
9496Values can be placed in these variables by the %set% modifier in an ACL. The
9497values persist throughout the lifetime of an SMTP connection. They can be used
9498to pass information between ACLs and different invocations of the same ACL.
9499When a message is received, the values of these variables are saved with the
9500message, and can be accessed by filters, routers, and transports during
9501subsequent delivery.
9502
9503$acl_m0$ -- $acl_m9$::
9504Values can be placed in these variables by the %set% modifier in an ACL. They
9505retain their values while a message is being received, but are reset
9506afterwards. They are also reset by MAIL, RSET, EHLO, HELO, and after starting a
9507TLS session. When a message is received, the values of these variables are
9508saved with the message, and can be accessed by filters, routers, and transports
9509during subsequent delivery.
9510
9511$acl_verify_message$::
9512During the expansion of the %message% and %log_message% modifiers in an ACL
9513statement after an address verification has failed, this variable contains the
9514original failure message that will be overridden by the expanded string.
9515
9516$address_data$::
9517This variable is set by means of the %address_data% option in routers. The
9518value then remains with the address while it is processed by subsequent routers
9519and eventually a transport. If the transport is handling multiple addresses,
9520the value from the first address is used. See chapter <<CHAProutergeneric>> for
9521more details. *Note*: the contents of $address_data$ are visible in user filter
9522files.
9523+
9524If $address_data$ is set when the routers are called from an ACL to verify
9525a recipient address, the final value is still in the variable for subsequent
9526conditions and modifiers of the ACL statement. If routing the address caused it
9527to be redirected to just one address, the child address is also routed as part
9528of the verification, and in this case the final value of $address_data$ is
9529from the child's routing.
9530+
9531If $address_data$ is set when the routers are called from an ACL to verify a
9532sender address, the final value is also preserved, but this time in
9533$sender_address_data$, to distinguish it from data from a recipient
9534address.
9535+
9536In both cases (recipient and sender verification), the value does not persist
9537after the end of the current ACL statement. If you want to preserve
9538these values for longer, you can save them in ACL variables.
9539
9540$address_file$::
9541When, as a result of aliasing, forwarding, or filtering, a message is directed
9542to a specific file, this variable holds the name of the file when the transport
9543is running. At other times, the variable is empty. For example, using the
9544default configuration, if user %r2d2% has a _.forward_ file containing
9545
9546 /home/r2d2/savemail
9547+
9548then when the ^address_file^ transport is running, $address_file$
9549contains ``/home/r2d2/savemail''.
9550+
9551cindex:[Sieve filter,value of $address_file$]
9552For Sieve filters, the value may be ``inbox'' or a relative folder name. It is
9553then up to the transport configuration to generate an appropriate absolute path
9554to the relevant file.
9555
9556$address_pipe$::
9557When, as a result of aliasing or forwarding, a message is directed to a pipe,
9558this variable holds the pipe command when the transport is running.
9559
9560$authenticated_id$::
9561cindex:[authentication,id]
9562When a server successfully authenticates a client it may be configured to
9563preserve some of the authentication information in the variable
9564$authenticated_id$ (see chapter <<CHAPSMTPAUTH>>). For example, a user/password
9565authenticator configuration might preserve the user name for use in the
9566routers. When a message is submitted locally (that is, not over a TCP
9567connection), the value of $authenticated_id$ is the login name of the calling
9568process.
9569
9570$authenticated_sender$::
9571cindex:[sender,authenticated]
9572cindex:[authentication,sender]
9573cindex:[AUTH,on MAIL command]
9574When acting as a server, Exim takes note of the AUTH= parameter on an incoming
9575SMTP MAIL command if it believes the sender is sufficiently trusted, as
9576described in section <<SECTauthparamail>>. Unless the data is the string
9577``<>'', it is set as the authenticated sender of the message, and the value is
9578available during delivery in the $authenticated_sender$ variable. If the sender
9579is not trusted, Exim accepts the syntax of AUTH=, but ignores the data.
9580+
9581When a message is submitted locally (that is, not over a TCP connection), the
9582value of $authenticated_sender$ is an address constructed from the login
9583name of the calling process and $qualify_domain$.
9584
9585
9586$authentication_failed$::
9587cindex:[authentication,failure]
9588This variable is set to ``1'' in an Exim server if a client issues an AUTH
9589command that does not succeed. Otherwise it is set to ``0''. This makes it
9590possible to distinguish between ``did not try to authenticate''
9591($sender_host_authenticated$ is empty and $authentication_failed$ is set to
9592``0'') and ``tried to authenticate but failed'' ($sender_host_authenticated$ is
9593empty and $authentication_failed$ is set to ``1''). Failure includes any
9594negative response to an AUTH command, including (for example) an attempt to use
9595an undefined mechanism.
9596
9597$body_linecount$::
9598cindex:[message body, line count]
9599cindex:[body of message,line count]
9600When a message is being received or delivered, this variable contains the
9601number of lines in the message's body.
9602
9603$body_zerocount$::
9604cindex:[message body, binary zero count]
9605cindex:[body of message,binary zero count]
9606cindex:[binary zero,in message body]
9607When a message is being received or delivered, this variable contains the
9608number of binary zero bytes in the message's body.
9609
9610$bounce_recipient$::
9611This is set to the recipient address of a bounce message while Exim is creating
9612it. It is useful if a customized bounce message text file is in use (see
9613chapter <<CHAPemsgcust>>).
9614
9615$bounce_return_size_limit$::
9616This contains the value set in the %bounce_return_size_limit% option, rounded
9617up to a multiple of 1000. It is useful when a customized error message text
9618file is in use (see chapter <<CHAPemsgcust>>).
9619
9620$caller_gid$::
9621cindex:[gid (group id),caller]
9622The real group id under which the process that called Exim was running. This is
9623not the same as the group id of the originator of a message (see
9624$originator_gid$). If Exim re-execs itself, this variable in the new
9625incarnation normally contains the Exim gid.
9626
9627$caller_uid$::
9628cindex:[uid (user id),caller]
9629The real user id under which the process that called Exim was running. This is
9630not the same as the user id of the originator of a message (see
9631$originator_uid$). If Exim re-execs itself, this variable in the new
9632incarnation normally contains the Exim uid.
9633
9634$compile_date$::
9635The date on which the Exim binary was compiled.
9636
9637$compile_number$::
9638The building process for Exim keeps a count of the number
9639of times it has been compiled. This serves to distinguish different
9640compilations of the same version of the program.
9641
9642$demime_errorlevel$::
9643This variable is available when Exim is compiled with
9644the content-scanning extension and the obsolete %demime% condition. For
9645details, see section <<SECTdemimecond>>.
9646
9647$demime_reason$::
9648This variable is available when Exim is compiled with the
9649content-scanning extension and the obsolete %demime% condition. For details,
9650see section <<SECTdemimecond>>.
9651
9652
9653$dnslist_domain$::
9654cindex:[black list (DNS)]
9655When a client host is found to be on a DNS (black) list,
9656the list's domain name is put into this variable so that it can be included in
9657the rejection message.
9658
9659$dnslist_text$::
9660When a client host is found to be on a DNS (black) list, the
9661contents of any associated TXT record are placed in this variable.
9662
9663$dnslist_value$::
9664When a client host is found to be on a DNS (black) list,
9665the IP address from the resource record is placed in this variable.
9666If there are multiple records, all the addresses are included, comma-space
9667separated.
9668
9669$domain$::
9670When an address is being routed, or delivered on its own, this
9671variable contains the domain. Global address rewriting happens when a message
9672is received, so the value of $domain$ during routing and delivery is the
9673value after rewriting. $domain$ is set during user filtering, but not during
9674system filtering, because a message may have many recipients and the system
9675filter is called just once.
9676+
9677When more than one address is being delivered at once (for example, several
9678RCPT commands in one SMTP delivery), $domain$ is set only if they all
9679have the same domain. Transports can be restricted to handling only one domain
9680at a time if the value of $domain$ is required at transport time -- this is
9681the default for local transports. For further details of the environment in
9682which local transports are run, see chapter <<CHAPenvironment>>.
9683+
9684cindex:[%delay_warning_condition%]
9685At the end of a delivery, if all deferred addresses have the same domain, it is
9686set in $domain$ during the expansion of %delay_warning_condition%.
9687+
9688The $domain$ variable is also used in some other circumstances:
9689
9690- When an ACL is running for a RCPT command, $domain$ contains the domain
9691of the recipient address.
9692*Note:* the domain of the sender address is in $sender_address_domain$
9693at MAIL time and at RCPT time. $domain$ is not set for the MAIL
9694ACL.
9695
9696- When a rewrite item is being processed (see chapter <<CHAPrewrite>>), $domain$
9697contains the domain portion of the address that is being rewritten; it can be
9698used in the expansion of the replacement address, for example, to rewrite
9699domains by file lookup.
9700
9701- With one important exception, whenever a domain list is being scanned,
9702$domain$ contains the subject domain. *Exception*: When a domain list in
9703a %sender_domains% condition in an ACL is being processed, the subject domain
9704is in $sender_address_domain$ and not in $domain$. It works this way so
9705that, in a RCPT ACL, the sender domain list can be dependent on the
9706recipient domain (which is what is in $domain$ at this time).
9707
9708- cindex:[ETRN,value of $domain$]
9709cindex:[%smtp_etrn_command%]
9710When the %smtp_etrn_command% option is being expanded, $domain$ contains
9711the complete argument of the ETRN command (see section <<SECTETRN>>).
9712
9713
9714$domain_data$::
9715When the %domains% option on a router matches a domain by
9716means of a lookup, the data read by the lookup is available during the running
9717of the router as $domain_data$. In addition, if the driver routes the
9718address to a transport, the value is available in that transport. If the
9719transport is handling multiple addresses, the value from the first address is
9720used.
9721+
9722$domain_data$ is also set when the %domains% condition in an ACL matches a
9723domain by means of a lookup. The data read by the lookup is available during
9724the rest of the ACL statement. In all other situations, this variable expands
9725to nothing.
9726
9727$exim_gid$::
9728This variable contains the numerical value of the Exim group id.
9729
9730$exim_path$::
9731This variable contains the path to the Exim binary.
9732
9733$exim_uid$::
9734This variable contains the numerical value of the Exim user id.
9735
9736$found_extension$::
9737This variable is available when Exim is compiled with the
9738content-scanning extension and the obsolete %demime% condition. For details,
9739see section <<SECTdemimecond>>.
9740
9741$header_$<'name'>::
9742This is not strictly an expansion variable. It is
9743expansion syntax for inserting the message header line with the given name.
9744Note that the name must be terminated by colon or white space, because it may
9745contain a wide variety of characters.
9746Note also that braces must 'not' be used.
9747
9748$home$::
9749When the %check_local_user% option is set for a router, the user's home
9750directory is placed in $home$ when the check succeeds. In particular, this
9751means it is set during the running of users' filter files. A router may also
9752explicitly set a home directory for use by a transport; this can be overridden
9753by a setting on the transport itself.
9754+
9755When running a filter test via the %-bf% option, $home$ is set to the value
9756of the environment variable HOME.
9757
9758$host$::
9759When the ^smtp^ transport is expanding its options for encryption using TLS,
9760$host$ contains the name of the host to which it is connected. Likewise, when
9761used in the client part of an authenticator configuration (see chapter
9762<<CHAPSMTPAUTH>>), $host$ contains the name of the server to which the client
9763is connected.
9764+
9765cindex:[transport,filter]
9766cindex:[filter,transport filter]
9767When used in a transport filter (see chapter <<CHAPtransportgeneric>>) $host$
9768refers to the host involved in the current connection. When a local transport
9769is run as a result of a router that sets up a host list, $host$ contains the
9770name of the first host.
9771
9772$host_address$::
9773This variable is set to the remote host's IP address whenever $host$ is set for
9774a remote connection. It is also set to the IP address that is being checked
9775when the %ignore_target_hosts% option is being processed.
9776
9777$host_data$::
9778If a %hosts% condition in an ACL is satisfied by means of a lookup, the result
9779of the lookup is made available in the $host_data$ variable. This
9780allows you, for example, to do things like this:
9781
9782 deny hosts = net-lsearch;/some/file
9783 message = $host_data
9784
9785
9786$host_lookup_deferred$::
9787cindex:[host name lookup, failure of]
9788This variable normally contains ``0'', as does $host_lookup_failed$. When a
9789message comes from a remote host and there is an attempt to look up the host's
9790name from its IP address, and the attempt is not successful, one of these
9791variables is set to ``1''.
9792+
9793--
9794- If the lookup receives a definite negative response (for example, a DNS lookup
9795succeeded, but no records were found), $host_lookup_failed$ is set to ``1''.
9796
9797- If there is any kind of problem during the lookup, such that Exim cannot
9798tell whether or not the host name is defined (for example, a timeout for a DNS
9799lookup), $host_lookup_deferred$ is set to ``1''.
9800--
9801+
9802Looking up a host's name from its IP address consists of more than just a
9803single reverse lookup. Exim checks that a forward lookup of at least one of the
9804names it receives from a reverse lookup yields the original IP address. If this
9805is not the case, Exim does not accept the looked up name(s), and
9806$host_lookup_failed$ is set to ``1''. Thus, being able to find a name from an
9807IP address (for example, the existence of a PTR record in the DNS) is not
9808sufficient on its own for the success of a host name lookup. If the reverse
9809lookup succeeds, but there is a lookup problem such as a timeout when checking
9810the result, the name is not accepted, and $host_lookup_deferred$ is set to
9811``1''. See also $sender_host_name$.
9812
9813$host_lookup_failed$::
9814See $host_lookup_deferred$.
9815
9816
9817$inode$::
9818The only time this variable is set is while expanding the %directory_file%
9819option in the ^appendfile^ transport. The variable contains the inode number
9820of the temporary file which is about to be renamed. It can be used to construct
9821a unique name for the file.
9822
9823$interface_address$::
9824When a message is received over a TCP/IP connection, this variable contains the
9825address of the local IP interface. See also the %-oMi% command line option.
9826This variable can be used in ACLs and also, for example, to make the file name
9827for a TLS certificate depend on which interface is being used.
9828
9829$interface_port$::
9830When a message is received over a TCP/IP connection, this variable contains the
9831local port number. See also the %-oMi% command line option.
9832This variable can be used in ACLs and also, for example, to make the file name
9833for a TLS certificate depend on which port is being used.
9834
9835$ldap_dn$::
9836This variable, which is available only when Exim is compiled with LDAP support,
9837contains the DN from the last entry in the most recently successful LDAP
9838lookup.
9839
9840$load_average$::
9841This variable contains the system load average, multiplied by 1000 to that it
9842is an integer. For example, if the load average is 0.21, the value of the
9843variable is 210. The value is recomputed every time the variable is referenced.
9844
9845$local_part$::
9846When an address is being routed, or delivered on its own, this
9847variable contains the local part. When a number of addresses are being
9848delivered together (for example, multiple RCPT commands in an SMTP
9849session), $local_part$ is not set.
9850+
9851Global address rewriting happens when a message is received, so the value of
9852$local_part$ during routing and delivery is the value after rewriting.
9853$local_part$ is set during user filtering, but not during system filtering,
9854because a message may have many recipients and the system filter is called just
9855once.
9856+
9857If a local part prefix or suffix has been recognized, it is not included in the
9858value of $local_part$ during routing and subsequent delivery. The values of
9859any prefix or suffix are in $local_part_prefix$ and
9860$local_part_suffix$, respectively.
9861+
9862When a message is being delivered to a file, pipe, or autoreply transport as a
9863result of aliasing or forwarding, $local_part$ is set to the local part of
9864the parent address, not to the file name or command (see $address_file$ and
9865$address_pipe$).
9866+
9867When an ACL is running for a RCPT command, $local_part$ contains the
9868local part of the recipient address.
9869+
9870When a rewrite item is being processed (see chapter <<CHAPrewrite>>),
9871$local_part$ contains the local part of the address that is being rewritten;
9872it can be used in the expansion of the replacement address, for example.
9873+
9874In all cases, all quoting is removed from the local part. For example, for both
9875the addresses
9876
9877 "abc:xyz"@test.example
9878 abc\:xyz@test.example
9879+
9880the value of $local_part$ is
9881
9882 abc:xyz
9883+
9884If you use $local_part$ to create another address, you should always wrap it
9885inside a quoting operator. For example, in a ^redirect^ router you could have:
9886
9887 data = ${quote_local_part:$local_part}@new.domain.example
9888+
9889*Note*: The value of $local_part$ is normally lower cased. If you want
9890to process local parts in a case-dependent manner in a router, you can set the
9891%caseful_local_part% option (see chapter <<CHAProutergeneric>>).
9892
9893$local_part_data$::
9894When the %local_parts% option on a router matches a local part by means of a
9895lookup, the data read by the lookup is available during the running of the
9896router as $local_part_data$. In addition, if the driver routes the address
9897to a transport, the value is available in that transport. If the transport is
9898handling multiple addresses, the value from the first address is used.
9899+
9900$local_part_data$ is also set when the %local_parts% condition in an ACL
9901matches a local part by means of a lookup. The data read by the lookup is
9902available during the rest of the ACL statement. In all other situations, this
9903variable expands to nothing.
9904
9905$local_part_prefix$::
9906When an address is being routed or delivered, and a
9907specific prefix for the local part was recognized, it is available in this
9908variable, having been removed from $local_part$.
9909
9910$local_part_suffix$::
9911When an address is being routed or delivered, and a
9912specific suffix for the local part was recognized, it is available in this
9913variable, having been removed from $local_part$.
9914
9915$local_scan_data$::
9916This variable contains the text returned by the 'local_scan()' function when a
9917message is received. See chapter <<CHAPlocalscan>> for more details.
9918
9919$local_user_gid$::
9920See $local_user_uid$.
9921
9922$local_user_uid$::
9923This variable and $local_user_gid$ are set to
9924the uid and gid after the %check_local_user% router precondition succeeds.
9925This means that their values are available for the remaining preconditions
9926(%senders%, %require_files%, and %condition%), for the %address_data%
9927expansion, and for any router-specific expansions. At all other times, the
9928values in these variables are `(uid_t)(-1)` and `(gid_t)(-1)`,
9929respectively.
9930
9931$localhost_number$::
9932This contains the expanded value of the
9933%localhost_number% option. The expansion happens after the main options have
9934been read.
9935
9936$log_inodes$::
9937The number of free inodes in the disk partition where Exim's
9938log files are being written. The value is recalculated whenever the variable is
9939referenced. If the relevant file system does not have the concept of inodes,
9940the value of is -1. See also the %check_log_inodes% option.
9941
9942$log_space$::
9943The amount of free space (as a number of kilobytes) in the disk
9944partition where Exim's log files are being written. The value is recalculated
9945whenever the variable is referenced. If the operating system does not have the
9946ability to find the amount of free space (only true for experimental systems),
9947the space value is -1. See also the %check_log_space% option.
9948
9949
9950$mailstore_basename$::
9951This variable is set only when doing deliveries in
9952``mailstore'' format in the ^appendfile^ transport. During the expansion of the
9953%mailstore_prefix%, %mailstore_suffix%, %message_prefix%, and
9954%message_suffix% options, it contains the basename of the files that are being
9955written, that is, the name without the ``.tmp'', ``.env'', or ``.msg'' suffix. At all
9956other times, this variable is empty.
9957
9958$malware_name$::
9959This variable is available when Exim is compiled with the
9960content-scanning extension. It is set to the name of the virus that was found
9961when the ACL %malware% condition is true (see section <<SECTscanvirus>>).
9962
9963
9964$message_age$::
9965cindex:[message,age of]
9966This variable is set at the start of a delivery attempt to
9967contain the number of seconds since the message was received. It does not
9968change during a single delivery attempt.
9969
9970$message_body$::
9971cindex:[body of message,expansion variable]
9972cindex:[message body, in expansion]
9973cindex:[binary zero,in message body]
9974This variable contains the initial portion of a message's
9975body while it is being delivered, and is intended mainly for use in filter
9976files. The maximum number of characters of the body that are put into the
9977variable is set by the %message_body_visible% configuration option; the
9978default is 500. Newlines are converted into spaces to make it easier to search
9979for phrases that might be split over a line break.
9980Binary zeros are also converted into spaces.
9981
9982$message_body_end$::
9983cindex:[body of message,expansion variable]
9984cindex:[message body, in expansion]
9985This variable contains the final portion of a message's
9986body while it is being delivered. The format and maximum size are as for
9987$message_body$.
9988
9989$message_body_size$::
9990cindex:[body of message,size]
9991cindex:[message body, size]
9992When a message is being delivered, this variable
9993contains the size of the body in bytes. The count starts from the character
9994after the blank line that separates the body from the header. Newlines are
9995included in the count. See also $message_size$, $body_linecount$, and
9996$body_zerocount$.
9997
9998$message_headers$::
9999This variable contains a concatenation of all the header lines when a message
10000is being processed, except for lines added by routers or transports. The header
10001lines are separated by newline characters.
10002
10003$message_id$::
10004When a message is being received or delivered, this variable contains the
10005unique message id that is used by Exim to identify the message.
10006An id is not created for a message until after its header has been
10007successfully received.
10008*Note*: This is 'not' the contents of the 'Message-ID:' header line; it
10009is the local id that Exim assigns to the message, for example:
10010`1BXTIK-0001yO-VA`.
10011
10012$message_size$::
10013cindex:[size,of message]
10014cindex:[message,size]
10015When a message is being processed, this variable contains its size in bytes. In
10016most cases, the size includes those headers that were received with the
10017message, but not those (such as 'Envelope-to:') that are added to individual
10018deliveries as they are written. However, there is one special case: during the
10019expansion of the %maildir_tag% option in the ^appendfile^ transport while
10020doing a delivery in maildir format, the value of $message_size$ is the
10021precise size of the file that has been written. See also
10022$message_body_size$, $body_linecount$, and $body_zerocount$.
10023+
10024cindex:[RCPT,value of $message_size$]
10025While running an ACL at the time of an SMTP RCPT command, $message_size$
10026contains the size supplied on the MAIL command, or -1 if no size was given. The
10027value may not, of course, be truthful.
10028
10029$mime_$'xxx'::
10030A number of variables whose names start with $mime$ are
10031available when Exim is compiled with the content-scanning extension. For
10032details, see section <<SECTscanmimepart>>.
10033
10034
10035$n0$ -- $n9$::
10036These variables are counters that can be incremented by means
10037of the %add% command in filter files.
10038
10039$original_domain$::
10040When a top-level address is being processed for delivery,
10041this contains the same value as $domain$. However, if a ``child'' address (for
10042example, generated by an alias, forward, or filter file) is being processed,
10043this variable contains the domain of the original address. This differs from
10044$parent_domain$ only when there is more than one level of aliasing or
10045forwarding. When more than one address is being delivered in a single transport
10046run, $original_domain$ is not set.
10047+
10048If new an address is created by means of a %deliver% command in a system
10049filter, it is set up with an artificial ``parent'' address. This has the local
10050part 'system-filter' and the default qualify domain.
10051
10052$original_local_part$::
10053When a top-level address is being processed for
10054delivery, this contains the same value as $local_part$, unless a prefix or
10055suffix was removed from the local part, because $original_local_part$
10056always contains the full local part. When a ``child'' address (for example,
10057generated by an alias, forward, or filter file) is being processed, this
10058variable contains the full local part of the original address.
10059+
10060If the router that did the redirection processed the local part
10061case-insensitively, the value in $original_local_part$ is in lower case.
10062This variable differs from $parent_local_part$ only when there is more than
10063one level of aliasing or forwarding. When more than one address is being
10064delivered in a single transport run, $original_local_part$ is not set.
10065+
10066If new an address is created by means of a %deliver% command in a system
10067filter, it is set up with an artificial ``parent'' address. This has the local
10068part 'system-filter' and the default qualify domain.
10069
10070
10071$originator_gid$::
10072cindex:[gid (group id),of originating user]
10073cindex:[sender,gid]
10074The value of $caller_gid$ that was set when the message
10075was received. For messages received via the command line, this is the gid of
10076the sending user. For messages received by SMTP over TCP/IP, this is normally
10077the gid of the Exim user.
10078
10079$originator_uid$::
10080cindex:[uid (user id),of originating user]
10081cindex:[sender,uid]
10082The value of $caller_uid$ that was set when the message
10083was received. For messages received via the command line, this is the uid of
10084the sending user. For messages received by SMTP over TCP/IP, this is normally
10085the uid of the Exim user.
10086
10087$parent_domain$::
10088This variable is similar to $original_domain$ (see
10089above), except that it refers to the immediately preceding parent address.
10090
10091$parent_local_part$::
10092This variable is similar to $original_local_part$
10093(see above), except that it refers to the immediately preceding parent address.
10094
10095$pid$::
10096cindex:[pid (process id),of current process]
10097This variable contains the current process id.
10098
10099$pipe_addresses$::
10100cindex:[filter,transport filter]
10101cindex:[transport,filter]
10102This is not an expansion variable, but is mentioned here
10103because the string ``\$pipe_addresses'' is handled specially in the command
10104specification for the ^pipe^ transport (chapter <<CHAPpipetransport>>) and in
10105transport filters (described under %transport_filter% in chapter
10106<<CHAPtransportgeneric>>). It cannot be used in general expansion strings, and
10107provokes an ``unknown variable'' error if encountered.
10108
10109$primary_hostname$::
10110The value set in the configuration file, or read by the
10111'uname()' function. If 'uname()' returns a single-component name, Exim
10112calls 'gethostbyname()' (or 'getipnodebyname()' where available) in an
10113attempt to acquire a fully qualified host name.
10114See also $smtp_active_hostname$.
10115
10116$qualify_domain$::
10117The value set for this option in the configuration file.
10118
10119$qualify_recipient$::
10120The value set for this option in the configuration file,
10121or if not set, the value of $qualify_domain$.
10122
10123$rcpt_count$::
10124When a message is being received by SMTP, this variable
10125contains the number of RCPT commands received for the current message. If
10126this variable is used in a RCPT ACL, its value includes the current
10127command.
10128
10129$rcpt_defer_count$::
10130When a message is being received by SMTP, this variable
10131contains the number of RCPT commands in the current message that have
10132previously been rejected with a temporary (4##'xx') response.
10133
10134$rcpt_fail_count$::
10135When a message is being received by SMTP, this variable
10136contains the number of RCPT commands in the current message that have
10137previously been rejected with a permanent (5##'xx') response.
10138
10139$received_count$::
10140This variable contains the number of 'Received:' header
10141lines in the message, including the one added by Exim (so its value is always
10142greater than zero). It is available in the DATA ACL, the non-SMTP ACL, and
10143while routing and delivering.
10144
10145$received_for$::
10146If there is only a single recipient address in an incoming
10147message, this variable contains that address when the 'Received:' header line
10148is being built.
10149The value is copied after recipient rewriting has happened, but before the
10150'local_scan()' function is run.
10151
10152$received_protocol$::
10153When a message is being processed, this variable
10154contains the name of the protocol by which it was received.
10155Most of the names used by Exim are defined by RFCs 821, 2821, and 3848. They
10156start with ``smtp'' (the client used HELO) or ``esmtp'' (the client used
10157EHLO). This can be followed by ``s'' for secure (encrypted) and/or ``a'' for
10158authenticated. Thus, for example, if the protocol is set to ``esmtpsa'', the
10159message was received over an encrypted SMTP connection and the client was
10160successfully authenticated.
10161+
10162Exim uses the protocol name ``smtps'' for the case when encryption is
10163automatically set up on connection without the use of STARTTLS (see
10164%tls_on_connect_ports%), and the client uses HELO to initiate the
10165encrypted SMTP session. The name ``smtps'' is also used for the rare situation
10166where the client initially uses EHLO, sets up an encrypted connection using
10167STARTTLS, and then uses HELO afterwards.
10168+
10169The %-oMr% option provides a way of specifying a custom protocol name for
10170messages that are injected locally by trusted callers. This is commonly used to
10171identify messages that are being re-injected after some kind of scanning.
10172
10173
10174$recipient_data$::
10175This variable is set after an indexing lookup success in
10176an ACL %recipients% condition. It contains the data from the lookup, and the
10177value remains set until the next %recipients% test. Thus, you can do things
10178like this:
10179+
10180&&&
10181`require recipients = cdb*@;/some/file`
10182`deny `'some further test involving' `\$recipient_data`
10183&&&
10184+
10185*Warning*: This variable is set only when a lookup is used as an indexing
10186method in the address list, using the semicolon syntax as in the example above.
10187The variable is not set for a lookup that is used as part of the string
10188expansion that all such lists undergo before being interpreted.
10189
10190$recipient_verify_failure$::
10191In an ACL, when a recipient verification fails,
10192this variable contains information about the failure. It is set to one of the
10193following words:
10194+
10195--
10196- ``qualify'': The address was unqualified (no domain), and the message
10197was neither local nor came from an exempted host.
10198
10199- ``route'': Routing failed.
10200
10201- ``mail'': Routing succeeded, and a callout was attempted; rejection occurred at
10202or before the MAIL command (that is, on initial connection, HELO, or
10203MAIL).
10204
10205- ``recipient'': The RCPT command in a callout was rejected.
10206
10207- ``postmaster'': The postmaster check in a callout was rejected.
10208--
10209+
10210The main use of this variable is expected to be to distinguish between
10211rejections of MAIL and rejections of RCPT.
10212
10213
10214$recipients$::
10215This variable contains a list of envelope recipients for a
10216message. A comma and a space separate the addresses in the replacement text.
10217However, the variable is not generally available, to prevent exposure of Bcc
10218recipients in unprivileged users' filter files. You can use $recipients$ only
10219in these two cases:
10220
10221. In a system filter file.
10222
10223. In the ACLs associated with the DATA command, that is, the ACLs defined by
10224%acl_smtp_predata% and %acl_smtp_data%.
10225
10226
10227$recipients_count$::
10228When a message is being processed, this variable
10229contains the number of envelope recipients that came with the message.
10230Duplicates are not excluded from the count. While a message is being received
10231over SMTP, the number increases for each accepted recipient. It can be
10232referenced in an ACL.
10233
10234$reply_address$::
10235When a message is being processed, this variable contains
10236the contents of the 'Reply-To:' header line if one exists
10237and it is not empty,
10238or otherwise the contents of the 'From:' header line.
10239
10240$return_path$::
10241When a message is being delivered, this variable contains the return path --
10242the sender field that will be sent as part of the envelope. It is not enclosed
10243in <> characters. At the start of routing an address, $return_path$ has the
10244same value as $sender_address$, but if, for example, an incoming message to a
10245mailing list has been expanded by a router which specifies a different address
10246for bounce messages, $return_path$ subsequently contains the new bounce
10247address, whereas $sender_address$ always contains the original sender address
10248that was received with the message. In other words, $sender_address$ contains
10249the incoming envelope sender, and $return_path$ contains the outgoing envelope
10250sender.
10251
10252$return_size_limit$::
10253This is an obsolete name for $bounce_return_size_limit$.
10254
10255$runrc$::
10256cindex:[return code,from %run% expansion]
10257This variable contains the return code from a command that is run by the
10258%\$\{run...\}% expansion item. *Warning*: In a router or transport, you cannot
10259assume the order in which option values are expanded, except for those
10260pre-conditions whose order of testing is documented. Therefore, you cannot
10261reliably expect to set $runrc$ by the expansion of one option, and use it in
10262another.
10263
10264$self_hostname$::
10265When an address is routed to a supposedly remote host that turns out to be the
10266local host, what happens is controlled by the
10267cindex:[%self% option,value of host name]
10268%self% generic router option. One of its values causes the address to be passed
10269to another router. When this happens, $self_hostname$ is set to the name of
10270the local host that the original router encountered. In other circumstances its
10271contents are null.
10272
10273$sender_address$::
10274When a message is being processed, this variable contains
10275the sender's address that was received in the message's envelope. For bounce
10276messages, the value of this variable is the empty string.
10277See also $return_path$.
10278
10279$sender_address_data$::
10280If $address_data$ is set when the routers are called from an ACL to verify a
10281sender address, the final value is preserved in $sender_address_data$, to
10282distinguish it from data from a recipient address. The value does not persist
10283after the end of the current ACL statement. If you want to preserve it for
10284longer, you can save it in an ACL variable.
10285
10286
10287$sender_address_domain$::
10288The domain portion of $sender_address$.
10289
10290$sender_address_local_part$::
10291The local part portion of $sender_address$.
10292
10293$sender_data$::
10294This variable is set after a lookup success in an ACL %senders% condition or in
10295a router %senders% option. It contains the data from the lookup, and the value
10296remains set until the next %senders% test. Thus, you can do things like this:
10297+
10298&&&
10299`require senders = cdb*@;/some/file`
10300`deny `'some further test involving' `\$sender_data`
10301&&&
10302+
10303*Warning*: This variable is set only when a lookup is used as an indexing
10304method in the address list, using the semicolon syntax as in the example above.
10305The variable is not set for a lookup that is used as part of the string
10306expansion that all such lists undergo before being interpreted.
10307
10308$sender_fullhost$::
10309When a message is received from a remote host, this variable contains the host
10310name and IP address in a single string. It ends with the IP address in square
10311brackets, followed by a colon and a port number if the logging of ports is
10312enabled. The format of the rest of the string depends on whether the host
10313issued a HELO or EHLO SMTP command, and whether the host name was verified by
10314looking up its IP address. (Looking up the IP address can be forced by the
10315%host_lookup% option, independent of verification.) A plain host name at the
10316start of the string is a verified host name; if this is not present,
10317verification either failed or was not requested. A host name in parentheses is
10318the argument of a HELO or EHLO command. This is omitted if it is identical to
10319the verified host name or to the host's IP address in square brackets.
10320
10321$sender_helo_name$::
10322When a message is received from a remote host that has
10323issued a HELO or EHLO command, the argument of that command is placed
10324in this variable. It is also set if HELO or EHLO is used when a message
10325is received using SMTP locally via the %-bs% or %-bS% options.
10326
10327$sender_host_address$::
10328When a message is received from a remote host, this
10329variable contains that host's IP address. For locally submitted messages, it is
10330empty.
10331
10332$sender_host_authenticated$::
10333This variable contains the name (not the public name) of the authenticator
10334driver which successfully authenticated the client from which the message was
10335received. It is empty if there was no successful authentication.
10336
10337$sender_host_name$::
10338When a message is received from a remote host, this variable contains the
10339host's name as obtained by looking up its IP address. For messages received by
10340other means, this variable is empty.
10341+
10342If the host name has not previously been looked up, a reference to
10343$sender_host_name$ triggers a lookup (for messages from remote hosts).
10344A looked up name is accepted only if it leads back to the original IP address
10345via a forward lookup. If either the reverse or the forward lookup fails to find
10346any data, or if the forward lookup does not yield the original IP address,
10347$sender_host_name$ remains empty, and $host_lookup_failed$ is set to ``1''.
10348+
10349However, if either of the lookups cannot be completed (for example, there is a
10350DNS timeout), $host_lookup_deferred$ is set to ``1'', and
10351$host_lookup_failed$ remains set to ``0''.
10352+
10353Once $host_lookup_failed$ is set to ``1'', Exim does not try to look up the
10354host name again if there is a subsequent reference to $sender_host_name$
10355in the same Exim process, but it does try again if $sender_host_deferred$
10356is set to ``1''.
10357+
10358Exim does not automatically look up every calling host's name. If you want
10359maximum efficiency, you should arrange your configuration so that it avoids
10360these lookups altogether. The lookup happens only if one or more of the
10361following are true:
10362
10363- A string containing $sender_host_name$ is expanded.
10364
10365- The calling host matches the list in %host_lookup%. In the default
10366configuration, this option is set to \*, so it must be changed if lookups are
10367to be avoided. (In the code, the default for %host_lookup% is unset.)
10368
10369- Exim needs the host name in order to test an item in a host list. The items
10370that require this are described in sections <<SECThoslispatnam>> and
10371<<SECThoslispatnamsk>>.
10372
10373- The calling host matches %helo_try_verify_hosts% or %helo_verify_hosts%.
10374In this case, the host name is required to compare with the name quoted in any
10375EHLO or HELO commands that the client issues.
10376
10377- The remote host issues a EHLO or HELO command that quotes one of the
10378domains in %helo_lookup_domains%. The default value of this option is
10379+
10380....
10381helo_lookup_domains = @ : @[]
10382....
10383+
10384which causes a lookup if a remote host (incorrectly) gives the server's name or
10385IP address in an EHLO or HELO command.
10386
10387
10388$sender_host_port$::
10389When a message is received from a remote host, this
10390variable contains the port number that was used on the remote host.
10391
10392$sender_ident$::
10393When a message is received from a remote host, this variable contains the
10394identification received in response to an RFC 1413 request. When a message has
10395been received locally, this variable contains the login name of the user that
10396called Exim.
10397
10398$sender_rcvhost$::
10399This is provided specifically for use in 'Received:' headers. It starts with
10400either the verified host name (as obtained from a
10401cindex:[DNS,reverse lookup]
10402cindex:[reverse DNS lookup]
10403reverse DNS lookup) or, if there is no verified host name, the IP address in
10404square brackets. After that there may be text in parentheses. When the first
10405item is a verified host name, the first thing in the parentheses is the IP
10406address in square brackets, followed by a colon and a port number if port
10407logging is enabled. When the first item is an IP address, the port is recorded
10408as ``port='xxxx'##'' inside the parentheses.
10409+
10410There may also be items of the form ``helo='xxxx'##'' if HELO or EHLO
10411was used and its argument was not identical to the real host name or IP
10412address, and ``ident='xxxx'##'' if an RFC 1413 ident string is available. If all
10413three items are present in the parentheses, a newline and tab are inserted into
10414the string, to improve the formatting of the 'Received:' header.
10415
10416$sender_verify_failure$::
10417In an ACL, when a sender verification fails, this variable contains information
10418about the failure. The details are the same as for $recipient_verify_failure$.
10419
10420$smtp_active_hostname$::
10421During an SMTP session, this variable contains the value of the active host
10422name, as specified by the %smtp_active_hostname% option. The value of
10423$smtp_active_hostname$ is saved with any message that is received, so its value
10424can be consulted during routing and delivery.
10425
10426
10427$smtp_command_argument$::
10428cindex:[AUTH,argument]
10429cindex:[EXPN,argument]
10430cindex:[ETRN,argument]
10431cindex:[VRFY,argument]
10432While an ACL is running to check an AUTH, EHLO, EXPN, ETRN, HELO, or VRFY
10433command, this variable contains the argument for the SMTP command.
10434
10435$sn0$ -- $sn9$::
10436These variables are copies of the values of the $n0$ -- $n9$ accumulators that
10437were current at the end of the system filter file. This allows a system filter
10438file to set values that can be tested in users' filter files. For example, a
10439system filter could set a value indicating how likely it is that a message is
10440junk mail.
10441
10442$spam_$'xxx'::
10443A number of variables whose names start with $spam$ are available when Exim is
10444compiled with the content-scanning extension. For details, see section
10445<<SECTscanspamass>>.
10446
10447
10448$spool_directory$::
10449The name of Exim's spool directory.
10450
10451$spool_inodes$::
10452The number of free inodes in the disk partition where Exim's spool files are
10453being written. The value is recalculated whenever the variable is referenced.
10454If the relevant file system does not have the concept of inodes, the value of
10455is -1. See also the %check_spool_inodes% option.
10456
10457$spool_space$::
10458The amount of free space (as a number of kilobytes) in the disk partition where
10459Exim's spool files are being written. The value is recalculated whenever the
10460variable is referenced. If the operating system does not have the ability to
10461find the amount of free space (only true for experimental systems), the space
10462value is -1. For example, to check in an ACL that there is at least 50
10463megabytes free on the spool, you could write:
10464
10465 condition = ${if > {$spool_space}{50000}}
10466+
10467See also the %check_spool_space% option.
10468
10469
10470$thisaddress$::
10471This variable is set only during the processing of the %foranyaddress% command
10472in a filter file. Its use is explained in the description of that command.
10473
10474$tls_certificate_verified$::
10475This variable is set to ``1'' if a TLS certificate was verified when the message
10476was received, and ``0'' otherwise.
10477
10478$tls_cipher$::
10479When a message is received from a remote host over an encrypted SMTP
10480connection, this variable is set to the cipher suite that was negotiated, for
10481example DES-CBC3-SHA. In other circumstances, in particular, for message
10482received over unencrypted connections, the variable is empty. See chapter
10483<<CHAPTLS>> for details of TLS support.
10484
10485$tls_peerdn$::
10486 When a message is received from a remote host over an encrypted SMTP
10487connection, and Exim is configured to request a certificate from the client,
10488the value of the Distinguished Name of the certificate is made available in the
10489$tls_peerdn$ during subsequent processing.
10490
10491$tod_bsdinbox$::
10492The time of day and date, in the format required for BSD-style mailbox files,
10493for example: Thu Oct 17 17:14:09 1995.
10494
10495$tod_epoch$::
10496The time and date as a number of seconds since the start of the Unix epoch.
10497
10498$tod_full$::
10499A full version of the time and date, for example: Wed, 16 Oct 1995 09:51:40
10500+0100. The timezone is always given as a numerical offset from UTC, with
10501positive values used for timezones that are ahead (east) of UTC, and negative
10502values for those that are behind (west).
10503
10504$tod_log$::
10505The time and date in the format used for writing Exim's log files, for example:
105061995-10-12 15:32:29, but without a timezone.
10507
10508$tod_logfile$::
10509This variable contains the date in the format yyyymmdd. This is the format that
10510is used for datestamping log files when %log_file_path% contains the `%D`
10511flag.
10512
10513$tod_zone$::
10514This variable contains the numerical value of the local timezone, for example:
10515-0500.
10516
10517$tod_zulu$::
10518This variable contains the UTC date and time in ``Zulu'' format, as specified by
10519ISO 8601, for example: 20030221154023Z.
10520
10521$value$::
10522cindex:[$value$]
10523This variable contains the result of an expansion lookup, extraction operation,
10524or external command, as described above.
10525
10526$version_number$::
10527The version number of Exim.
10528
10529$warn_message_delay$::
10530This variable is set only during the creation of a message warning about a
10531delivery delay. Details of its use are explained in section <<SECTcustwarn>>.
10532
10533$warn_message_recipients$::
10534This variable is set only during the creation of a message warning about a
10535delivery delay. Details of its use are explained in section <<SECTcustwarn>>.
10536
10537
10538
10539////////////////////////////////////////////////////////////////////////////
10540////////////////////////////////////////////////////////////////////////////
10541
10542[[CHAPperl]]
10543Embedded Perl
10544-------------
10545cindex:[Perl,calling from Exim]
10546Exim can be built to include an embedded Perl interpreter. When this is done,
10547Perl subroutines can be called as part of the string expansion process. To make
10548use of the Perl support, you need version 5.004 or later of Perl installed on
10549your system. To include the embedded interpreter in the Exim binary, include
10550the line
10551
10552 EXIM_PERL = perl.o
10553
10554in your _Local/Makefile_ and then build Exim in the normal way.
10555
10556
10557Setting up so Perl can be used
10558~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10559cindex:[%perl_startup%]
10560Access to Perl subroutines is via a global configuration option called
10561%perl_startup% and an expansion string operator %\$\{perl ...\}%. If there is
10562no %perl_startup% option in the Exim configuration file then no Perl
10563interpreter is started and there is almost no overhead for Exim (since none of
10564the Perl library will be paged in unless used). If there is a %perl_startup%
10565option then the associated value is taken to be Perl code which is executed in
10566a newly created Perl interpreter.
10567
10568The value of %perl_startup% is not expanded in the Exim sense, so you do not
10569need backslashes before any characters to escape special meanings. The option
10570should usually be something like
10571
10572 perl_startup = do '/etc/exim.pl'
10573
10574where _/etc/exim.pl_ is Perl code which defines any subroutines you want to
10575use from Exim. Exim can be configured either to start up a Perl interpreter as
10576soon as it is entered, or to wait until the first time it is needed. Starting
10577the interpreter at the beginning ensures that it is done while Exim still has
10578its setuid privilege, but can impose an unnecessary overhead if Perl is not in
10579fact used in a particular run. Also, note that this does not mean that Exim is
10580necessarily running as root when Perl is called at a later time. By default,
10581the interpreter is started only when it is needed, but this can be changed in
10582two ways:
10583
10584- cindex:[%perl_at_start%]
10585Setting %perl_at_start% (a boolean option) in the configuration requests
10586a startup when Exim is entered.
10587
10588- The command line option %-ps% also requests a startup when Exim is entered,
10589overriding the setting of %perl_at_start%.
10590
10591There is also a command line option %-pd% (for delay) which suppresses the
10592initial startup, even if %perl_at_start% is set.
10593
10594
10595Calling Perl subroutines
10596~~~~~~~~~~~~~~~~~~~~~~~~
10597When the configuration file includes a %perl_startup% option you can make use
10598of the string expansion item to call the Perl subroutines that are defined
10599by the %perl_startup% code. The operator is used in any of the following
10600forms:
10601
10602 ${perl{foo}}
10603 ${perl{foo}{argument}}
10604 ${perl{foo}{argument1}{argument2} ... }
10605
10606which calls the subroutine %foo% with the given arguments. A maximum of eight
10607arguments may be passed. Passing more than this results in an expansion failure
10608with an error message of the form
10609
10610 Too many arguments passed to Perl subroutine "foo" (max is 8)
10611
10612The return value of the Perl subroutine is evaluated in a scalar context before
10613it is passed back to Exim to be inserted into the expanded string. If the
10614return value is 'undef', the expansion is forced to fail in the same way as
10615an explicit ``fail'' on an %\$\{if ...\}% or %\$\{lookup...\}% item. If the
10616subroutine aborts by obeying Perl's %die% function, the expansion fails with
10617the error message that was passed to %die%.
10618
10619
10620Calling Exim functions from Perl
10621~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10622Within any Perl code called from Exim, the function 'Exim::expand_string'
10623is available to call back into Exim's string expansion function. For example,
10624the Perl code
10625
10626 my $lp = Exim::expand_string('$local_part');
10627
10628makes the current Exim $local_part$ available in the Perl variable $lp$.
10629Note those are single quotes and not double quotes to protect against
10630$local_part$ being interpolated as a Perl variable.
10631
10632If the string expansion is forced to fail by a ``fail'' item, the result of
10633'Exim::expand_string' is %undef%. If there is a syntax error in the
10634expansion string, the Perl call from the original expansion string fails with
10635an appropriate error message, in the same way as if %die% were used.
10636
10637cindex:[debugging,from embedded Perl]
10638cindex:[log,writing from embedded Perl]
10639Two other Exim functions are available for use from within Perl code.
10640'Exim::debug_write(<'string'>)' writes the string to the standard error
10641stream if Exim's debugging is enabled. If you want a newline at the end, you
10642must supply it. 'Exim::log_write(<'string'>)' writes the string to Exim's
10643main log, adding a leading timestamp. In this case, you should not supply a
10644terminating newline.
10645
10646
10647Use of standard output and error by Perl
10648~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10649cindex:[Perl,standard output and error]
10650You should not write to the standard error or output streams from within your
10651Perl code, as it is not defined how these are set up. In versions of Exim
10652before 4.50, it is possible for the standard output or error to refer to the
10653SMTP connection during message reception via the daemon. Writing to this stream
10654is certain to cause chaos. From Exim 4.50 onwards, the standard output and
10655error streams are connected to _/dev/null_ in the daemon. The chaos is
10656avoided, but the output is lost.
10657
10658cindex:[Perl,use of %warn%]
10659The Perl %warn% statement writes to the standard error stream by default. Calls
10660to %warn% may be embedded in Perl modules that you use, but over which you have
10661no control. When Exim starts up the Perl interpreter, it arranges for output
10662from the %warn% statement to be written to the Exim main log. You can change
10663this by including appropriate Perl magic somewhere in your Perl code. For
10664example, to discard %warn% output completely, you need this:
10665
10666 $SIG{__WARN__} = sub { };
10667
10668Whenever a %warn% is obeyed, the anonymous subroutine is called. In this
10669example, the code for the subroutine is empty, so it does nothing, but you can
10670include any Perl code that you like. The text of the %warn% message is passed
10671as the first subroutine argument.
10672
10673
10674
10675////////////////////////////////////////////////////////////////////////////
10676////////////////////////////////////////////////////////////////////////////
10677
10678[[CHAPinterfaces]]
10679[titleabbrev="Starting the daemon"]
10680Starting the daemon and the use of network interfaces
10681-----------------------------------------------------
10682cindex:[daemon,starting]
10683cindex:[interface,listening]
10684cindex:[network interface]
10685cindex:[interface,network]
10686cindex:[IP address,for listening]
10687cindex:[daemon,listening IP addresses]
10688cindex:[TCP/IP,setting listening interfaces]
10689cindex:[TCP/IP,setting listening ports]
10690A host that is connected to a TCP/IP network may have one or more physical
10691hardware network interfaces. Each of these interfaces may be configured as one
10692or more ``logical'' interfaces, which are the entities that a program actually
10693works with. Each of these logical interfaces is associated with an IP address.
10694In addition, TCP/IP software supports ``loopback'' interfaces (127.0.0.1 in IPv4
10695and ::1 in IPv6), which do not use any physical hardware. Exim requires
10696knowledge about the host's interfaces for use in three different circumstances:
10697
10698. When a listening daemon is started, Exim needs to know which interfaces
10699and ports to listen on.
10700
10701. When Exim is routing an address, it needs to know which IP addresses
10702are associated with local interfaces. This is required for the correct
10703processing of MX lists by removing the local host and others with the
10704same or higher priority values. Also, Exim needs to detect cases
10705when an address is routed to an IP address that in fact belongs to the
10706local host. Unless the %self% router option or the %allow_localhost%
10707option of the smtp transport is set (as appropriate), this is treated
10708as an error situation.
10709
10710. When Exim connects to a remote host, it may need to know which interface to use
10711for the outgoing connection.
10712
10713
10714Exim's default behaviour is likely to be appropriate in the vast majority
10715of cases. If your host has only one interface, and you want all its IP
10716addresses to be treated in the same way, and you are using only the
10717standard SMTP port, you should not need to take any special action. The
10718rest of this chapter does not apply to you.
10719
10720In a more complicated situation you may want to listen only on certain
10721interfaces, or on different ports, and for this reason there are a number of
10722options that can be used to influence Exim's behaviour. The rest of this
10723chapter describes how they operate.
10724
10725When a message is received over TCP/IP, the interface and port that were
10726actually used are set in $interface_address$ and $interface_port$.
10727
10728
10729
10730Starting a listening daemon
10731~~~~~~~~~~~~~~~~~~~~~~~~~~~
10732When a listening daemon is started (by means of the %-bd% command line
10733option), the interfaces and ports on which it listens are controlled by the
10734following options:
10735
10736- %daemon_smtp_ports% contains a list of default ports. (For backward
10737compatibility, this option can also be specified in the singular.)
10738
10739- %local_interfaces% contains list of interface IP addresses on which to
10740listen. Each item may optionally also specify a port.
10741
10742The default list separator in both cases is a colon, but this can be changed as
10743described in section <<SECTlistconstruct>>. When IPv6 addresses are involved, it
10744is usually best to change the separator to avoid having to double all the
10745colons. For example:
10746
10747....
10748local_interfaces = <; 127.0.0.1 ; \
10749 192.168.23.65 ; \
10750 ::1 ; \
10751 3ffe:ffff:836f::fe86:a061
10752....
10753
10754There are two different formats for specifying a port along with an IP address
10755in %local_interfaces%:
10756
10757. The port is added onto the address with a dot separator. For example, to listen
10758on port 1234 on two different IP addresses:
10759+
10760....
10761local_interfaces = <; 192.168.23.65.1234 ; \
10762 3ffe:ffff:836f::fe86:a061.1234
10763....
10764
10765. The IP address is enclosed in square brackets, and the port is added
10766with a colon separator, for example:
10767+
10768....
10769local_interfaces = <; [192.168.23.65]:1234 ; \
10770 [3ffe:ffff:836f::fe86:a061]:1234
10771....
10772
10773When a port is not specified, the value of %daemon_smtp_ports% is used. The
10774default setting contains just one port:
10775
10776 daemon_smtp_ports = smtp
10777
10778If more than one port is listed, each interface that does not have its own port
10779specified listens on all of them. Ports that are listed in
10780%daemon_smtp_ports% can be identified either by name (defined in
10781_/etc/services_) or by number. However, when ports are given with individual
10782IP addresses in %local_interfaces%, only numbers (not names) can be used.
10783
10784
10785
10786Special IP listening addresses
10787~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10788The addresses 0.0.0.0 and ::0 are treated specially. They are interpreted
10789as ``all IPv4 interfaces'' and ``all IPv6 interfaces'', respectively. In each
10790case, Exim tells the TCP/IP stack to ``listen on all IPv##'x' interfaces''
10791instead of setting up separate listening sockets for each interface. The
10792default value of %local_interfaces% is
10793
10794 local_interfaces = 0.0.0.0
10795
10796when Exim is built without IPv6 support; otherwise it is:
10797
10798 local_interfaces = <; ::0 ; 0.0.0.0
10799
10800Thus, by default, Exim listens on all available interfaces, on the SMTP port.
10801
10802
10803
10804Overriding local_interfaces and daemon_smtp_ports
10805~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10806The %-oX% command line option can be used to override the values of
10807%daemon_smtp_ports% and/or %local_interfaces% for a particular daemon
10808instance. Another way of doing this would be to use macros and the %-D%
10809option. However, %-oX% can be used by any admin user, whereas modification of
10810the runtime configuration by %-D% is allowed only when the caller is root or
10811exim.
10812
10813The value of %-oX% is a list of items. The default colon separator can be
10814changed in the usual way if required. If there are any items that do not
10815contain dots or colons (that is, are not IP addresses), the value of
10816%daemon_smtp_ports% is replaced by the list of those items. If there are any
10817items that do contain dots or colons, the value of %local_interfaces% is
10818replaced by those items. Thus, for example,
10819
10820 -oX 1225
10821
10822overrides %daemon_smtp_ports%, but leaves %local_interfaces% unchanged,
10823whereas
10824
10825 -oX 192.168.34.5.1125
10826
10827overrides %local_interfaces%, leaving %daemon_smtp_ports% unchanged.
10828(However, since %local_interfaces% now contains no items without ports, the
10829value of %daemon_smtp_ports% is no longer relevant in this example.)
10830
10831
10832
10833[[SECTsupobssmt]]
10834Support for the obsolete SSMTP (or SMTPS) protocol
10835~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10836cindex:[ssmtp protocol]
10837cindex:[smtps protocol]
10838cindex:[SMTP,ssmtp protocol]
10839cindex:[SMTP,smtps protocol]
10840Exim supports the obsolete SSMTP protocol (also known as SMTPS) that was used
10841before the STARTTLS command was standardized for SMTP. Some legacy clients
10842still use this protocol. If the %tls_on_connect_ports% option is set to a
10843list of port numbers, connections to those ports must use SSMTP. The most
10844common use of this option is expected to be
10845
10846 tls_on_connect_ports = 465
10847
10848because 465 is the usual port number used by the legacy clients. There is also
10849a command line option %-tls-on-connect%, which forces all ports to behave in
10850this way when a daemon is started.
10851
10852*Warning*: Setting %tls_on_connect_ports% does not of itself cause the
10853daemon to listen on those ports. You must still specify them in
10854%daemon_smtp_ports%, %local_interfaces%, or the %-oX% option. (This is
10855because %tls_on_connect_ports% applies to %inetd% connections as well as to
10856connections via the daemon.)
10857
10858
10859
10860
10861IPv6 address scopes
10862~~~~~~~~~~~~~~~~~~~
10863IPv6 addresses have ``scopes'', and a host with multiple hardware interfaces
10864can, in principle, have the same link-local IPv6 address on different
10865interfaces. Thus, additional information is needed, over and above the IP
10866address, to distinguish individual interfaces. A convention of using a
10867percent sign followed by something (often the interface name) has been
10868adopted in some cases, leading to addresses like this:
10869
10870 fe80::202:b3ff:fe03:45c1%eth0
10871
10872To accommodate this usage, a percent sign followed by an arbitrary string is
10873allowed at the end of an IPv6 address. By default, Exim calls 'getaddrinfo()'
10874to convert a textual IPv6 address for actual use. This function recognizes the
10875percent convention in operating systems that support it, and it processes the
10876address appropriately. Unfortunately, some older libraries have problems with
10877'getaddrinfo()'. If
10878
10879 IPV6_USE_INET_PTON=yes
10880
10881is set in _Local/Makefile_ (or an OS-dependent Makefile) when Exim is built,
10882Exim uses 'inet_pton()' to convert a textual IPv6 address for actual use,
10883instead of 'getaddrinfo()'. (Before version 4.14, it always used this
10884function.) Of course, this means that the additional functionality of
10885'getaddrinfo()' -- recognizing scoped addresses -- is lost.
10886
10887
10888
10889Examples of starting a listening daemon
10890~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10891The default case in an IPv6 environment is
10892
10893 daemon_smtp_ports = smtp
10894 local_interfaces = <; ::0 ; 0.0.0.0
10895
10896This specifies listening on the smtp port on all IPv6 and IPv4 interfaces.
10897Either one or two sockets may be used, depending on the characteristics of
10898the TCP/IP stack. (This is complicated and messy; for more information,
10899read the comments in the _daemon.c_ source file.)
10900
10901To specify listening on ports 25 and 26 on all interfaces:
10902
10903 daemon_smtp_ports = 25 : 26
10904
10905(leaving %local_interfaces% at the default setting) or, more explicitly:
10906
10907....
10908local_interfaces = <; ::0.25 ; ::0.26 \
10909 0.0.0.0.25 ; 0.0.0.0.26
10910....
10911
10912To listen on the default port on all IPv4 interfaces, and on port 26 on the
10913IPv4 loopback address only:
10914
10915 local_interfaces = 0.0.0.0 : 127.0.0.1.26
10916
10917To specify listening on the default port on specific interfaces only:
10918
10919 local_interfaces = 192.168.34.67 : 192.168.34.67
10920
10921*Warning*: such a setting excludes listening on the loopback interfaces.
10922
10923
10924
10925[[SECTreclocipadd]]
10926Recognising the local host
10927~~~~~~~~~~~~~~~~~~~~~~~~~~
10928The %local_interfaces% option is also used when Exim needs to determine
10929whether or not an IP address refers to the local host. That is, the IP
10930addresses of all the interfaces on which a daemon is listening are always
10931treated as local.
10932
10933For this usage, port numbers in %local_interfaces% are ignored. If either of
10934the items 0.0.0.0 or ::0 are encountered, Exim gets a complete list of
10935available interfaces from the operating system, and extracts the relevant
10936(that is, IPv4 or IPv6) addresses to use for checking.
10937
10938Some systems set up large numbers of virtual interfaces in order to provide
10939many virtual web servers. In this situation, you may want to listen for
10940email on only a few of the available interfaces, but nevertheless treat all
10941interfaces as local when routing. You can do this by setting
10942%extra_local_interfaces% to a list of IP addresses, possibly including the
10943``all'' wildcard values. These addresses are recognized as local, but are not
10944used for listening. Consider this example:
10945
10946....
10947local_interfaces = <; 127.0.0.1 ; ::1 ; \
10948 192.168.53.235 ; \
10949 3ffe:2101:12:1:a00:20ff:fe86:a061
10950
10951extra_local_interfaces = <; ::0 ; 0.0.0.0
10952....
10953
10954The daemon listens on the loopback interfaces and just one IPv4 and one IPv6
10955address, but all available interface addresses are treated as local when
10956Exim is routing.
10957
10958In some environments the local host name may be in an MX list, but with an IP
10959address that is not assigned to any local interface. In other cases it may be
10960desirable to treat other host names as if they referred to the local host. Both
10961these cases can be handled by setting the %hosts_treat_as_local% option.
10962This contains host names rather than IP addresses. When a host is referenced
10963during routing, either via an MX record or directly, it is treated as the local
10964host if its name matches %hosts_treat_as_local%, or if any of its IP
10965addresses match %local_interfaces% or %extra_local_interfaces%.
10966
10967
10968
10969Delivering to a remote host
10970~~~~~~~~~~~~~~~~~~~~~~~~~~~
10971Delivery to a remote host is handled by the smtp transport. By default, it
10972allows the system's TCP/IP functions to choose which interface to use (if
10973there is more than one) when connecting to a remote host. However, the
10974%interface% option can be set to specify which interface is used. See the
10975description of the smtp transport in chapter <<CHAPsmtptrans>> for more details.
10976
10977
10978
10979
10980////////////////////////////////////////////////////////////////////////////
10981////////////////////////////////////////////////////////////////////////////
10982
10983[[CHAPmainconfig]]
10984Main configuration
10985------------------
10986cindex:[configuration file,main section]
10987cindex:[main configuration]
10988The first part of the run time configuration file contains three types of item:
10989
10990- Macro definitions: These lines start with an upper case letter. See section
10991<<SECTmacrodefs>> for details of macro processing.
10992
10993- Named list definitions: These lines start with one of the words ``domainlist'',
10994``hostlist'', ``addresslist'', or ``localpartlist''. Their use is described in
10995section <<SECTnamedlists>>.
10996
10997- Main configuration settings: Each setting occupies one line of the file
10998(with possible continuations). If any setting is preceded by the word
10999``hide'', the %-bP% command line option displays its value to admin users only.
11000See section <<SECTcos>> for a description of the syntax of these option settings.
11001
11002This chapter specifies all the main configuration options, along with their
11003types and default values. For ease of finding a particular option, they appear
11004in alphabetical order in section <<SECTalomo>> below. However, because there are
11005now so many options, they are first listed briefly in functional groups, as an
11006aid to finding the name of the option you are looking for. Some options are
11007listed in more than one group.
11008
11009Miscellaneous
11010~~~~~~~~~~~~~
11011[frame="none"]
11012`-----------------------------------`-------------------------------------
11013%bi_command% to run for %-bi% command line option
11014%keep_malformed% for broken files -- should not happen
11015%localhost_number% for unique message ids in clusters
11016%message_body_visible% how much to show in $message_body$
11017%mua_wrapper% run in ``MUA wrapper'' mode
11018%print_topbitchars% top-bit characters are printing
11019%timezone% force time zone
11020--------------------------------------------------------------------------
11021
11022
11023Exim parameters
11024~~~~~~~~~~~~~~~
11025[frame="none"]
11026`-----------------------------------`-------------------------------------
11027%exim_group% override compiled-in value
11028%exim_path% override compiled-in value
11029%exim_user% override compiled-in value
11030%primary_hostname% default from 'uname()'
11031%split_spool_directory% use multiple directories
11032%spool_directory% override compiled-in value
11033--------------------------------------------------------------------------
11034
11035
11036
11037Privilege controls
11038~~~~~~~~~~~~~~~~~~
11039[frame="none"]
11040`-----------------------------------`-------------------------------------
11041%admin_groups% groups that are Exim admin users
11042%deliver_drop_privilege% drop root for delivery processes
11043%local_from_check% insert 'Sender:' if necessary
11044%local_from_prefix% for testing 'From:' for local sender
11045%local_from_suffix% for testing 'From:' for local sender
11046%local_sender_retain% keep 'Sender:' from untrusted user
11047%never_users% do not run deliveries as these
11048%prod_requires_admin% forced delivery requires admin user
11049%queue_list_requires_admin% queue listing requires admin user
11050%trusted_groups% groups that are trusted
11051%trusted_users% users that are trusted
11052--------------------------------------------------------------------------
11053
11054
11055
11056Logging
11057~~~~~~~
11058[frame="none"]
11059`-----------------------------------`-------------------------------------
11060%hosts_connection_nolog% exemption from connect logging
11061%log_file_path% override compiled-in value
11062%log_selector% set/unset optional logging
11063%log_timezone% add timezone to log lines
11064%message_logs% create per-message logs
11065%preserve_message_logs% after message completion
11066%process_log_path% for SIGUSR1 and 'exiwhat'
11067%syslog_duplication% controls duplicate log lines on syslog
11068%syslog_facility% set syslog ``facility'' field
11069%syslog_processname% set syslog ``ident'' field
11070%syslog_timestamp% timestamp syslog lines
11071%write_rejectlog% control use of message log
11072--------------------------------------------------------------------------
11073
11074
11075
11076Frozen messages
11077~~~~~~~~~~~~~~~
11078[frame="none"]
11079`-----------------------------------`-------------------------------------
11080%auto_thaw% sets time for retrying frozen messages
11081%freeze_tell% send message when freezing
11082%move_frozen_messages% to another directory
11083%timeout_frozen_after% keep frozen messages only so long
11084--------------------------------------------------------------------------
11085
11086
11087
11088Data lookups
11089~~~~~~~~~~~~
11090[frame="none"]
11091`-----------------------------------`-------------------------------------
11092%ldap_default_servers% used if no server in query
11093%ldap_version% set protocol version
11094%lookup_open_max% lookup files held open
11095%mysql_servers% as it says
11096%oracle_servers% as it says
11097%pgsql_servers% as it says
11098--------------------------------------------------------------------------
11099
11100
11101
11102Message ids
11103~~~~~~~~~~~
11104[frame="none"]
11105`-----------------------------------`-------------------------------------
11106%message_id_header_domain% used to build 'Message-ID:' header
11107%message_id_header_text% ditto
11108--------------------------------------------------------------------------
11109
11110
11111
11112Embedded Perl Startup
11113~~~~~~~~~~~~~~~~~~~~~
11114[frame="none"]
11115`-----------------------------------`-------------------------------------
11116%perl_at_start% always start the interpreter
11117%perl_startup% code to obey when starting Perl
11118--------------------------------------------------------------------------
11119
11120
11121
11122Daemon
11123~~~~~~
11124[frame="none"]
11125`-----------------------------------`-------------------------------------
11126%daemon_smtp_ports% default ports
11127%extra_local_interfaces% not necessarily listened on
11128%local_interfaces% on which to listen, with optional ports
11129%pid_file_path% override compiled-in value
11130%queue_run_max% maximum simultaneous queue runners
11131--------------------------------------------------------------------------
11132
11133
11134
11135Resource control
11136~~~~~~~~~~~~~~~~
11137[frame="none"]
11138`-----------------------------------`-------------------------------------
11139%check_log_inodes% before accepting a message
11140%check_log_space% before accepting a message
11141%check_spool_inodes% before accepting a message
11142%check_spool_space% before accepting a message
11143%deliver_queue_load_max% no queue deliveries if load high
11144%queue_only_load% queue incoming if load high
11145%queue_run_max% maximum simultaneous queue runners
11146%remote_max_parallel% parallel SMTP delivery per message
11147%smtp_accept_max% simultaneous incoming connections
11148%smtp_accept_max_nommail% non-mail commands
11149%smtp_accept_max_nonmail_hosts% hosts to which the limit applies
11150%smtp_accept_max_per_connection% messages per connection
11151%smtp_accept_max_per_host% connections from one host
11152%smtp_accept_queue% queue mail if more connections
11153%smtp_accept_queue_per_connection% queue if more messages per connection
11154%smtp_accept_reserve% only reserve hosts if more connections
11155%smtp_check_spool_space% from SIZE on MAIL command
11156%smtp_connect_backlog% passed to TCP/IP stack
11157%smtp_load_reserve% SMTP from reserved hosts if load high
11158%smtp_reserve_hosts% these are the reserve hosts
11159--------------------------------------------------------------------------
11160
11161
11162
11163Policy controls
11164~~~~~~~~~~~~~~~
11165[frame="none"]
11166`-----------------------------------`-------------------------------------
11167%acl_not_smtp% set ACL for non-SMTP messages
11168%acl_smtp_auth% set ACL for AUTH
11169%acl_smtp_connect% set ACL for connection
11170%acl_smtp_data% set ACL for DATA
11171%acl_smtp_etrn% set ACL for ETRN
11172%acl_smtp_expn% set ACL for EXPN
11173%acl_smtp_helo% set ACL for EHLO or HELO
11174%acl_smtp_mail% set ACL for MAIL
11175%acl_smtp_mailauth% set ACL for AUTH on MAIL command
11176%acl_smtp_mime% set ACL for MIME parts
11177%acl_smtp_predata% set ACL for start of data
11178%acl_smtp_quit% set ACL for QUIT
11179%acl_smtp_rcpt% set ACL for RCPT
11180%acl_smtp_starttls% set ACL for STARTTLS
11181%acl_smtp_vrfy% set ACL for VRFY
11182%av_scanner% specify virus scanner
11183%header_maxsize% total size of message header
11184%header_line_maxsize% individual header line limit
11185%helo_accept_junk_hosts% allow syntactic junk from these hosts
11186%helo_allow_chars% allow illegal chars in HELO names
11187%helo_lookup_domains% lookup hostname for these HELO names
11188%helo_try_verify_hosts% HELO soft-checked for these hosts
11189%helo_verify_hosts% HELO hard-checked for these hosts
11190%host_lookup% host name looked up for these hosts
11191%host_lookup_order% order of DNS and local name lookups
11192%host_reject_connection% reject connection from these hosts
11193%hosts_treat_as_local% useful in some cluster configurations
11194%local_scan_timeout% timeout for 'local_scan()'
11195%message_size_limit% for all messages
11196%percent_hack_domains% recognize %-hack for these domains
11197%spamd_address% set interface to SpamAssassin
11198--------------------------------------------------------------------------
11199
11200
11201
11202Callout cache
11203~~~~~~~~~~~~~
11204[frame="none"]
11205`-----------------------------------`-------------------------------------
11206%callout_domain_negative_expire% timeout for negative domain cache item
11207%callout_domain_positive_expire% timeout for positive domain cache item
11208%callout_negative_expire% timeout for negative address cache item
11209%callout_positive_expire% timeout for positive address cache item
11210%callout_random_local_part% string to use for ``random'' testing
11211--------------------------------------------------------------------------
11212
11213
11214
11215TLS
11216~~~
11217[frame="none"]
11218`-----------------------------------`-------------------------------------
11219%tls_advertise_hosts% advertise TLS to these hosts
11220%tls_certificate% location of server certificate
11221%tls_crl% certificate revocation list
11222%tls_dhparam% DH parameters for server
11223%tls_on_connect_ports% specify SSMTP (SMTPS) ports
11224%tls_privatekey% location of server private key
11225%tls_remember_esmtp% don't reset after starting TLS
11226%tls_require_ciphers% specify acceptable cipers
11227%tls_try_verify_hosts% try to verify client certificate
11228%tls_verify_certificates% expected client certificates
11229%tls_verify_hosts% insist on client certificate verify
11230--------------------------------------------------------------------------
11231
11232
11233
11234Local user handling
11235~~~~~~~~~~~~~~~~~~~
11236[frame="none"]
11237`-----------------------------------`-------------------------------------
11238%finduser_retries% useful in NIS environments
11239%gecos_name% used when creating 'Sender:'
11240%gecos_pattern% ditto
11241%max_username_length% for systems that truncate
11242%unknown_login% used when no login name found
11243%unknown_username% ditto
11244%uucp_from_pattern% for recognizing ``From '' lines
11245%uucp_from_sender% ditto
11246--------------------------------------------------------------------------
11247
11248
11249
11250All incoming messages (SMTP and non-SMTP)
11251~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11252[frame="none"]
11253`-----------------------------------`-------------------------------------
11254%header_maxsize% total size of message header
11255%header_line_maxsize% individual header line limit
11256%message_size_limit% applies to all messages
11257%percent_hack_domains% recognize %-hack for these domains
11258%received_header_text% expanded to make 'Received:'
11259%received_headers_max% for mail loop detection
11260%recipients_max% limit per message
11261%recipients_max_reject% permanently reject excess
11262--------------------------------------------------------------------------
11263
11264
11265
11266
11267Non-SMTP incoming messages
11268~~~~~~~~~~~~~~~~~~~~~~~~~~
11269[frame="none"]
11270`-----------------------------------`-------------------------------------
11271%receive_timeout% for non-SMTP messages
11272--------------------------------------------------------------------------
11273
11274
11275
11276
11277
11278Incoming SMTP messages
11279~~~~~~~~~~~~~~~~~~~~~~
11280See also the 'Policy controls' section above.
11281
11282[frame="none"]
11283`-----------------------------------`-------------------------------------
11284%host_lookup% host name looked up for these hosts
11285%host_lookup_order% order of DNS and local name lookups
11286%recipient_unqualified_hosts% may send unqualified recipients
11287%rfc1413_hosts% make ident calls to these hosts
11288%rfc1413_query_timeout% zero disables ident calls
11289%sender_unqualified_hosts% may send unqualified senders
11290%smtp_accept_keepalive% some TCP/IP magic
11291%smtp_accept_max% simultaneous incoming connections
11292%smtp_accept_max_nommail% non-mail commands
11293%smtp_accept_max_nonmail_hosts% hosts to which the limit applies
11294%smtp_accept_max_per_connection% messages per connection
11295%smtp_accept_max_per_host% connections from one host
11296%smtp_accept_queue% queue mail if more connections
11297%smtp_accept_queue_per_connection% queue if more messages per connection
11298%smtp_accept_reserve% only reserve hosts if more connections
11299%smtp_active_hostname% host name to use in messages
11300%smtp_banner% text for welcome banner
11301%smtp_check_spool_space% from SIZE on MAIL command
11302%smtp_connect_backlog% passed to TCP/IP stack
11303%smtp_enforce_sync% of SMTP command/responses
11304%smtp_etrn_command% what to run for ETRN
11305%smtp_etrn_serialize% only one at once
11306%smtp_load_reserve% only reserve hosts if this load
11307%smtp_max_unknown_commands% before dropping connection
11308%smtp_ratelimit_hosts% apply ratelimiting to these hosts
11309%smtp_ratelimit_mail% ratelimit for MAIL commands
11310%smtp_ratelimit_rcpt% ratelimit for RCPT commands
11311%smtp_receive_timeout% per command or data line
11312%smtp_reserve_hosts% these are the reserve hosts
11313%smtp_return_error_details% give detail on rejections
11314--------------------------------------------------------------------------
11315
11316
11317
11318SMTP extensions
11319~~~~~~~~~~~~~~~
11320[frame="none"]
11321`-----------------------------------`-------------------------------------
11322%accept_8bitmime% advertise 8BITMIME
11323%auth_advertise_hosts% advertise AUTH to these hosts
11324%ignore_fromline_hosts% allow ``From '' from these hosts
11325%ignore_fromline_local% allow ``From '' from local SMTP
11326%pipelining_advertise_hosts% advertise pipelining to these hosts
11327%tls_advertise_hosts% advertise TLS to these hosts
11328--------------------------------------------------------------------------
11329
11330
11331
11332Processing messages
11333~~~~~~~~~~~~~~~~~~~
11334[frame="none"]
11335`-----------------------------------`-------------------------------------
11336%allow_domain_literals% recognize domain literal syntax
11337%allow_mx_to_ip% allow MX to point to IP address
11338%allow_utf8_domains% in addresses
11339%delivery_date_remove% from incoming messages
11340%envelope_to_remote% from incoming messages
11341%extract_addresses_remove_arguments%affects %-t% processing
11342%headers_charset% default for translations
11343%qualify_domain% default for senders
11344%qualify_recipient% default for recipients
11345%return_path_remove% from incoming messages
11346%strip_excess_angle_brackets% in addresses
11347%strip_trailing_dot% at end of addresses
11348%untrusted_set_sender% untrusted can set envelope sender
11349--------------------------------------------------------------------------
11350
11351
11352
11353System filter
11354~~~~~~~~~~~~~
11355[frame="none"]
11356`-----------------------------------`-------------------------------------
11357%system_filter% locate system filter
11358%system_filter_directory_transport% transport for delivery to a directory
11359%system_filter_file_transport% transport for delivery to a file
11360%system_filter_group% group for filter running
11361%system_filter_pipe_transport% transport for delivery to a pipe
11362%system_filter_reply_transport% transport for autoreply delivery
11363%system_filter_user% user for filter running
11364--------------------------------------------------------------------------
11365
11366
11367
11368Routing and delivery
11369~~~~~~~~~~~~~~~~~~~~
11370[frame="none"]
11371`-----------------------------------`-------------------------------------
11372%dns_again_means_nonexist% for broken domains
11373%dns_check_names_pattern% pre-DNS syntax check
11374%dns_ipv4_lookup% only v4 lookup for these domains
11375%dns_retrans% parameter for resolver
11376%dns_retry% parameter for resolver
11377%hold_domains% hold delivery for these domains
11378%local_interfaces% for routing checks
11379%queue_domains% no immediate delivery for these
11380%queue_only% no immediate delivery at all
11381%queue_only_file% no immediate deliveryif file exists
11382%queue_only_load% no immediate delivery if load is high
11383%queue_only_override% allow command line to override
11384%queue_run_in_order% order of arrival
11385%queue_run_max% of simultaneous queue runners
11386%queue_smtp_domains% no immediate SMTP delivery for these
11387%remote_max_parallel% parallel SMTP delivery per message
11388%remote_sort_domains% order of remote deliveries
11389%retry_data_expire% timeout for retry data
11390%retry_interval_max% safety net for retry rules
11391--------------------------------------------------------------------------
11392
11393
11394
11395Bounce and warning messages
11396~~~~~~~~~~~~~~~~~~~~~~~~~~~
11397[frame="none"]
11398`-----------------------------------`-------------------------------------
11399%bounce_message_file% content of bounce
11400%bounce_message_text% content of bounce
11401%bounce_return_body% include body if returning message
11402%bounce_return_message% include original message in bounce
11403%bounce_return_size_limit% limit on returned message
11404%bounce_sender_authentication% send authenticated sender with bounce
11405%errors_copy% copy bounce messages
11406%errors_reply_to% 'Reply-to:' in bounces
11407%delay_warning% time schedule
11408%delay_warning_condition% condition for warning messages
11409%ignore_bounce_errors_after% discard undeliverable bounces
11410%warn_message_file% content of warning message
11411--------------------------------------------------------------------------
11412
11413
11414
11415[[SECTalomo]]
11416Alphabetical list of main options
11417~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11418Those options that undergo string expansion before use are marked with !!.
11419
11420oindex:[%accept_8bitmime%]
11421`..'=
11422%accept_8bitmime%, Use: 'main', Type: 'boolean', Default: 'false'
11423===
11424
11425cindex:[8BITMIME]
11426cindex:[8-bit characters]
11427This option causes Exim to send 8BITMIME in its response to an SMTP
11428EHLO command, and to accept the BODY= parameter on MAIL commands.
11429However, though Exim is 8-bit clean, it is not a protocol converter, and it
11430takes no steps to do anything special with messages received by this route.
11431Consequently, this option is turned off by default.
11432
11433oindex:[%acl_not_smtp%]
11434`..'=
11435%acl_not_smtp%, Use: 'main', Type: 'string'!!, Default: 'unset'
11436===
11437
11438cindex:[{ACL},for non-SMTP messages]
11439cindex:[non-SMTP messages, ACL for]
11440This option defines the ACL that is run when a non-SMTP message is on the point
11441of being accepted. See chapter <<CHAPACL>> for further details.
11442
11443oindex:[%acl_smtp_auth%]
11444`..'=
11445%acl_smtp_auth%, Use: 'main', Type: 'string'!!, Default: 'unset'
11446===
11447
11448cindex:[{ACL},setting up for SMTP commands]
11449cindex:[AUTH,ACL for]
11450This option defines the ACL that is run when an SMTP AUTH command is
11451received. See chapter <<CHAPACL>> for further details.
11452
11453oindex:[%acl_smtp_connect%]
11454`..'=
11455%acl_smtp_connect%, Use: 'main', Type: 'string'!!, Default: 'unset'
11456===
11457
11458cindex:[{ACL},on SMTP connection]
11459This option defines the ACL that is run when an SMTP connection is received.
11460See chapter <<CHAPACL>> for further details.
11461
11462oindex:[%acl_smtp_data%]
11463`..'=
11464%acl_smtp_data%, Use: 'main', Type: 'string'!!, Default: 'unset'
11465===
11466
11467cindex:[DATA, ACL for]
11468This option defines the ACL that is run after an SMTP DATA command has been
11469processed and the message itself has been received, but before the final
11470acknowledgement is sent. See chapter <<CHAPACL>> for further details.
11471
11472oindex:[%acl_smtp_etrn%]
11473`..'=
11474%acl_smtp_etrn%, Use: 'main', Type: 'string'!!, Default: 'unset'
11475===
11476
11477cindex:[ETRN,ACL for]
11478This option defines the ACL that is run when an SMTP ETRN command is
11479received. See chapter <<CHAPACL>> for further details.
11480
11481oindex:[%acl_smtp_expn%]
11482`..'=
11483%acl_smtp_expn%, Use: 'main', Type: 'string'!!, Default: 'unset'
11484===
11485
11486cindex:[EXPN,ACL for]
11487This option defines the ACL that is run when an SMTP EXPN command is
11488received. See chapter <<CHAPACL>> for further details.
11489
11490oindex:[%acl_smtp_helo%]
11491`..'=
11492%acl_smtp_helo%, Use: 'main', Type: 'string'!!, Default: 'unset'
11493===
11494
11495cindex:[EHLO,ACL for]
11496cindex:[HELO,ACL for]
11497This option defines the ACL that is run when an SMTP EHLO or HELO
11498command is received. See chapter <<CHAPACL>> for further details.
11499
11500
11501oindex:[%acl_smtp_mail%]
11502`..'=
11503%acl_smtp_mail%, Use: 'main', Type: 'string'!!, Default: 'unset'
11504===
11505
11506cindex:[MAIL,ACL for]
11507This option defines the ACL that is run when an SMTP MAIL command is
11508received. See chapter <<CHAPACL>> for further details.
11509
11510oindex:[%acl_smtp_mailauth%]
11511`..'=
11512%acl_smtp_mailauth%, Use: 'main', Type: 'string'!!, Default: 'unset'
11513===
11514
11515cindex:[AUTH,on MAIL command]
11516This option defines the ACL that is run when there is an AUTH parameter on
11517a MAIL command. See chapter <<CHAPACL>> for details of ACLs, and chapter
11518<<CHAPSMTPAUTH>> for details of authentication.
11519
11520oindex:[%acl_smtp_mime%]
11521`..'=
11522%acl_smtp_mime%, Use: 'main', Type: 'string'!!, Default: 'unset'
11523===
11524
11525cindex:[MIME content scanning,ACL for]
11526This option is available when Exim is built with the content-scanning
11527extension. It defines the ACL that is run for each MIME part in a message. See
11528section <<SECTscanmimepart>> for details.
11529
11530oindex:[%acl_smtp_predata%]
11531`..'=
11532%acl_smtp_predata%, Use: 'main', Type: 'string'!!, Default: 'unset'
11533===
11534
11535This option defines the ACL that is run when an SMTP DATA command is
11536received, before the message itself is received. See chapter <<CHAPACL>> for
11537further details.
11538
11539oindex:[%acl_smtp_quit%]
11540`..'=
11541%acl_smtp_quit%, Use: 'main', Type: 'string'!!, Default: 'unset'
11542===
11543
11544cindex:[QUIT,ACL for]
11545This option defines the ACL that is run when an SMTP QUIT command is
11546received. See chapter <<CHAPACL>> for further details.
11547
11548oindex:[%acl_smtp_rcpt%]
11549`..'=
11550%acl_smtp_rcpt%, Use: 'main', Type: 'string'!!, Default: 'unset'
11551===
11552
11553cindex:[RCPT,ACL for]
11554This option defines the ACL that is run when an SMTP RCPT command is
11555received. See chapter <<CHAPACL>> for further details.
11556
11557oindex:[%acl_smtp_starttls%]
11558`..'=
11559%acl_smtp_starttls%, Use: 'main', Type: 'string'!!, Default: 'unset'
11560===
11561
11562cindex:[STARTTLS, ACL for]
11563This option defines the ACL that is run when an SMTP STARTTLS command is
11564received. See chapter <<CHAPACL>> for further details.
11565
11566oindex:[%acl_smtp_vrfy%]
11567`..'=
11568%acl_smtp_vrfy%, Use: 'main', Type: 'string'!!, Default: 'unset'
11569===
11570
11571cindex:[VRFY,ACL for]
11572This option defines the ACL that is run when an SMTP VRFY command is
11573received. See chapter <<CHAPACL>> for further details.
11574
11575oindex:[%admin_groups%]
11576`..'=
11577%admin_groups%, Use: 'main', Type: 'string list', Default: 'unset'
11578===
11579
11580cindex:[admin user]
11581If the current group or any of the supplementary groups of the caller is in
11582this colon-separated list, the caller has admin privileges. If all your system
11583programmers are in a specific group, for example, you can give them all Exim
11584admin privileges by putting that group in %admin_groups%. However, this does
11585not permit them to read Exim's spool files (whose group owner is the Exim gid).
11586To permit this, you have to add individuals to the Exim group.
11587
11588
11589oindex:[%allow_domain_literals%]
11590`..'=
11591%allow_domain_literals%, Use: 'main', Type: 'boolean', Default: 'false'
11592===
11593
11594cindex:[domain literal]
11595If this option is set, the RFC 2822 domain literal format is permitted in
11596email addresses. The option is not set by default, because the domain literal
11597format is not normally required these days, and few people know about it. It
11598has, however, been exploited by mail abusers.
11599
11600Unfortunately, it seems that some DNS black list maintainers are using this
11601format to report black listing to postmasters. If you want to accept messages
11602addressed to your hosts by IP address, you need to set
11603%allow_domain_literals% true, and also to add `@[]` to the list of local
11604domains (defined in the named domain list %local_domains% in the default
11605configuration). This ``magic string'' matches the domain literal form of all the
11606local host's IP addresses.
11607
11608
11609oindex:[%allow_mx_to_ip%]
11610`..'=
11611%allow_mx_to_ip%, Use: 'main', Type: 'boolean', Default: 'false'
11612===
11613
11614cindex:[MX record,pointing to IP address]
11615It appears that more and more DNS zone administrators are breaking the rules
11616and putting domain names that look like IP addresses on the right hand side of
11617MX records. Exim follows the rules and rejects this, giving an error message
11618that explains the mis-configuration. However, some other MTAs support this
11619practice, so to avoid ``Why can''t Exim do this?' complaints, %allow_mx_to_ip%
11620exists, in order to enable this heinous activity. It is not recommended, except
11621when you have no other choice.
11622
11623oindex:[%allow_utf8_domains%]
11624`..'=
11625%allow_utf8_domains%, Use: 'main', Type: 'boolean', Default: 'false'
11626===
11627
11628cindex:[domain,UTF-8 characters in]
11629cindex:[UTF-8,in domain name]
11630Lots of discussion is going on about internationalized domain names. One
11631camp is strongly in favour of just using UTF-8 characters, and it seems
11632that at least two other MTAs permit this. This option allows Exim users to
11633experiment if they wish.
11634
11635If it is set true, Exim's domain parsing function allows valid
11636UTF-8 multicharacters to appear in domain name components, in addition to
11637letters, digits, and hyphens. However, just setting this option is not
11638enough; if you want to look up these domain names in the DNS, you must also
11639adjust the value of %dns_check_names_pattern% to match the extended form. A
11640suitable setting is:
11641
11642....
11643dns_check_names_pattern = (?i)^(?>(?(1)\.|())[a-z0-9\xc0-\xff]\
11644 (?>[-a-z0-9\x80-\xff]*[a-z0-9\x80-\xbf])?)+$
11645....
11646
11647Alternatively, you can just disable this feature by setting
11648
11649 dns_check_names_pattern =
11650
11651That is, set the option to an empty string so that no check is done.
11652
11653
11654oindex:[%auth_advertise_hosts%]
11655`..'=
11656%auth_advertise_hosts%, Use: 'main', Type: 'host list'!!, Default: '\*'
11657===
11658
11659cindex:[authentication,advertising]
11660cindex:[AUTH,advertising]
11661If any server authentication mechanisms are configured, Exim advertises them in
11662response to an EHLO command only if the calling host matches this list.
11663Otherwise, Exim does not advertise AUTH.
11664Exim does not accept AUTH commands from clients to which it has not
11665advertised the availability of AUTH. The advertising of individual
11666authentication mechanisms can be controlled by the use of the
11667%server_advertise_condition% generic authenticator option on the individual
11668authenticators. See chapter <<CHAPSMTPAUTH>> for further details.
11669
11670Certain mail clients (for example, Netscape) require the user to provide a name
11671and password for authentication if AUTH is advertised, even though it may
11672not be needed (the host may accept messages from hosts on its local LAN without
11673authentication, for example). The %auth_advertise_hosts% option can be used
11674to make these clients more friendly by excluding them from the set of hosts to
11675which Exim advertises AUTH.
11676
11677cindex:[AUTH,advertising when encrypted]
11678If you want to advertise the availability of AUTH only when the connection
11679is encrypted using TLS, you can make use of the fact that the value of this
11680option is expanded, with a setting like this:
11681
11682 auth_advertise_hosts = ${if eq{$tls_cipher}{}{}{*}}
11683
11684If $tls_cipher$ is empty, the session is not encrypted, and the result of
11685the expansion is empty, thus matching no hosts. Otherwise, the result of the
11686expansion is \*, which matches all hosts.
11687
11688
11689oindex:[%auto_thaw%]
11690`..'=
11691%auto_thaw%, Use: 'main', Type: 'time', Default: '0s'
11692===
11693
11694cindex:[thawing messages]
11695cindex:[unfreezing messages]
11696If this option is set to a time greater than zero, a queue runner will try a
11697new delivery attempt on any frozen message if this much time has passed since
11698it was frozen. This may result in the message being re-frozen if nothing has
11699changed since the last attempt. It is a way of saying ``keep on trying, even
11700though there are big problems''. See also %timeout_frozen_after% and
11701%ignore_bounce_errors_after%.
11702
11703
11704oindex:[%av_scanner%]
11705`..'=
11706%av_scanner%, Use: 'main', Type: 'string', Default: 'see below'
11707===
11708
11709This option is available if Exim is built with the content-scanning extension.
11710It specifies which anti-virus scanner to use. The default value is:
11711
11712 sophie:/var/run/sophie
11713
11714If the value of %av_scanner% starts with dollar character, it is expanded
11715before use. See section <<SECTscanvirus>> for further details.
11716
11717
11718
11719oindex:[%bi_command%]
11720`..'=
11721%bi_command%, Use: 'main', Type: 'string', Default: 'unset'
11722===
11723
11724cindex:[%-bi% option]
11725This option supplies the name of a command that is run when Exim is called with
11726the %-bi% option (see chapter <<CHAPcommandline>>). The string value is just the
11727command name, it is not a complete command line. If an argument is required, it
11728must come from the %-oA% command line option.
11729
11730
11731oindex:[%bounce_message_file%]
11732`..'=
11733%bounce_message_file%, Use: 'main', Type: 'string', Default: 'unset'
11734===
11735
11736cindex:[bounce message,customizing]
11737cindex:[customizing,bounce message]
11738This option defines a template file containing paragraphs of text to be used
11739for constructing bounce messages. Details of the file's contents are given in
11740chapter <<CHAPemsgcust>>. See also %warn_message_file%.
11741
11742
11743oindex:[%bounce_message_text%]
11744`..'=
11745%bounce_message_text%, Use: 'main', Type: 'string', Default: 'unset'
11746===
11747
11748When this option is set, its contents are included in the default bounce
11749message immediately after ``This message was created automatically by mail
11750delivery software.'' It is not used if %bounce_message_file% is set.
11751
11752oindex:[%bounce_return_body%]
11753`..'=
11754%bounce_return_body%, Use: 'main', Type: 'boolean', Default: 'true'
11755===
11756
11757cindex:[bounce message,including body]
11758This option controls whether the body of an incoming message is included in a
11759bounce message when %bounce_return_message% is true. If it is not set, only
11760the message header is included.
11761cindex:[bounce message,including original]
11762
11763oindex:[%bounce_return_message%]
11764`..'=
11765%bounce_return_message%, Use: 'main', Type: 'boolean', Default: 'true'
11766===
11767
11768If this option is set false, the original message is not included in bounce
11769messages generated by Exim. See also %bounce_return_size_limit%.
11770
11771
11772oindex:[%bounce_return_size_limit%]
11773`..'=
11774%bounce_return_size_limit%, Use: 'main', Type: 'integer', Default: '100K'
11775===
11776
11777cindex:[size limit, of bounce]
11778cindex:[bounce message,size limit]
11779cindex:[limit,bounce message size]
11780This option sets a limit in bytes on the size of messages that are returned to
11781senders as part of bounce messages when %bounce_return_message% is true. The
11782limit should be less than the value of the global %message_size_limit% and of
11783any %message_size_limit% settings on transports, to allow for the bounce text
11784that Exim generates. If this option is set to zero there is no limit.
11785
11786When the body of any message that is to be included in a bounce message is
11787greater than the limit, it is truncated, and a comment pointing this out is
11788added at the top. The actual cutoff may be greater than the value given, owing
11789to the use of buffering for transferring the message in chunks (typically 8K in
11790size). The idea is to save bandwidth on those undeliverable 15-megabyte
11791messages.
11792
11793oindex:[%bounce_sender_authentication%]
11794`..'=
11795%bounce_sender_authentication%, Use: 'main', Type: 'string', Default: 'unset'
11796===
11797
11798cindex:[bounce message,sender authentication]
11799cindex:[authentication,bounce message]
11800cindex:[AUTH,on bounce message]
11801This option provides an authenticated sender address that is sent with any
11802bounce messages generated by Exim that are sent over an authenticated SMTP
11803connection. A typical setting might be:
11804
11805 bounce_sender_authentication = mailer-daemon@my.domain.example
11806
11807which would cause bounce messages to be sent using the SMTP command:
11808
11809 MAIL FROM:<> AUTH=mailer-daemon@my.domain.example
11810
11811The value of %bounce_sender_authentication% must always be a complete email
11812address.
11813
11814oindex:[%callout_domain_negative_expire%]
11815`..'=
11816%callout_domain_negative_expire%, Use: 'main', Type: 'time', Default: '3h'
11817===
11818
11819cindex:[caching,callout timeouts]
11820cindex:[callout,caching timeouts]
11821This option specifies the expiry time for negative callout cache data for a
11822domain. See section <<SECTcallver>> for details of callout verification, and
11823section <<SECTcallvercache>> for details of the caching.
11824
11825
11826oindex:[%callout_domain_positive_expire%]
11827`..'=
11828%callout_domain_positive_expire%, Use: 'main', Type: 'time', Default: '7d'
11829===
11830
11831This option specifies the expiry time for positive callout cache data for a
11832domain. See section <<SECTcallver>> for details of callout verification, and
11833section <<SECTcallvercache>> for details of the caching.
11834
11835
11836oindex:[%callout_negative_expire%]
11837`..'=
11838%callout_negative_expire%, Use: 'main', Type: 'time', Default: '2h'
11839===
11840
11841This option specifies the expiry time for negative callout cache data for an
11842address. See section <<SECTcallver>> for details of callout verification, and
11843section <<SECTcallvercache>> for details of the caching.
11844
11845
11846oindex:[%callout_positive_expire%]
11847`..'=
11848%callout_positive_expire%, Use: 'main', Type: 'time', Default: '24h'
11849===
11850
11851This option specifies the expiry time for positive callout cache data for an
11852address. See section <<SECTcallver>> for details of callout verification, and
11853section <<SECTcallvercache>> for details of the caching.
11854
11855
11856oindex:[%callout_random_local_part%]
11857`..'=
11858%callout_random_local_part%, Use: 'main', Type: 'string'!!, Default: 'see below'
11859===
11860
11861This option defines the ``random'' local part that can be used as part of callout
11862verification. The default value is
11863
11864 $primary_host_name-$tod_epoch-testing
11865
11866See section <<CALLaddparcall>> for details of how this value is used.
11867
11868
11869oindex:[%check_log_inodes%]
11870`..'=
11871%check_log_inodes%, Use: 'main', Type: 'integer', Default: '0'
11872===
11873
11874See %check_spool_space% below.
11875
11876
11877oindex:[%check_log_space%]
11878`..'=
11879%check_log_space%, Use: 'main', Type: 'integer', Default: '0'
11880===
11881
11882See %check_spool_space% below.
11883
11884
11885oindex:[%check_spool_inodes%]
11886`..'=
11887%check_spool_inodes%, Use: 'main', Type: 'integer', Default: '0'
11888===
11889
11890See %check_spool_space% below.
11891
11892
11893oindex:[%check_spool_space%]
11894`..'=
11895%check_spool_space%, Use: 'main', Type: 'integer', Default: '0'
11896===
11897
11898cindex:[checking disk space]
11899cindex:[disk space, checking]
11900cindex:[spool directory,checking space]
11901The four %check_...% options allow for checking of disk resources before a
11902message is accepted.
11903
11904When any of these options are set, they apply to all incoming messages. If you
11905want to apply different checks to different kinds of message, you can do so
11906by testing the the variables $log_inodes$, $log_space$,
11907$spool_inodes$, and $spool_space$ in an ACL with appropriate additional
11908conditions.
11909
11910
11911%check_spool_space% and %check_spool_inodes% check the spool partition if
11912either value is greater than zero, for example:
11913
11914 check_spool_space = 10M
11915 check_spool_inodes = 100
11916
11917The spool partition is the one that contains the directory defined by
11918SPOOL_DIRECTORY in _Local/Makefile_. It is used for holding messages in
11919transit.
11920
11921%check_log_space% and %check_log_inodes% check the partition in which log
11922files are written if either is greater than zero. These should be set only if
11923%log_file_path% and %spool_directory% refer to different partitions.
11924
11925If there is less space or fewer inodes than requested, Exim refuses to accept
11926incoming mail. In the case of SMTP input this is done by giving a 452 temporary
11927error response to the MAIL command. If ESMTP is in use and there was a
11928SIZE parameter on the MAIL command, its value is added to the
11929%check_spool_space% value, and the check is performed even if
11930%check_spool_space% is zero, unless %no_smtp_check_spool_space% is set.
11931
11932The values for %check_spool_space% and %check_log_space% are held as a
11933number of kilobytes. If a non-multiple of 1024 is specified, it is rounded up.
11934
11935For non-SMTP input and for batched SMTP input, the test is done at start-up; on
11936failure a message is written to stderr and Exim exits with a non-zero code, as
11937it obviously cannot send an error message of any kind.
11938
11939oindex:[%daemon_smtp_ports%]
11940`..'=
11941%daemon_smtp_ports%, Use: 'main', Type: 'string', Default: `smtp`
11942===
11943
11944cindex:[port,for daemon]
11945cindex:[TCP/IP,setting listening ports]
11946This option specifies one or more default SMTP ports on which the Exim daemon
11947listens. See chapter <<CHAPinterfaces>> for details of how it is used. For
11948backward compatibility, %daemon_smtp_port% (singular) is a synonym.
11949
11950
11951oindex:[%delay_warning%]
11952`..'=
11953%delay_warning%, Use: 'main', Type: 'time list', Default: '24h'
11954===
11955
11956cindex:[warning of delay]
11957cindex:[delay warning, specifying]
11958When a message is delayed, Exim sends a warning message to the sender at
11959intervals specified by this option. The data is a colon-separated list of times
11960after which to send warning messages.
11961
11962If the value of the option is an empty string or a zero time, no warnings are
11963sent.
11964
11965Up to 10 times may be given. If a message has been on the queue for longer than
11966the last time, the last interval between the times is used to compute
11967subsequent warning times. For example, with
11968
11969 delay_warning = 4h:8h:24h
11970
11971the first message is sent after 4 hours, the second after 8 hours, and
11972the third one after 24 hours. After that, messages are sent every 16 hours,
11973because that is the interval between the last two times on the list. If you set
11974just one time, it specifies the repeat interval. For example, with:
11975
11976 delay_warning = 6h
11977
11978messages are repeated every six hours. To stop warnings after a given time, set
11979a very large time at the end of the list. For example:
11980
11981 delay_warning = 2h:12h:99d
11982
11983
11984
11985oindex:[%delay_warning_condition%]
11986`..'=
11987%delay_warning_condition%, Use: 'main', Type: 'string'!!, Default: 'see below'
11988===
11989
11990The string is expanded at the time a warning message might be sent. If all the
11991deferred addresses have the same domain, it is set in $domain$ during the
11992expansion. Otherwise $domain$ is empty. If the result of the expansion is a
11993forced failure, an empty string, or a string matching any of ``0'', ``no'' or
11994``false'' (the comparison being done caselessly) then the warning message is not
11995sent. The default is
11996
11997....
11998delay_warning_condition = \
11999 ${if match{$h_precedence:}{(?i)bulk|list|junk}{no}{yes}}
12000....
12001
12002which suppresses the sending of warnings about messages that have ``bulk'',
12003``list'' or ``junk'' in a 'Precedence:' header.
12004
12005oindex:[%deliver_drop_privilege%]
12006`..'=
12007%deliver_drop_privilege%, Use: 'main', Type: 'boolean', Default: 'false'
12008===
12009
12010cindex:[unprivileged delivery]
12011cindex:[delivery,unprivileged]
12012If this option is set true, Exim drops its root privilege at the start of a
12013delivery process, and runs as the Exim user throughout. This severely restricts
12014the kinds of local delivery that are possible, but is viable in certain types
12015of configuration. There is a discussion about the use of root privilege in
12016chapter <<CHAPsecurity>>.
12017
12018oindex:[%deliver_queue_load_max%]
12019`..'=
12020%deliver_queue_load_max%, Use: 'main', Type: 'fixed-point', Default: 'unset'
12021===
12022
12023cindex:[load average]
12024cindex:[queue runner,abandoning]
12025When this option is set, a queue run is abandoned if the system load average
12026becomes greater than the value of the option. The option has no effect on
12027ancient operating systems on which Exim cannot determine the load average.
12028See also %queue_only_load% and %smtp_load_reserve%.
12029
12030
12031oindex:[%delivery_date_remove%]
12032`..'=
12033%delivery_date_remove%, Use: 'main', Type: 'boolean', Default: 'true'
12034===
12035
12036cindex:['Delivery-date:' header line]
12037Exim's transports have an option for adding a 'Delivery-date:' header to a
12038message when it is delivered -- in exactly the same way as 'Return-path:' is
12039handled. 'Delivery-date:' records the actual time of delivery. Such headers
12040should not be present in incoming messages, and this option causes them to be
12041removed at the time the message is received, to avoid any problems that might
12042occur when a delivered message is subsequently sent on to some other recipient.
12043
12044oindex:[%dns_again_means_nonexist%]
12045`..'=
12046%dns_again_means_nonexist%, Use: 'main', Type: 'domain list'!!, Default: 'unset'
12047===
12048
12049cindex:[DNS,``try again'' response; overriding]
12050DNS lookups give a ``try again'' response for the DNS errors ``non-authoritative
12051host not found'' and ``SERVERFAIL''. This can cause Exim to keep trying to
12052deliver a message, or to give repeated temporary errors to incoming mail.
12053Sometimes the effect is caused by a badly set up name server and may persist
12054for a long time. If a domain which exhibits this problem matches anything in
12055%dns_again_means_nonexist%, it is treated as if it did not exist. This
12056option should be used with care.
12057You can make it apply to reverse lookups by a setting such as this:
12058
12059 dns_again_means_nonexist = *.in-addr.arpa
12060
12061This option applies to all DNS lookups that Exim does. The ^dnslookup^ router
12062has some options of its own for controlling what happens when lookups for MX or
12063SRV records give temporary errors. These more specific options are applied
12064after the global option.
12065
12066oindex:[%dns_check_names_pattern%]
12067`..'=
12068%dns_check_names_pattern%, Use: 'main', Type: 'string', Default: 'see below'
12069===
12070
12071cindex:[DNS,pre-check of name syntax]
12072When this option is set to a non-empty string, it causes Exim to check domain
12073names for illegal characters before handing them to the DNS resolver, because
12074some resolvers give temporary errors for malformed names. If a domain name
12075contains any illegal characters, a ``not found'' result is forced, and the
12076resolver is not called. The check is done by matching the domain name against a
12077regular expression, which is the value of this option. The default pattern is
12078
12079....
12080dns_check_names_pattern = \
12081 (?i)^(?>(?(1)\.|())[^\W_](?>[a-z0-9-]*[^\W_])?)+$
12082....
12083
12084which permits only letters, digits, and hyphens in components, but they may not
12085start or end with a hyphen.
12086If you set %allow_utf8_domains%, you must modify this pattern, or set the
12087option to an empty string.
12088
12089
12090oindex:[%dns_ipv4_lookup%]
12091`..'=
12092%dns_ipv4_lookup%, Use: 'main', Type: 'domain list'!!, Default: 'unset'
12093===
12094
12095cindex:[IPv6,DNS lookup for AAAA records]
12096cindex:[DNS,IPv6 lookup for AAAA records]
12097When Exim is compiled with IPv6 support, it looks for IPv6 address records
12098(AAAA and, if configured, A6) as well as IPv4 address records when trying to
12099find IP addresses for hosts, unless the host's domain matches this list.
12100
12101This is a fudge to help with name servers that give big delays or otherwise do
12102not work for the new IPv6 record types. If Exim is handed an IPv6 address
12103record as a result of an MX lookup, it always recognizes it, and may as a
12104result make an outgoing IPv6 connection. All this option does is to make Exim
12105look only for IPv4-style A records when it needs to find an IP address for a
12106host name. In due course, when the world's name servers have all been upgraded,
12107there should be no need for this option.
12108
12109
12110oindex:[%dns_retrans%]
12111`..'=
12112%dns_retrans%, Use: 'main', Type: 'time', Default: '0s'
12113===
12114
12115cindex:[DNS,resolver options]
12116The options %dns_retrans% and %dns_retry% can be used to set the
12117retransmission and retry parameters for DNS lookups. Values of zero (the
12118defaults) leave the system default settings unchanged. The first value is the
12119time between retries, and the second is the number of retries. It isn't
12120totally clear exactly how these settings affect the total time a DNS lookup may
12121take. I haven't found any documentation about timeouts on DNS lookups; these
12122parameter values are available in the external resolver interface structure,
12123but nowhere does it seem to describe how they are used or what you might want
12124to set in them.
12125
12126
12127oindex:[%dns_retry%]
12128`..'=
12129%dns_retry%, Use: 'main', Type: 'integer', Default: '0'
12130===
12131
12132See %dns_retrans% above.
12133
12134
12135oindex:[%drop_cr%]
12136`..'=
12137%drop_cr%, Use: 'main', Type: 'boolean', Default: 'false'
12138===
12139
12140This is an obsolete option that is now a no-op. It used to affect the way Exim
12141handled CR and LF characters in incoming messages. What happens now is
12142described in section <<SECTlineendings>>.
12143
12144
12145oindex:[%envelope_to_remove%]
12146`..'=
12147%envelope_to_remove%, Use: 'main', Type: 'boolean', Default: 'true'
12148===
12149
12150cindex:['Envelope-to:' header line]
12151Exim's transports have an option for adding an 'Envelope-to:' header to a
12152message when it is delivered -- in exactly the same way as 'Return-path:' is
12153handled. 'Envelope-to:' records the original recipient address from the
12154messages's envelope that caused the delivery to happen. Such headers should not
12155be present in incoming messages, and this option causes them to be removed at
12156the time the message is received, to avoid any problems that might occur when a
12157delivered message is subsequently sent on to some other recipient.
12158
12159
12160oindex:[%errors_copy%]
12161`..'=
12162%errors_copy%, Use: 'main', Type: 'string list'!!, Default: 'unset'
12163===
12164
12165cindex:[bounce message,copy to other address]
12166cindex:[copy of bounce message]
12167Setting this option causes Exim to send bcc copies of bounce messages that it
12168generates to other addresses. *Note*: this does not apply to bounce messages
12169coming from elsewhere. The value of the option is a colon-separated list of
12170items. Each item consists of a pattern, terminated by white space, followed by
12171a comma-separated list of email addresses. If a pattern contains spaces, it
12172must be enclosed in double quotes.
12173
12174Each pattern is processed in the same way as a single item in an address list
12175(see section <<SECTaddresslist>>). When a pattern matches the recipient of the
12176bounce message, the message is copied to the addresses on the list. The items
12177are scanned in order, and once a matching one is found, no further items are
12178examined. For example:
12179
12180....
12181errors_copy = spqr@mydomain postmaster@mydomain.example :\
12182 rqps@mydomain hostmaster@mydomain.example,\
12183 postmaster@mydomain.example
12184....
12185
12186The address list is expanded before use. The expansion variables
12187$local_part$ and $domain$ are set from the original recipient of the error
12188message, and if there was any wildcard matching in the pattern, the expansion
12189
12190cindex:[numerical variables ($1$ $2$ etc),in %errors_copy%]
12191variables $0$, $1$, etc. are set in the normal way.
12192
12193
12194oindex:[%errors_reply_to%]
12195`..'=
12196%errors_reply_to%, Use: 'main', Type: 'string', Default: 'unset'
12197===
12198
12199cindex:[bounce message,'Reply-to:' in]
12200Exim's bounce and delivery warning messages contain the header line
12201
12202 From: Mail Delivery System <Mailer-Daemon@<qualify-domain>>
12203
12204where <'qualify-domain'> is the value of the %qualify_domain% option.
12205Experience shows that people reply to bounce messages. If the
12206%errors_reply_to% option is set, a 'Reply-To:' header is added to bounce and
12207warning messages. For example:
12208
12209 errors_reply_to = postmaster@my.domain.example
12210
12211The value of the option is not expanded. It must specify a valid RFC 2822
12212address.
12213
12214
12215oindex:[%exim_group%]
12216`..'=
12217%exim_group%, Use: 'main', Type: 'string', Default: 'compile-time configured'
12218===
12219
12220cindex:[gid (group id),Exim's own]
12221cindex:[Exim group]
12222This option changes the gid under which Exim runs when it gives up root
12223privilege. The default value is compiled into the binary. The value of this
12224option is used only when %exim_user% is also set. Unless it consists entirely
12225of digits, the string is looked up using 'getgrnam()', and failure causes a
12226configuration error. See chapter <<CHAPsecurity>> for a discussion of security
12227issues.
12228
12229
12230oindex:[%exim_path%]
12231`..'=
12232%exim_path%, Use: 'main', Type: 'string', Default: 'see below'
12233===
12234
12235cindex:[Exim binary, path name]
12236This option specifies the path name of the Exim binary, which is used when Exim
12237needs to re-exec itself. The default is set up to point to the file 'exim' in
12238the directory configured at compile time by the BIN_DIRECTORY setting. It
12239is necessary to change %exim_path% if, exceptionally, Exim is run from some
12240other place.
12241*Warning*: Do not use a macro to define the value of this option, because
12242you will break those Exim utilities that scan the configuration file to find
12243where the binary is. (They then use the %-bP% option to extract option
12244settings such as the value of %spool_directory%.)
12245
12246
12247oindex:[%exim_user%]
12248`..'=
12249%exim_user%, Use: 'main', Type: 'string', Default: 'compile-time configured'
12250===
12251
12252cindex:[uid (user id),Exim's own]
12253cindex:[Exim user]
12254This option changes the uid under which Exim runs when it gives up root
12255privilege. The default value is compiled into the binary. Ownership of the run
12256time configuration file and the use of the %-C% and %-D% command line options
12257is checked against the values in the binary, not what is set here.
12258
12259Unless it consists entirely of digits, the string is looked up using
12260'getpwnam()', and failure causes a configuration error. If %exim_group% is
12261not also supplied, the gid is taken from the result of 'getpwnam()' if it is
12262used. See chapter <<CHAPsecurity>> for a discussion of security issues.
12263
12264
12265oindex:[%extra_local_interfaces%]
12266`..'=
12267%extra_local_interfaces%, Use: 'main', Type: 'string list', Default: 'unset'
12268===
12269
12270This option defines network interfaces that are to be considered local when
12271routing, but which are not used for listening by the daemon. See section
12272<<SECTreclocipadd>> for details.
12273
12274
12275oindex:[%extract_addresses_remove_arguments%]
12276`..'=
12277%extract_addresses_remove_ ~arguments%, Use: 'main', Type: 'boolean', Default: 'true'
12278===
12279
12280cindex:[%-t% option]
12281cindex:[command line,addresses with %-t%]
12282cindex:[Sendmail compatibility,%-t% option]
12283According to some Sendmail documentation (Sun, IRIX, HP-UX), if any addresses
12284are present on the command line when the %-t% option is used to build an
12285envelope from a message's 'To:', 'Cc:' and 'Bcc:' headers, the command line
12286addresses are removed from the recipients list. This is also how Smail behaves.
12287However, other Sendmail documentation (the O'Reilly book) states that command
12288line addresses are added to those obtained from the header lines. When
12289%extract_addresses_remove_arguments% is true (the default), Exim subtracts
12290argument headers. If it is set false, Exim adds rather than removes argument
12291addresses.
12292
12293
12294oindex:[%finduser_retries%]
12295`..'=
12296%finduser_retries%, Use: 'main', Type: 'integer', Default: '0'
12297===
12298
12299cindex:[NIS, looking up users; retrying]
12300On systems running NIS or other schemes in which user and group information is
12301distributed from a remote system, there can be times when 'getpwnam()' and
12302related functions fail, even when given valid data, because things time out.
12303Unfortunately these failures cannot be distinguished from genuine ``not found''
12304errors. If %finduser_retries% is set greater than zero, Exim will try that
12305many extra times to find a user or a group, waiting for one second between
12306retries.
12307
12308cindex:[_/etc/passwd_, multiple reading of]
12309You should not set this option greater than zero if your user information is in
12310a traditional _/etc/passwd_ file, because it will cause Exim needlessly to
12311search the file multiple times for non-existent users, and also cause delay.
12312
12313
12314
12315oindex:[%freeze_tell%]
12316`..'=
12317%freeze_tell%, Use: 'main', "Type: 'string list, comma separated'", Default: 'unset'
12318===
12319
12320cindex:[freezing messages,sending a message when freezing]
12321On encountering certain errors, or when configured to do so in a system filter,
12322or in an ACL,
12323Exim freezes a message. This means that no further delivery attempts take place
12324until an administrator (or the %auto_thaw% feature) thaws the message. If
12325%freeze_tell% is set, Exim generates a warning message whenever it freezes
12326something, unless the message it is freezing is a
12327locally-generated
12328bounce message. (Without this exception there is the possibility of looping.)
12329The warning message is sent to the addresses supplied as the comma-separated
12330value of this option. If several of the message's addresses cause freezing,
12331only a single message is sent.
12332If the freezing was automatic, the reason(s) for freezing can be found in the
12333message log. If you configure freezing in a filter or ACL, you must arrange for
12334any logging that you require.
12335
12336
12337oindex:[%gecos_name%]
12338`..'=
12339%gecos_name%, Use: 'main', Type: 'string'!!, Default: 'unset'
12340===
12341
12342cindex:[HP-UX]
12343cindex:[``gecos'' field, parsing]
12344Some operating systems, notably HP-UX, use the ``gecos'' field in the system
12345password file to hold other information in addition to users' real names. Exim
12346looks up this field for use when it is creating 'Sender:' or 'From:' headers.
12347If either %gecos_pattern% or %gecos_name% are unset, the contents of the
12348field are used unchanged, except that, if an ampersand is encountered, it is
12349replaced by the user's login name with the first character forced to
12350upper case, since this is a convention that is observed on many systems.
12351
12352When these options are set, %gecos_pattern% is treated as a regular expression
12353that is to be applied to the field (again with & replaced by the login name),
12354and if it matches, %gecos_name% is expanded and used as the user's name.
12355
12356cindex:[numerical variables ($1$ $2$ etc),in %gecos_name%]
12357Numeric variables such as $1$, $2$, etc. can be used in the expansion to
12358pick up sub-fields that were matched by the pattern. In HP-UX, where the user's
12359name terminates at the first comma, the following can be used:
12360
12361 gecos_pattern = ([^,]*)
12362 gecos_name = $1
12363
12364
12365
12366oindex:[%gecos_pattern%]
12367`..'=
12368%gecos_pattern%, Use: 'main', Type: 'string', Default: 'unset'
12369===
12370
12371See %gecos_name% above.
12372
12373
12374oindex:[%headers_charset%]
12375`..'=
12376%headers_charset%, Use: 'main', Type: 'string', Default: 'see below'
12377===
12378
12379This option sets a default character set for translating from encoded MIME
12380``words'' in header lines, when referenced by an $h_xxx$ expansion item. The
12381default is the value of HEADERS_CHARSET in _Local/Makefile_. The
12382ultimate default is ISO-8859-1. For more details see the description of header
12383insertions in section <<SECTexpansionitems>>.
12384
12385
12386
12387oindex:[%header_maxsize%]
12388`..'=
12389%header_maxsize%, Use: 'main', Type: 'integer', Default: 'see below'
12390===
12391
12392cindex:[header section,maximum size of]
12393cindex:[limit,size of message header section]
12394This option controls the overall maximum size of a message's header
12395section. The default is the value of HEADER_MAXSIZE in
12396_Local/Makefile_; the default for that is 1M. Messages with larger header
12397sections are rejected.
12398
12399
12400oindex:[%header_line_maxsize%]
12401`..'=
12402%header_line_maxsize%, Use: 'main', Type: 'integer', Default: '0'
12403===
12404
12405cindex:[header lines,maximum size of]
12406cindex:[limit,size of one header line]
12407This option limits the length of any individual header line in a message, after
12408all the continuations have been joined together. Messages with individual
12409header lines that are longer than the limit are rejected. The default value of
12410zero means ``no limit''.
12411
12412
12413
12414
12415oindex:[%helo_accept_junk_hosts%]
12416`..'=
12417%helo_accept_junk_hosts%, Use: 'main', Type: 'host list'!!, Default: 'unset'
12418===
12419
12420cindex:[HELO,accepting junk data]
12421cindex:[EHLO,accepting junk data]
12422Exim checks the syntax of HELO and EHLO commands for incoming SMTP
12423mail, and gives an error response for invalid data. Unfortunately, there are
12424some SMTP clients that send syntactic junk. They can be accommodated by setting
12425this option. Note that this is a syntax check only. See %helo_verify_hosts%
12426if you want to do semantic checking.
12427See also %helo_allow_chars% for a way of extending the permitted character
12428set.
12429
12430
12431oindex:[%helo_allow_chars%]
12432`..'=
12433%helo_allow_chars%, Use: 'main', Type: 'string', Default: 'unset'
12434===
12435
12436cindex:[HELO,underscores in]
12437cindex:[EHLO,underscores in]
12438cindex:[underscore in EHLO/HELO]
12439This option can be set to a string of rogue characters that are permitted in
12440all EHLO and HELO names in addition to the standard letters, digits,
12441hyphens, and dots. If you really must allow underscores, you can set
12442
12443 helo_allow_chars = _
12444
12445Note that the value is one string, not a list.
12446
12447
12448oindex:[%helo_lookup_domains%]
12449`..'=
12450%helo_lookup_domains%, Use: 'main', Type: 'domain list'!!, Default: `@:@[]`
12451===
12452
12453cindex:[HELO,forcing reverse lookup]
12454cindex:[EHLO,forcing reverse lookup]
12455If the domain given by a client in a HELO or EHLO command matches this
12456list, a reverse lookup is done in order to establish the host's true name. The
12457default forces a lookup if the client host gives the server's name or any of
12458its IP addresses (in brackets), something that broken clients have been seen to
12459do.
12460
12461
12462oindex:[%helo_try_verify_hosts%]
12463`..'=
12464%helo_try_verify_hosts%, Use: 'main', Type: 'host list'!!, Default: 'unset'
12465===
12466
12467cindex:[HELO verifying, optional]
12468cindex:[EHLO verifying, optional]
12469The RFCs mandate that a server must not reject a message because it doesn't
12470like the HELO or EHLO command. By default, Exim just checks the syntax
12471of these commands (see %helo_accept_junk_hosts% and %helo_allow_chars%
12472above). However, some sites like to be stricter. If the calling host matches
12473%helo_try_verify_hosts%, Exim checks that the host name given in the HELO
12474or EHLO command either:
12475
12476- is an IP literal matching the calling address of the host (the RFCs
12477specifically allow this), or
12478
12479- cindex:[DNS,reverse lookup]
12480cindex:[reverse DNS lookup]
12481matches the host name that Exim obtains by doing a reverse lookup of the
12482calling host address, or
12483
12484- when looked up using 'gethostbyname()' (or 'getipnodebyname()' when
12485available) yields the calling host address.
12486
12487However, the EHLO or HELO command is not rejected if any of the checks
12488fail. Processing continues, but the result of the check is remembered, and can
12489be detected later in an ACL by the `verify = helo` condition. If you want
12490verification failure to cause rejection of EHLO or HELO, use
12491%helo_verify_hosts% instead.
12492
12493
12494
12495oindex:[%helo_verify_hosts%]
12496`..'=
12497%helo_verify_hosts%, Use: 'main', Type: 'host list'!!, Default: 'unset'
12498===
12499
12500cindex:[HELO verifying, mandatory]
12501cindex:[EHLO verifying, mandatory]
12502For hosts that match this option, Exim checks the host name given in the
12503HELO or EHLO in the same way as for %helo_try_verify_hosts%. If the
12504check fails, the HELO or EHLO command is rejected with a 550 error, and
12505entries are written to the main and reject logs. If a MAIL command is
12506received before EHLO or HELO, it is rejected with a
12507503
12508error.
12509
12510
12511oindex:[%hold_domains%]
12512`..'=
12513%hold_domains%, Use: 'main', Type: 'domain list'!!, Default: 'unset'
12514===
12515
12516cindex:[domain,delaying delivery]
12517cindex:[delivery,delaying certain domains]
12518This option allows mail for particular domains to be held on the queue
12519manually. The option is overridden if a message delivery is forced with the
12520%-M%, %-qf%, %-Rf% or %-Sf% options, and also while testing or verifying
12521addresses using %-bt% or %-bv%. Otherwise, if a domain matches an item in
12522%hold_domains%, no routing or delivery for that address is done, and it is
12523deferred every time the message is looked at.
12524
12525This option is intended as a temporary operational measure for delaying the
12526delivery of mail while some problem is being sorted out, or some new
12527configuration tested. If you just want to delay the processing of some
12528domains until a queue run occurs, you should use %queue_domains% or
12529%queue_smtp_domains%, not %hold_domains%.
12530
12531A setting of %hold_domains% does not override Exim's code for removing
12532messages from the queue if they have been there longer than the longest retry
12533time in any retry rule. If you want to hold messages for longer than the normal
12534retry times, insert a dummy retry rule with a long retry time.
12535
12536
12537oindex:[%host_lookup%]
12538`..'=
12539%host_lookup%, Use: 'main', Type: 'host list'!!, Default: 'unset'
12540===
12541
12542cindex:[host name lookup, forcing]
12543Exim does not look up the name of a calling host from its IP address unless it
12544is required to compare against some host list, or the host matches
12545%helo_try_verify_hosts% or %helo_verify_hosts%, or the host matches this
12546option (which normally contains IP addresses rather than host names). The
12547default configuration file contains
12548
12549 host_lookup = *
12550
12551which causes a lookup to happen for all hosts. If the expense of these lookups
12552is felt to be too great, the setting can be changed or removed.
12553
12554After a successful reverse lookup, Exim does a forward lookup on the name it
12555has obtained, to verify that it yields the IP address that it started with. If
12556this check fails, Exim behaves as if the name lookup failed.
12557
12558After any kind of failure, the host name (in $sender_host_name$) remains
12559unset, and $host_lookup_failed$ is set to the string ``1''. See also
12560%dns_again_means_nonexist%, %helo_lookup_domains%, and `verify =
12561reverse_host_lookup` in ACLs.
12562
12563
12564oindex:[%host_lookup_order%]
12565`..'=
12566%host_lookup_order%, Use: 'main', Type: 'string list', Default: `bydns:byaddr`
12567===
12568
12569This option specifies the order of different lookup methods when Exim is trying
12570to find a host name from an IP address. The default is to do a DNS lookup
12571first, and then to try a local lookup (using 'gethostbyaddr()' or equivalent)
12572if that fails. You can change the order of these lookups, or omit one entirely,
12573if you want.
12574
12575*Warning*: the ``byaddr'' method does not always yield aliases when there are
12576multiple PTR records in the DNS and the IP address is not listed in
12577_/etc/hosts_. Different operating systems give different results in this
12578case. That is why the default tries a DNS lookup first.
12579
12580
12581
12582oindex:[%host_reject_connection%]
12583`..'=
12584%host_reject_connection%, Use: 'main', Type: 'host list'!!, Default: 'unset'
12585===
12586
12587cindex:[host,rejecting connections from]
12588If this option is set, incoming SMTP calls from the hosts listed are rejected
12589as soon as the connection is made.
12590This option is obsolete, and retained only for backward compatibility, because
12591nowadays the ACL specified by %acl_smtp_connect% can also reject incoming
12592connections immediately.
12593
12594The ability to give an immediate rejection (either by this option or using an
12595ACL) is provided for use in unusual cases. Many hosts will just try again,
12596sometimes without much delay. Normally, it is better to use an ACL to reject
12597incoming messages at a later stage, such as after RCPT commands. See
12598chapter <<CHAPACL>>.
12599
12600
12601oindex:[%hosts_connection_nolog%]
12602`..'=
12603%hosts_connection_nolog%, Use: 'main', Type: 'host list'!!, Default: 'unset'
12604===
12605
12606cindex:[host,not logging connections from]
12607This option defines a list of hosts for which connection logging does not
12608happen, even though the %smtp_connection% log selector is set. For example,
12609you might want not to log SMTP connections from local processes, or from
12610127.0.0.1, or from your local LAN. This option is consulted in the main loop of
12611the daemon; you should therefore strive to restrict its value to a short inline
12612list of IP addresses and networks. To disable logging SMTP connections from
12613local processes, you must create a host list with an empty item. For example:
12614
12615 hosts_connection_nolog = :
12616
12617If the %smtp_connection% log selector is not set, this option has no effect.
12618
12619
12620
12621oindex:[%hosts_treat_as_local%]
12622`..'=
12623%hosts_treat_as_local%, Use: 'main', Type: 'domain list'!!, Default: 'unset'
12624===
12625
12626cindex:[local host,domains treated as]
12627cindex:[host,treated as local]
12628If this option is set, any host names that match the domain list are treated as
12629if they were the local host when Exim is scanning host lists obtained from MX
12630records
12631or other sources. Note that the value of this option is a domain list, not a
12632host list, because it is always used to check host names, not IP addresses.
12633
12634This option also applies when Exim is matching the special items
12635`@mx_any`, `@mx_primary`, and `@mx_secondary` in a domain list (see
12636section <<SECTdomainlist>>), and when checking the %hosts% option in the ^smtp^
12637transport for the local host (see the %allow_localhost% option in that
12638transport).
12639See also %local_interfaces%, %extra_local_interfaces%, and chapter
12640<<CHAPinterfaces>>, which contains a discussion about local network interfaces
12641and recognising the local host.
12642
12643
12644oindex:[%ignore_bounce_errors_after%]
12645`..'=
12646%ignore_bounce_errors_after%, Use: 'main', Type: 'time', Default: '10w'
12647===
12648
12649cindex:[bounce message,discarding]
12650cindex:[discarding bounce message]
12651This option affects the processing of bounce messages that cannot be delivered,
12652that is, those that suffer a permanent delivery failure. (Bounce messages that
12653suffer temporary delivery failures are of course retried in the usual way.)
12654
12655After a permanent delivery failure, bounce messages are frozen,
12656because there is no sender to whom they can be returned. When a frozen bounce
12657message has been on the queue for more than the given time, it is unfrozen at
12658the next queue run, and a further delivery is attempted. If delivery fails
12659again, the bounce message is discarded. This makes it possible to keep failed
12660bounce messages around for a shorter time than the normal maximum retry time
12661for frozen messages. For example,
12662
12663 ignore_bounce_errors_after = 12h
12664
12665retries failed bounce message deliveries after 12 hours, discarding any further
12666failures. If the value of this option is set to a zero time period, bounce
12667failures are discarded immediately. Setting a very long time (as in the default
12668value) has the effect of disabling this option. For ways of automatically
12669dealing with other kinds of frozen message, see %auto_thaw% and
12670%timeout_frozen_after%.
12671
12672
12673oindex:[%ignore_fromline_hosts%]
12674`..'=
12675%ignore_fromline_hosts%, Use: 'main', Type: 'host list'!!, Default: 'unset'
12676===
12677
12678cindex:[``From'' line]
12679cindex:[UUCP,``From'' line]
12680Some broken SMTP clients insist on sending a UUCP-like ``From'' line before the
12681headers of a message. By default this is treated as the start of the message's
12682body, which means that any following headers are not recognized as such. Exim
12683can be made to ignore it by setting %ignore_fromline_hosts% to match those
12684hosts that insist on sending it. If the sender is actually a local process
12685rather than a remote host, and is using %-bs% to inject the messages,
12686%ignore_fromline_local% must be set to achieve this effect.
12687
12688
12689oindex:[%ignore_fromline_local%]
12690`..'=
12691%ignore_fromline_local%, Use: 'main', Type: 'boolean', Default: 'false'
12692===
12693
12694See %ignore_fromline_hosts% above.
12695
12696
12697oindex:[%keep_malformed%]
12698`..'=
12699%keep_malformed%, Use: 'main', Type: 'time', Default: '4d'
12700===
12701
12702This option specifies the length of time to keep messages whose spool files
12703have been corrupted in some way. This should, of course, never happen. At the
12704next attempt to deliver such a message, it gets removed. The incident is
12705logged.
12706
12707
12708oindex:[%ldap_default_servers%]
12709`..'=
12710%ldap_default_servers%, Use: 'main', Type: 'string list', Default: 'unset'
12711===
12712
12713cindex:[LDAP,default servers]
12714This option provides a list of LDAP servers which are tried in turn when an
12715LDAP query does not contain a server. See section <<SECTforldaque>> for details
12716of LDAP queries. This option is available only when Exim has been built with
12717LDAP support.
12718
12719
12720oindex:[%ldap_version%]
12721`..'=
12722%ldap_version%, Use: 'main', Type: 'integer', Default: 'unset'
12723===
12724
12725cindex:[LDAP protocol version, forcing]
12726This option can be used to force Exim to set a specific protocol version for
12727LDAP. If it option is unset, it is shown by the %-bP% command line option as
12728-1. When this is the case, the default is 3 if LDAP_VERSION3 is defined in
12729the LDAP headers; otherwise it is 2. This option is available only when Exim
12730has been built with LDAP support.
12731
12732
12733
12734oindex:[%local_from_check%]
12735`..'=
12736%local_from_check%, Use: 'main', Type: 'boolean', Default: 'true'
12737===
12738
12739cindex:['Sender:' header line,disabling addition of]
12740cindex:['From:' header line,disabling checking of]
12741When a message is submitted locally (that is, not over a TCP/IP connection) by
12742an untrusted user, Exim removes any existing 'Sender:' header line, and checks
12743that the 'From:' header line matches the login of the calling user and the
12744domain specified by %qualify_domain%.
12745
12746*Note*: An unqualified address (no domain) in the 'From:' header in a
12747locally submitted message is automatically qualified by Exim, unless the
12748%-bnq% command line option is used.
12749
12750You can use %local_from_prefix% and %local_from_suffix% to permit affixes
12751on the local part. If the 'From:' header line does not match, Exim adds a
12752'Sender:' header with an address constructed from the calling user's login and
12753the default qualify domain.
12754
12755If %local_from_check% is set false, the 'From:' header check is disabled,
12756and no 'Sender:' header is ever added. If, in addition, you want to retain
12757'Sender:' header lines supplied by untrusted users, you must also set
12758%local_sender_retain% to be true.
12759
12760cindex:[envelope sender]
12761These options affect only the header lines in the message. The envelope sender
12762is still forced to be the login id at the qualify domain unless
12763%untrusted_set_sender% permits the user to supply an envelope sender.
12764
12765For messages received over TCP/IP, an ACL can specify ``submission mode'' to
12766request similar header line checking. See section <<SECTthesenhea>>, which has
12767more details about 'Sender:' processing.
12768
12769
12770
12771
12772oindex:[%local_from_prefix%]
12773`..'=
12774%local_from_prefix%, Use: 'main', Type: 'string', Default: 'unset'
12775===
12776
12777When Exim checks the 'From:' header line of locally submitted messages for
12778matching the login id (see %local_from_check% above), it can be configured to
12779ignore certain prefixes and suffixes in the local part of the address. This is
12780done by setting %local_from_prefix% and/or %local_from_suffix% to
12781appropriate lists, in the same form as the %local_part_prefix% and
12782%local_part_suffix% router options (see chapter <<CHAProutergeneric>>). For
12783example, if
12784
12785 local_from_prefix = *-
12786
12787is set, a 'From:' line containing
12788
12789 From: anything-user@your.domain.example
12790
12791will not cause a 'Sender:' header to be added if 'user@your.domain.example'
12792matches the actual sender address that is constructed from the login name and
12793qualify domain.
12794
12795
12796oindex:[%local_from_suffix%]
12797`..'=
12798%local_from_suffix%, Use: 'main', Type: 'string', Default: 'unset'
12799===
12800
12801See %local_from_prefix% above.
12802
12803
12804oindex:[%local_interfaces%]
12805`..'=
12806%local_interfaces%, Use: 'main', Type: 'string list', Default: 'see below'
12807===
12808
12809This option controls which network interfaces are used by the daemon for
12810listening; they are also used to identify the local host when routing. Chapter
12811<<CHAPinterfaces>> contains a full description of this option and the related
12812options
12813
12814%daemon_smtp_ports%, %extra_local_interfaces%, %hosts_treat_as_local%,
12815and %tls_on_connect_ports%.
12816
12817The default value for %local_interfaces% is
12818
12819 local_interfaces = 0.0.0.0
12820
12821when Exim is built without IPv6 support; otherwise it is
12822
12823 local_interfaces = <; ::0 ; 0.0.0.0
12824
12825
12826
12827oindex:[%local_scan_timeout%]
12828`..'=
12829%local_scan_timeout%, Use: 'main', Type: 'time', Default: '5m'
12830===
12831
12832cindex:[timeout,for 'local_scan()' function]
12833cindex:['local_scan()' function,timeout]
12834This timeout applies to the 'local_scan()' function (see chapter
12835<<CHAPlocalscan>>). Zero means ``no timeout''. If the timeout is exceeded, the
12836incoming message is rejected with a temporary error if it is an SMTP message.
12837For a non-SMTP message, the message is dropped and Exim ends with a non-zero
12838code. The incident is logged on the main and reject logs.
12839
12840
12841
12842oindex:[%local_sender_retain%]
12843`..'=
12844%local_sender_retain%, Use: 'main', Type: 'boolean', Default: 'false'
12845===
12846
12847cindex:['Sender:' header line,retaining from local submission]
12848When a message is submitted locally (that is, not over a TCP/IP connection) by
12849an untrusted user, Exim removes any existing 'Sender:' header line. If you
12850do not want this to happen, you must set %local_sender_retain%, and you must
12851also set %local_from_check% to be false (Exim will complain if you do not).
12852Section <<SECTthesenhea>> has more details about 'Sender:' processing.
12853
12854
12855
12856
12857oindex:[%localhost_number%]
12858`..'=
12859%localhost_number%, Use: 'main', Type: 'string'!!, Default: 'unset'
12860===
12861
12862cindex:[host,locally unique number for]
12863cindex:[message ids, with multiple hosts]
12864Exim's message ids are normally unique only within the local host. If
12865uniqueness among a set of hosts is required, each host must set a different
12866value for the %localhost_number% option. The string is expanded immediately
12867after reading the configuration file (so that a number can be computed from the
12868host name, for example) and the result of the expansion must be a number in the
12869range 0--16 (or 0--10 on operating systems with case-insensitive file systems).
12870This is available in subsequent string expansions via the variable
12871$localhost_number$. When %localhost_number is set%, the final two
12872characters of the message id, instead of just being a fractional part of the
12873time, are computed from the time and the local host number as described in
12874section <<SECTmessiden>>.
12875
12876
12877
12878oindex:[%log_file_path%]
12879`..'=
12880%log_file_path%, Use: 'main', Type: 'string list'!!, Default: 'set at compile time'
12881===
12882
12883cindex:[log,file path for]
12884This option sets the path which is used to determine the names of Exim's log
12885files, or indicates that logging is to be to syslog, or both. It is expanded
12886when Exim is entered, so it can, for example, contain a reference to the host
12887name. If no specific path is set for the log files at compile or run time, they
12888are written in a sub-directory called _log_ in Exim's spool directory.
12889Chapter <<CHAPlog>> contains further details about Exim's logging, and section
12890<<SECTwhelogwri>> describes how the contents of %log_file_path% are used. If
12891this string is fixed at your installation (contains no expansion variables) it
12892is recommended that you do not set this option in the configuration file, but
12893instead supply the path using LOG_FILE_PATH in _Local/Makefile_ so that
12894it is available to Exim for logging errors detected early on -- in particular,
12895failure to read the configuration file.
12896
12897
12898oindex:[%log_selector%]
12899`..'=
12900%log_selector%, Use: 'main', Type: 'string', Default: 'unset'
12901===
12902
12903cindex:[log,selectors]
12904This option can be used to reduce or increase the number of things that Exim
12905writes to its log files. Its argument is made up of names preceded by plus or
12906minus characters. For example:
12907
12908 log_selector = +arguments -retry_defer
12909
12910A list of possible names and what they control is given in the chapter on
12911logging, in section <<SECTlogselector>>.
12912
12913
12914oindex:[%log_timezone%]
12915`..'=
12916%log_timezone%, Use: 'main', Type: 'boolean', Default: 'false'
12917===
12918
12919cindex:[log,timezone for entries]
12920By default, the timestamps on log lines are in local time without the
12921timezone. This means that if your timezone changes twice a year, the timestamps
12922in log lines are ambiguous for an hour when the clocks go back. One way of
12923avoiding this problem is to set the timezone to UTC. An alternative is to set
12924%log_timezone% true. This turns on the addition of the timezone offset to
12925timestamps in log lines. Turning on this option can add quite a lot to the size
12926of log files because each line is extended by 6 characters. Note that the
12927$tod_log$ variable contains the log timestamp without the zone, but there is
12928another variable called $tod_zone$ that contains just the timezone offset.
12929
12930
12931oindex:[%lookup_open_max%]
12932`..'=
12933%lookup_open_max%, Use: 'main', Type: 'integer', Default: '25'
12934===
12935
12936cindex:[too many open files]
12937cindex:[open files, too many]
12938cindex:[file,too many open]
12939cindex:[lookup,maximum open files]
12940cindex:[limit,open files for lookups]
12941This option limits the number of simultaneously open files for single-key
12942lookups that use regular files (that is, ^lsearch^, ^dbm^, and ^cdb^). Exim
12943normally keeps these files open during routing, because often the same file is
12944required several times. If the limit is reached, Exim closes the least recently
12945used file. Note that if you are using the 'ndbm' library, it actually opens
12946two files for each logical DBM database, though it still counts as one for the
12947purposes of %lookup_open_max%. If you are getting ``too many open files''
12948errors with NDBM, you need to reduce the value of %lookup_open_max%.
12949
12950
12951oindex:[%max_username_length%]
12952`..'=
12953%max_username_length%, Use: 'main', Type: 'integer', Default: '0'
12954===
12955
12956cindex:[length of login name]
12957cindex:[user name,maximum length]
12958cindex:[limit,user name length]
12959Some operating systems are broken in that they truncate long arguments to
12960'getpwnam()' to eight characters, instead of returning ``no such user''. If
12961this option is set greater than zero, any attempt to call 'getpwnam()' with
12962an argument that is longer behaves as if 'getpwnam()' failed.
12963
12964
12965
12966oindex:[%message_body_visible%]
12967`..'=
12968%message_body_visible%, Use: 'main', Type: 'integer', Default: '500'
12969===
12970
12971cindex:[body of message,visible size]
12972cindex:[message body, visible size]
12973This option specifies how much of a message's body is to be included in the
12974$message_body$ and $message_body_end$ expansion variables.
12975
12976
12977oindex:[%message_id_header_domain%]
12978`..'=
12979%message_id_header_domain%, Use: 'main', Type: 'string'!!, Default: 'unset'
12980===
12981
12982cindex:['Message-ID:' header line]
12983If this option is set, the string is expanded and used as the right hand side
12984(domain) of the 'Message-ID:' header that Exim creates if a
12985locally-originated incoming message does not have one. ``Locally-originated''
12986means ``not received over TCP/IP.''
12987Otherwise, the primary host name is used.
12988Only letters, digits, dot and hyphen are accepted; any other characters are
12989replaced by hyphens. If the expansion is forced to fail, or if the result is an
12990empty string, the option is ignored.
12991
12992
12993oindex:[%message_id_header_text%]
12994`..'=
12995%message_id_header_text%, Use: 'main', Type: 'string'!!, Default: 'unset'
12996===
12997
12998If this variable is set, the string is expanded and used to augment the text of
12999the 'Message-id:' header that Exim creates if a
13000locally-originated
13001incoming message does not have one. The text of this header is required by RFC
130022822 to take the form of an address. By default, Exim uses its internal message
13003id as the local part, and the primary host name as the domain. If this option
13004is set, it is expanded, and provided the expansion is not forced to fail, and
13005does not yield an empty string, the result is inserted into the header
13006immediately before the @, separated from the internal message id by a dot. Any
13007characters that are illegal in an address are automatically converted into
13008hyphens. This means that variables such as $tod_log$ can be used, because
13009the spaces and colons will become hyphens.
13010
13011
13012oindex:[%message_logs%]
13013`..'=
13014%message_logs%, Use: 'main', Type: 'boolean', Default: 'true'
13015===
13016
13017cindex:[message log, disabling]
13018cindex:[log,message log; disabling]
13019If this option is turned off, per-message log files are not created in the
13020_msglog_ spool sub-directory. This reduces the amount of disk I/O required by
13021Exim, by reducing the number of files involved in handling a message from a
13022minimum of four (header spool file, body spool file, delivery journal, and
13023per-message log) to three. The other major I/O activity is Exim's main log,
13024which is not affected by this option.
13025
13026
13027oindex:[%message_size_limit%]
13028`..'=
13029%message_size_limit%, Use: 'main', Type: 'string'!!, Default: '50M'
13030===
13031
13032cindex:[message,size limit]
13033cindex:[limit,message size]
13034cindex:[size of message, limit]
13035This option limits the maximum size of message that Exim will process. The
13036value is expanded for each incoming
13037connection so, for example, it can be made to depend on the IP address of the
13038remote host for messages arriving via TCP/IP. *Note*: This limit cannot be
13039made to depend on a message's sender or any other properties of an individual
13040message, because it has to be advertised in the server's response to EHLO.
13041String expansion failure causes a temporary error. A value of zero means no
13042limit, but its use is not recommended. See also %bounce_return_size_limit%.
13043
13044Incoming SMTP messages are failed with a 552 error if the limit is
13045exceeded; locally-generated messages either get a stderr message or a delivery
13046failure message to the sender, depending on the %-oe% setting. Rejection of an
13047oversized message is logged in both the main and the reject logs. See also the
13048generic transport option %message_size_limit%, which limits the size of
13049message that an individual transport can process.
13050
13051
13052oindex:[%move_frozen_messages%]
13053`..'=
13054%move_frozen_messages%, Use: 'main', Type: 'boolean', Default: 'false'
13055===
13056
13057cindex:[frozen messages,moving]
13058This option, which is available only if Exim has been built with the setting
13059
13060 SUPPORT_MOVE_FROZEN_MESSAGES=yes
13061
13062in _Local/Makefile_, causes frozen messages and their message logs to be
13063moved from the _input_ and _msglog_ directories on the spool to _Finput_
13064and _Fmsglog_, respectively. There is currently no support in Exim or the
13065standard utilities for handling such moved messages, and they do not show up in
13066lists generated by %-bp% or by the Exim monitor.
13067
13068
13069oindex:[%mua_wrapper%]
13070`..'=
13071%mua_wrapper%, Use: 'main', Type: 'boolean', Default: 'false'
13072===
13073
13074Setting this option true causes Exim to run in a very restrictive mode in which
13075it passes messages synchronously to a smart host. Chapter <<CHAPnonqueueing>>
13076contains a full description of this facility.
13077
13078
13079
13080oindex:[%mysql_servers%]
13081`..'=
13082%mysql_servers%, Use: 'main', Type: 'string list', Default: 'unset'
13083===
13084
13085cindex:[MySQL,server list]
13086This option provides a list of MySQL servers and associated connection data, to
13087be used in conjunction with ^mysql^ lookups (see section <<SECTsql>>). The
13088option is available only if Exim has been built with MySQL support.
13089
13090
13091oindex:[%never_users%]
13092`..'=
13093%never_users%, Use: 'main', Type: 'string list', Default: 'unset'
13094===
13095
13096Local message deliveries are normally run in processes that are setuid to the
13097recipient, and remote deliveries are normally run under Exim's own uid and gid.
13098It is usually desirable to prevent any deliveries from running as root, as a
13099safety precaution.
13100
13101When Exim is built, an option called FIXED_NEVER_USERS can be set to a
13102list of users that must not be used for local deliveries. This list is fixed in
13103the binary and cannot be overridden by the configuration file. By default, it
13104contains just the single user name ``root''. The %never_users% runtime option
13105can be used to add more users to the fixed list.
13106
13107If a message is to be delivered as one of the users on the fixed list or the
13108%never_users% list, an error occurs, and delivery is deferred. A common
13109example is
13110
13111 never_users = root:daemon:bin
13112
13113Including root is redundant if it is also on the fixed list, but it does no
13114harm. This option overrides the %pipe_as_creator% option of the ^pipe^
13115transport driver.
13116
13117
13118oindex:[%oracle_servers%]
13119`..'=
13120%oracle_servers%, Use: 'main', Type: 'string list', Default: 'unset'
13121===
13122
13123cindex:[Oracle,server list]
13124This option provides a list of Oracle servers and associated connection data,
13125to be used in conjunction with ^oracle^ lookups (see section <<SECTsql>>). The
13126option is available only if Exim has been built with Oracle support.
13127
13128
13129oindex:[%percent_hack_domains%]
13130`..'=
13131%percent_hack_domains%, Use: 'main', Type: 'domain list'!!, Default: 'unset'
13132===
13133
13134cindex:[``percent hack'']
13135cindex:[source routing,in email address]
13136cindex:[address,source-routed]
13137The ``percent hack'' is the convention whereby a local part containing a percent
13138sign is re-interpreted as a new email address, with the percent replaced by @.
13139This is sometimes called ``source routing'', though that term is also applied to
13140RFC 2822 addresses that begin with an @ character. If this option is set, Exim
13141implements the percent facility for those domains listed, but no others. This
13142happens before an incoming SMTP address is tested against an ACL.
13143
13144*Warning*: The ``percent hack'' has often been abused by people who are
13145trying to get round relaying restrictions. For this reason, it is best avoided
13146if at all possible. Unfortunately, a number of less security-conscious MTAs
13147implement it unconditionally. If you are running Exim on a gateway host, and
13148routing mail through to internal MTAs without processing the local parts, it is
13149a good idea to reject recipient addresses with percent characters in their
13150local parts. Exim's default configuration does this.
13151
13152
13153oindex:[%perl_at_start%]
13154`..'=
13155%perl_at_start%, Use: 'main', Type: 'boolean', Default: 'false'
13156===
13157
13158This option is available only when Exim is built with an embedded Perl
13159interpreter. See chapter <<CHAPperl>> for details of its use.
13160
13161
13162oindex:[%perl_startup%]
13163`..'=
13164%perl_startup%, Use: 'main', Type: 'string', Default: 'unset'
13165===
13166
13167This option is available only when Exim is built with an embedded Perl
13168interpreter. See chapter <<CHAPperl>> for details of its use.
13169
13170
13171oindex:[%pgsql_servers%]
13172`..'=
13173%pgsql_servers%, Use: 'main', Type: 'string list', Default: 'unset'
13174===
13175
13176cindex:[PostgreSQL lookup type,server list]
13177This option provides a list of PostgreSQL servers and associated connection
13178data, to be used in conjunction with ^pgsql^ lookups (see section <<SECTsql>>).
13179The option is available only if Exim has been built with PostgreSQL support.
13180
13181
13182oindex:[%pid_file_path%]
13183`..'=
13184%pid_file_path%, Use: 'main', Type: 'string'!!, Default: 'set at compile time'
13185===
13186
13187cindex:[daemon,pid file path]
13188cindex:[pid file, path for]
13189This option sets the name of the file to which the Exim daemon writes its
13190process id. The string is expanded, so it can contain, for example, references
13191to the host name:
13192
13193 pid_file_path = /var/log/$primary_hostname/exim.pid
13194
13195If no path is set, the pid is written to the file _exim-daemon.pid_ in Exim's
13196spool directory.
13197The value set by the option can be overridden by the %-oP% command line
13198option. A pid file is not written if a ``non-standard'' daemon is run by means of
13199the %-oX% option, unless a path is explicitly supplied by %-oP%.
13200
13201
13202oindex:[%pipelining_advertise_hosts%]
13203`..'=
13204%pipelining_advertise_hosts%, Use: 'main', Type: 'host list'!!, Default: '\*'
13205===
13206
13207cindex:[PIPELINING advertising, suppressing]
13208This option can be used to suppress the advertisement of the SMTP
13209PIPELINING extension to specific hosts. When PIPELINING is not
13210advertised and %smtp_enforce_sync% is true, an Exim server enforces strict
13211synchronization for each SMTP command and response.
13212When PIPELINING is advertised, Exim assumes that clients will use it; ``out
13213of order'' commands that are ``expected'' do not count as protocol errors (see
13214%smtp_max_synprot_errors%).
13215
13216
13217oindex:[%preserve_message_logs%]
13218`..'=
13219%preserve_message_logs%, Use: 'main', Type: 'boolean', Default: 'false'
13220===
13221
13222cindex:[message logs, preserving]
13223If this option is set, message log files are not deleted when messages are
13224completed. Instead, they are moved to a sub-directory of the spool directory
13225called _msglog.OLD_, where they remain available for statistical or debugging
13226purposes. This is a dangerous option to set on systems with any appreciable
13227volume of mail. Use with care!
13228
13229
13230oindex:[%primary_hostname%]
13231`..'=
13232%primary_hostname%, Use: 'main', Type: 'string', Default: 'see below'
13233===
13234
13235cindex:[name,of local host]
13236cindex:[host,name of local]
13237cindex:[local host,name of]
13238This specifies the name of the current host. It is used in the default EHLO
13239or HELO command for outgoing SMTP messages (changeable via the %helo_data%
13240option in the ^smtp^ transport),
13241and as the default for %qualify_domain%. If it is not set, Exim calls
13242'uname()' to find it. If this fails, Exim panics and dies. If the name
13243returned by 'uname()' contains only one component, Exim passes it to
13244'gethostbyname()' (or 'getipnodebyname()' when available) in order to
13245obtain the fully qualified version.
13246
13247The value of $primary_hostname$ is also used by default in some SMTP
13248response messages from an Exim server. This can be changed dynamically by
13249setting %smtp_active_hostname%.
13250
13251
13252oindex:[%print_topbitchars%]
13253`..'=
13254%print_topbitchars%, Use: 'main', Type: 'boolean', Default: 'false'
13255===
13256
13257cindex:[printing characters]
13258cindex:[8-bit characters]
13259By default, Exim considers only those characters whose codes lie in the range
1326032--126 to be printing characters. In a number of circumstances (for example,
13261when writing log entries) non-printing characters are converted into escape
13262sequences, primarily to avoid messing up the layout. If %print_topbitchars% is
13263set, code values of 128 and above are also considered to be printing
13264characters.
13265
13266
13267oindex:[%process_log_path%]
13268`..'=
13269%process_log_path%, Use: 'main', Type: 'string', Default: 'unset'
13270===
13271
13272cindex:[process log path]
13273cindex:[log,process log]
13274cindex:['exiwhat']
13275This option sets the name of the file to which an Exim process writes its
13276``process log'' when sent a USR1 signal. This is used by the 'exiwhat' utility
13277script. If this option is unset, the file called _exim-process.info_ in
13278Exim's spool directory is used. The ability to specify the name explicitly can
13279be useful in environments where two different Exims are running, using
13280different spool directories.
13281
13282
13283oindex:[%prod_requires_admin%]
13284`..'=
13285%prod_requires_admin%, Use: 'main', Type: 'boolean', Default: 'true'
13286===
13287
13288cindex:[%-M% option]
13289cindex:[%-R% option]
13290cindex:[%-q% option]
13291The %-M%, %-R%, and %-q% command-line options require the caller to be an
13292admin user unless %prod_requires_admin% is set false. See also
13293%queue_list_requires_admin%.
13294
13295
13296oindex:[%qualify_domain%]
13297`..'=
13298%qualify_domain%, Use: 'main', Type: 'string', Default: 'see below'
13299===
13300
13301cindex:[domain,for qualifying addresses]
13302cindex:[address,qualification]
13303This option specifies the domain name that is added to any envelope sender
13304addresses that do not have a domain qualification. It also applies to
13305recipient addresses if %qualify_recipient% is not set.
13306
13307Unqualified addresses are accepted by default only for locally-generated
13308messages.
13309
13310Qualification is also applied to addresses in header lines such as 'From:' and
13311'To:' for locally-generated messages, unless the %-bnq% command line option
13312is used.
13313
13314
13315Messages from external sources must always contain fully qualified addresses,
13316unless the sending host matches %sender_unqualified_hosts% or
13317%recipient_unqualified_hosts% (as appropriate), in which case incoming
13318addresses are qualified with %qualify_domain% or %qualify_recipient% as
13319necessary. Internally, Exim always works with fully qualified envelope
13320addresses. If %qualify_domain% is not set, it defaults to the
13321%primary_hostname% value.
13322
13323
13324oindex:[%qualify_recipient%]
13325`..'=
13326%qualify_recipient%, Use: 'main', Type: 'string', Default: 'see below'
13327===
13328
13329This option allows you to specify a different domain for qualifying recipient
13330addresses to the one that is used for senders. See %qualify_domain% above.
13331
13332
13333
13334oindex:[%queue_domains%]
13335`..'=
13336%queue_domains%, Use: 'main', Type: 'domain list'!!, Default: 'unset'
13337===
13338
13339cindex:[domain,specifying non-immediate delivery]
13340cindex:[queueing incoming messages]
13341cindex:[message,queueing certain domains]
13342This option lists domains for which immediate delivery is not required.
13343A delivery process is started whenever a message is received, but only those
13344domains that do not match are processed. All other deliveries wait until the
13345next queue run. See also %hold_domains% and %queue_smtp_domains%.
13346
13347
13348oindex:[%queue_list_requires_admin%]
13349`..'=
13350%queue_list_requires_admin%, Use: 'main', Type: 'boolean', Default: 'true'
13351===
13352
13353cindex:[%-bp% option]
13354The %-bp% command-line option, which lists the messages that are on the queue,
13355requires the caller to be an admin user unless %queue_list_requires_admin%
13356is set false. See also %prod_requires_admin%.
13357
13358
13359oindex:[%queue_only%]
13360`..'=
13361%queue_only%, Use: 'main', Type: 'boolean', Default: 'false'
13362===
13363
13364cindex:[queueing incoming messages]
13365cindex:[message,queueing unconditionally]
13366If %queue_only% is set, a delivery process is not automatically started
13367whenever a message is received. Instead, the message waits on the queue for the
13368next queue run. Even if %queue_only% is false, incoming messages may not get
13369delivered immediately when certain conditions (such as heavy load) occur.
13370
13371The %-odq% command line has the same effect as %queue_only%. The %-odb% and
13372%-odi% command line options override %queue_only% unless
13373%queue_only_override% is set false. See also %queue_only_file%,
13374%queue_only_load%, and %smtp_accept_queue%.
13375
13376
13377oindex:[%queue_only_file%]
13378`..'=
13379%queue_only_file%, Use: 'main', Type: 'string', Default: 'unset'
13380===
13381
13382cindex:[queueing incoming messages]
13383cindex:[message,queueing by file existence]
13384This option can be set to a colon-separated list of absolute path names, each
13385one optionally preceded by ``smtp''. When Exim is receiving a message,
13386it tests for the existence of each listed path using a call to 'stat()'. For
13387each path that exists, the corresponding queuing option is set.
13388For paths with no prefix, %queue_only% is set; for paths prefixed by ``smtp'',
13389%queue_smtp_domains% is set to match all domains. So, for example,
13390
13391 queue_only_file = smtp/some/file
13392
13393causes Exim to behave as if %queue_smtp_domains% were set to ``\*'' whenever
13394_/some/file_ exists.
13395
13396
13397oindex:[%queue_only_load%]
13398`..'=
13399%queue_only_load%, Use: 'main', Type: 'fixed-point', Default: 'unset'
13400===
13401
13402cindex:[load average]
13403cindex:[queueing incoming messages]
13404cindex:[message,queueing by load]
13405If the system load average is higher than this value, incoming messages from
13406all sources are queued, and no automatic deliveries are started. If this
13407happens during local or remote SMTP input, all subsequent messages on the same
13408connection are queued. Deliveries will subsequently be performed by queue
13409runner processes. This option has no effect on ancient operating systems on
13410which Exim cannot determine the load average. See also
13411%deliver_queue_load_max% and %smtp_load_reserve%.
13412
13413
13414oindex:[%queue_only_override%]
13415`..'=
13416%queue_only_override%, Use: 'main', Type: 'boolean', Default: 'true'
13417===
13418
13419cindex:[queueing incoming messages]
13420When this option is true, the %-od'x'% command line options override the
13421setting of %queue_only% or %queue_only_file% in the configuration file. If
13422%queue_only_override% is set false, the %-od'x'% options cannot be used to
13423override; they are accepted, but ignored.
13424
13425
13426oindex:[%queue_run_in_order%]
13427`..'=
13428%queue_run_in_order%, Use: 'main', Type: 'boolean', Default: 'false'
13429===
13430
13431cindex:[queue runner,processing messages in order]
13432If this option is set, queue runs happen in order of message arrival instead of
13433in an arbitrary order. For this to happen, a complete list of the entire queue
13434must be set up before the deliveries start. When the queue is all held in a
13435single directory (the default),
13436
13437a single list is created for both the ordered and the non-ordered cases.
13438However, if %split_spool_directory% is set, a single list is not created when
13439%queue_run_in_order% is false. In this case, the sub-directories are
13440processed one at a time (in a random order), and this avoids setting up one
13441huge list for the whole queue. Thus, setting %queue_run_in_order% with
13442%split_spool_directory% may degrade performance when the queue is large,
13443because of the extra work in setting up the single, large list. In most
13444situations, %queue_run_in_order% should not be set.
13445
13446
13447
13448oindex:[%queue_run_max%]
13449`..'=
13450%queue_run_max%, Use: 'main', Type: 'integer', Default: '5'
13451===
13452
13453cindex:[queue runner,maximum number of]
13454This controls the maximum number of queue runner processes that an Exim daemon
13455can run simultaneously. This does not mean that it starts them all at once,
13456but rather that if the maximum number are still running when the time comes to
13457start another one, it refrains from starting another one. This can happen with
13458very large queues and/or very sluggish deliveries. This option does not,
13459however, interlock with other processes, so additional queue runners can be
13460started by other means, or by killing and restarting the daemon.
13461
13462
13463oindex:[%queue_smtp_domains%]
13464`..'=
13465%queue_smtp_domains%, Use: 'main', Type: 'domain list'!!, Default: 'unset'
13466===
13467
13468cindex:[queueing incoming messages]
13469cindex:[message,queueing remote deliveries]
13470When this option is set, a delivery process is started whenever a message is
13471received, routing is performed, and local deliveries take place.
13472However, if any SMTP deliveries are required for domains that match
13473%queue_smtp_domains%, they are not immediately delivered, but instead the
13474message waits on the queue for the next queue run. Since routing of the message
13475has taken place, Exim knows to which remote hosts it must be delivered, and so
13476when the queue run happens, multiple messages for the same host are delivered
13477over a single SMTP connection. The %-odqs% command line option causes all SMTP
13478deliveries to be queued in this way, and is equivalent to setting
13479%queue_smtp_domains% to ``\*''. See also %hold_domains% and %queue_domains%.
13480
13481
13482oindex:[%receive_timeout%]
13483`..'=
13484%receive_timeout%, Use: 'main', Type: 'time', Default: '0s'
13485===
13486
13487cindex:[timeout,for non-SMTP input]
13488This option sets the timeout for accepting a non-SMTP message, that is, the
13489maximum time that Exim waits when reading a message on the standard input. If
13490the value is zero, it will wait for ever. This setting is overridden by the
13491%-or% command line option. The timeout for incoming SMTP messages is
13492controlled by %smtp_receive_timeout%.
13493
13494oindex:[%received_header_text%]
13495`..'=
13496%received_header_text%, Use: 'main', Type: 'string'!!, Default: 'see below'
13497===
13498
13499cindex:[customizing, 'Received:' header]
13500cindex:['Received:' header line,customizing]
13501This string defines the contents of the 'Received:' message header that is
13502added to each message, except for the timestamp, which is automatically added
13503on at the end (preceded by a semicolon). The string is expanded each time it is
13504used. If the expansion yields an empty string, no 'Received:' header line is
13505added to the message. Otherwise, the string should start with the text
13506``Received:'' and conform to the RFC 2822 specification for 'Received:' header
13507lines. The default setting is:
13508
13509....
13510received_header_text = Received: \
13511 ${if def:sender_rcvhost {from $sender_rcvhost\n\t}\
13512 {${if def:sender_ident {from $sender_ident }}\
13513 ${if def:sender_helo_name {(helo=$sender_helo_name)\n\t}}}}\
13514 by $primary_hostname \
13515 ${if def:received_protocol {with $received_protocol}} \
13516 ${if def:tls_cipher {($tls_cipher)\n\t}}\
13517 (Exim $version_number)\n\t\
13518 id $message_id\
13519 ${if def:received_for {\n\tfor $received_for}}
13520....
13521
13522Note the use of quotes, to allow the sequences `\n` and `\t` to be used
13523for newlines and tabs, respectively. The reference to the TLS cipher is omitted
13524when Exim is built without TLS support. The use of conditional expansions
13525ensures that this works for both locally generated messages and messages
13526received from remote hosts, giving header lines such as the following:
13527
13528 Received: from scrooge.carol.example ([192.168.12.25] ident=root)
13529 by marley.carol.example with esmtp (Exim 4.00)
13530 id 16IOWa-00019l-00
13531 for chas@dickens.example; Tue, 25 Dec 2001 14:43:44 +0000
13532 Received: by scrooge.carol.example with local (Exim 4.00)
13533 id 16IOWW-000083-00; Tue, 25 Dec 2001 14:43:41 +0000
13534
13535Until the body of the message has been received, the timestamp is the time when
13536the message started to be received. Once the body has arrived, and all policy
13537checks have taken place, the timestamp is updated to the time at which the
13538message was accepted.
13539
13540
13541oindex:[%received_headers_max%]
13542`..'=
13543%received_headers_max%, Use: 'main', Type: 'integer', Default: '30'
13544===
13545
13546cindex:[loop,prevention]
13547cindex:[mail loop prevention]
13548cindex:['Received:' header line,counting]
13549When a message is to be delivered, the number of 'Received:' headers is
13550counted, and if it is greater than this parameter, a mail loop is assumed to
13551have occurred, the delivery is abandoned, and an error message is generated.
13552This applies to both local and remote deliveries.
13553
13554
13555oindex:[%recipient_unqualified_hosts%]
13556`..'=
13557%recipient_unqualified_hosts%, Use: 'main', Type: 'host list'!!, Default: 'unset'
13558===
13559
13560cindex:[unqualified addresses]
13561cindex:[host,unqualified addresses from]
13562This option lists those hosts from which Exim is prepared to accept unqualified
13563recipient addresses in message envelopes. The addresses are made fully
13564qualified by the addition of the %qualify_recipient% value. This option also
13565affects message header lines. Exim does not reject unqualified recipient
13566addresses in headers, but it qualifies them only if the message came from a
13567host that matches %recipient_unqualified_hosts%,
13568or if the message was submitted locally (not using TCP/IP), and the %-bnq%
13569option was not set.
13570
13571
13572oindex:[%recipients_max%]
13573`..'=
13574%recipients_max%, Use: 'main', Type: 'integer', Default: '0'
13575===
13576
13577cindex:[limit,number of recipients]
13578cindex:[recipient,maximum number]
13579If this option is set greater than zero, it specifies the maximum number of
13580original recipients for any message. Additional recipients that are generated
13581by aliasing or forwarding do not count. SMTP messages get a 452 response for
13582all recipients over the limit; earlier recipients are delivered as normal.
13583Non-SMTP messages with too many recipients are failed, and no deliveries are
13584done.
13585
13586cindex:[RCPT,maximum number of incoming]
13587Note that the RFCs specify that an SMTP server should accept at least 100
13588RCPT commands in a single message.
13589
13590
13591oindex:[%recipients_max_reject%]
13592`..'=
13593%recipients_max_reject%, Use: 'main', Type: 'boolean', Default: 'false'
13594===
13595
13596If this option is set true, Exim rejects SMTP messages containing too many
13597recipients by giving 552 errors to the surplus RCPT commands, and a 554
13598error to the eventual DATA command. Otherwise (the default) it gives a 452
13599error to the surplus RCPT commands and accepts the message on behalf of the
13600initial set of recipients. The remote server should then re-send the message
13601for the remaining recipients at a later time.
13602
13603
13604oindex:[%remote_max_parallel%]
13605`..'=
13606%remote_max_parallel%, Use: 'main', Type: 'integer', Default: '2'
13607===
13608
13609cindex:[delivery,parallelism for remote]
13610This option controls parallel delivery of one message to a number of remote
13611hosts. If the value is less than 2, parallel delivery is disabled, and Exim
13612does all the remote deliveries for a message one by one. Otherwise, if a single
13613message has to be delivered to more than one remote host, or if several copies
13614have to be sent to the same remote host, up to %remote_max_parallel%
13615deliveries are done simultaneously. If more than %remote_max_parallel%
13616deliveries are required, the maximum number of processes are started, and as
13617each one finishes, another is begun. The order of starting processes is the
13618same as if sequential delivery were being done, and can be controlled by the
13619%remote_sort_domains% option. If parallel delivery takes place while running
13620with debugging turned on, the debugging output from each delivery process is
13621tagged with its process id.
13622
13623This option controls only the maximum number of parallel deliveries for one
13624message in one Exim delivery process. Because Exim has no central queue
13625manager, there is no way of controlling the total number of simultaneous
13626deliveries if the configuration allows a delivery attempt as soon as a message
13627is received.
13628
13629cindex:[number of deliveries]
13630cindex:[delivery,maximum number of]
13631If you want to control the total number of deliveries on the system, you
13632need to set the %queue_only% option. This ensures that all incoming messages
13633are added to the queue without starting a delivery process. Then set up an Exim
13634daemon to start queue runner processes at appropriate intervals (probably
13635fairly often, for example, every minute), and limit the total number of queue
13636runners by setting the %queue_run_max% parameter. Because each queue runner
13637delivers only one message at a time, the maximum number of deliveries that can
13638then take place at once is %queue_run_max% multiplied by
13639%remote_max_parallel%.
13640
13641If it is purely remote deliveries you want to control, use
13642%queue_smtp_domains% instead of %queue_only%. This has the added benefit of
13643doing the SMTP routing before queuing, so that several messages for the same
13644host will eventually get delivered down the same connection.
13645
13646
13647oindex:[%remote_sort_domains%]
13648`..'=
13649%remote_sort_domains%, Use: 'main', Type: 'domain list'!!, Default: 'unset'
13650===
13651
13652cindex:[sorting remote deliveries]
13653cindex:[delivery,sorting remote]
13654When there are a number of remote deliveries for a message, they are sorted by
13655domain into the order given by this list. For example,
13656
13657 remote_sort_domains = *.cam.ac.uk:*.uk
13658
13659would attempt to deliver to all addresses in the 'cam.ac.uk' domain first, then
13660to those in the %uk% domain, then to any others.
13661
13662
13663oindex:[%retry_data_expire%]
13664`..'=
13665%retry_data_expire%, Use: 'main', Type: 'time', Default: '7d'
13666===
13667
13668cindex:[hints database,data expiry]
13669This option sets a ``use before'' time on retry information in Exim's hints
13670database. Any older retry data is ignored. This means that, for example, once a
13671host has not been tried for 7 days, Exim behaves as if it has no knowledge of
13672past failures.
13673
13674
13675oindex:[%retry_interval_max%]
13676`..'=
13677%retry_interval_max%, Use: 'main', Type: 'time', Default: '24h'
13678===
13679
13680cindex:[retry,limit on interval]
13681cindex:[limit,on retry interval]
13682Chapter <<CHAPretry>> describes Exim's mechanisms for controlling the intervals
13683between delivery attempts for messages that cannot be delivered straight away.
13684This option sets an overall limit to the length of time between retries.
13685
13686
13687oindex:[%return_path_remove%]
13688`..'=
13689%return_path_remove%, Use: 'main', Type: 'boolean', Default: 'true'
13690===
13691
13692cindex:['Return-path:' header line,removing]
13693RFC 2821, section 4.4, states that an SMTP server must insert a 'Return-path:'
13694header line into a message when it makes a ``final delivery''. The 'Return-path:'
13695header preserves the sender address as received in the MAIL command. This
13696description implies that this header should not be present in an incoming
13697message. If %return_path_remove% is true, any existing 'Return-path:'
13698headers are removed from messages at the time they are received. Exim's
13699transports have options for adding 'Return-path:' headers at the time of
13700delivery. They are normally used only for final local deliveries.
13701
13702
13703oindex:[%return_size_limit%]
13704`..'=
13705%return_size_limit%, Use: 'main', Type: 'integer', Default: '100K'
13706===
13707
13708This option is an obsolete synonym for %bounce_return_size_limit%.
13709
13710
13711oindex:[%rfc1413_hosts%]
13712`..'=
13713%rfc1413_hosts%, Use: 'main', Type: 'host list'!!, Default: '\*'
13714===
13715
13716cindex:[RFC 1413]
13717cindex:[host,for RFC 1413 calls]
13718RFC 1413 identification calls are made to any client host which matches an item
13719in the list.
13720
13721
13722oindex:[%rfc1413_query_timeout%]
13723`..'=
13724%rfc1413_query_timeout%, Use: 'main', Type: 'time', Default: '30s'
13725===
13726
13727cindex:[RFC 1413,query timeout]
13728cindex:[timeout,for RFC 1413 call]
13729This sets the timeout on RFC 1413 identification calls. If it is set to zero,
13730no RFC 1413 calls are ever made.
13731
13732
13733oindex:[%sender_unqualified_hosts%]
13734`..'=
13735%sender_unqualified_hosts%, Use: 'main', Type: 'host list'!!, Default: 'unset'
13736===
13737
13738cindex:[unqualified addresses]
13739cindex:[host,unqualified addresses from]
13740This option lists those hosts from which Exim is prepared to accept unqualified
13741sender addresses. The addresses are made fully qualified by the addition of
13742%qualify_domain%. This option also affects message header lines. Exim does not
13743reject unqualified addresses in headers that contain sender addresses, but it
13744qualifies them only if the message came from a host that matches
13745%sender_unqualified_hosts%,
13746or if the message was submitted locally (not using TCP/IP), and the %-bnq%
13747option was not set.
13748
13749
13750oindex:[%smtp_accept_keepalive%]
13751`..'=
13752%smtp_accept_keepalive%, Use: 'main', Type: 'boolean', Default: 'true'
13753===
13754
13755cindex:[keepalive,on incoming connection]
13756This option controls the setting of the SO_KEEPALIVE option on incoming
13757TCP/IP socket connections. When set, it causes the kernel to probe idle
13758connections periodically, by sending packets with ``old'' sequence numbers. The
13759other end of the connection should send an acknowledgement if the connection is
13760still okay or a reset if the connection has been aborted. The reason for doing
13761this is that it has the beneficial effect of freeing up certain types of
13762connection that can get stuck when the remote host is disconnected without
13763tidying up the TCP/IP call properly. The keepalive mechanism takes several
13764hours to detect unreachable hosts.
13765
13766
13767
13768oindex:[%smtp_accept_max%]
13769`..'=
13770%smtp_accept_max%, Use: 'main', Type: 'integer', Default: '20'
13771===
13772
13773cindex:[limit,incoming SMTP connections]
13774cindex:[SMTP,incoming connection count]
13775cindex:[inetd]
13776This option specifies the maximum number of simultaneous incoming SMTP calls
13777that Exim will accept. It applies only to the listening daemon; there is no
13778control (in Exim) when incoming SMTP is being handled by 'inetd'. If the value
13779is set to zero, no limit is applied. However, it is required to be non-zero if
13780either %smtp_accept_max_per_host% or %smtp_accept_queue% is set. See also
13781%smtp_accept_reserve%.
13782
13783
13784
13785oindex:[%smtp_accept_max_nonmail%]
13786`..'=
13787%smtp_accept_max_nonmail%, Use: 'main', Type: 'integer', Default: '10'
13788===
13789
13790cindex:[limit,non-mail SMTP commands]
13791cindex:[SMTP,limiting non-mail commands]
13792Exim counts the number of ``non-mail'' commands in an SMTP session, and drops the
13793connection if there are too many. This option defines ``too many''. The check
13794catches some denial-of-service attacks, repeated failing AUTHs, or a mad
13795client looping sending EHLO, for example. The check is applied only if the
13796client host matches %smtp_accept_max_nonmail_hosts%.
13797
13798When a new message is expected, one occurrence of RSET is not counted. This
13799allows a client to send one RSET between messages (this is not necessary,
13800but some clients do it). Exim also allows one uncounted occurence of HELO
13801or EHLO, and one occurrence of STARTTLS between messages. After
13802starting up a TLS session, another EHLO is expected, and so it too is not
13803counted. The first occurrence of AUTH in a connection, or immediately
13804following STARTTLS is not counted. Otherwise, all commands other than
13805MAIL, RCPT, DATA, and QUIT are counted.
13806
13807
13808oindex:[%smtp_accept_max_nonmail_hosts%]
13809`..'=
13810%smtp_accept_max_nonmail_hosts%, Use: 'main', Type: 'host list'!!, Default: '\*'
13811===
13812
13813You can control which hosts are subject to the %smtp_accept_max_nonmail%
13814check by setting this option. The default value makes it apply to all hosts. By
13815changing the value, you can exclude any badly-behaved hosts that you have to
13816live with.
13817
13818
13819
13820oindex:[%smtp_accept_max_per_connection%]
13821`..'=
13822%smtp_accept_max_per_connection%, Use: 'main', Type: 'integer', Default: '1000'
13823===
13824
13825cindex:[SMTP incoming message count, limiting]
13826cindex:[limit,messages per SMTP connection]
13827The value of this option limits the number of MAIL commands that Exim is
13828prepared to accept over a single SMTP connection, whether or not each command
13829results in the transfer of a message. After the limit is reached, a 421
13830response is given to subsequent MAIL commands. This limit is a safety
13831precaution against a client that goes mad (incidents of this type have been
13832seen).
13833
13834
13835oindex:[%smtp_accept_max_per_host%]
13836`..'=
13837%smtp_accept_max_per_host%, Use: 'main', Type: 'string'!!, Default: 'unset'
13838===
13839
13840cindex:[limit,SMTP connections from one host]
13841cindex:[host,limiting SMTP connections from]
13842This option restricts the number of simultaneous IP connections from a single
13843host (strictly, from a single IP address) to the Exim daemon. The option is
13844expanded, to enable different limits to be applied to different hosts by
13845reference to $sender_host_address$. Once the limit is reached, additional
13846connection attempts from the same host are rejected with error code 421. The
13847default value of zero imposes no limit. If this option is set, it is required
13848that %smtp_accept_max% be non-zero.
13849
13850*Warning*: When setting this option you should not use any expansion
13851constructions that take an appreciable amount of time. The expansion and test
13852happen in the main daemon loop, in order to reject additional connections
13853without forking additional processes (otherwise a denial-of-service attack
13854could cause a vast number or processes to be created). While the daemon is
13855doing this processing, it cannot accept any other incoming connections.
13856
13857
13858
13859oindex:[%smtp_accept_queue%]
13860`..'=
13861%smtp_accept_queue%, Use: 'main', Type: 'integer', Default: '0'
13862===
13863
13864cindex:[SMTP,incoming connection count]
13865cindex:[queueing incoming messages]
13866cindex:[message,queueing by SMTP connection count]
13867If the number of simultaneous incoming SMTP calls handled via the listening
13868daemon exceeds this value, messages received by SMTP are just placed on the
13869queue; no delivery processes are started automatically. A value of zero implies
13870no limit, and clearly any non-zero value is useful only if it is less than the
13871%smtp_accept_max% value (unless that is zero). See also %queue_only%,
13872%queue_only_load%, %queue_smtp_domains%, and the various %-od% command
13873line options.
13874
13875
13876oindex:[%smtp_accept_queue_per_connection%]
13877`..'=
13878%smtp_accept_queue_per_connection%, Use: 'main', Type: 'integer', Default: '10'
13879===
13880
13881cindex:[queueing incoming messages]
13882cindex:[message,queueing by message count]
13883This option limits the number of delivery processes that Exim starts
13884automatically when receiving messages via SMTP, whether via the daemon or by
13885the use of %-bs% or %-bS%. If the value of the option is greater than zero,
13886and the number of messages received in a single SMTP session exceeds this
13887number, subsequent messages are placed on the queue, but no delivery processes
13888are started. This helps to limit the number of Exim processes when a server
13889restarts after downtime and there is a lot of mail waiting for it on other
13890systems. On large systems, the default should probably be increased, and on
13891dial-in client systems it should probably be set to zero (that is, disabled).
13892
13893
13894oindex:[%smtp_accept_reserve%]
13895`..'=
13896%smtp_accept_reserve%, Use: 'main', Type: 'integer', Default: '0'
13897===
13898
13899cindex:[SMTP,incoming call count]
13900cindex:[host,reserved]
13901When %smtp_accept_max% is set greater than zero, this option specifies a
13902number of SMTP connections that are reserved for connections from the hosts
13903that are specified in %smtp_reserve_hosts%. The value set in
13904%smtp_accept_max% includes this reserve pool. The specified hosts are not
13905restricted to this number of connections; the option specifies a minimum number
13906of connection slots for them, not a maximum. It is a guarantee that that group
13907of hosts can always get at least %smtp_accept_reserve% connections.
13908
13909For example, if %smtp_accept_max% is set to 50 and %smtp_accept_reserve% is
13910set to 5, once there are 45 active connections (from any hosts), new
13911connections are accepted only from hosts listed in %smtp_reserve_hosts%.
13912See also %smtp_accept_max_per_host%.
13913
13914
13915oindex:[%smtp_active_hostname%]
13916`..'=
13917%smtp_active_hostname%, Use: 'main', Type: 'string'!!, Default: 'unset'
13918===
13919
13920cindex:[host,name in SMTP responses]
13921cindex:[SMTP,host name in responses]
13922This option is provided for multi-homed servers that want to masquerade as
13923several different hosts. At the start of an SMTP connection, its value is
13924expanded and used instead of the value of $primary_hostname$ in SMTP
13925responses. For example, it is used as domain name in the response to an
13926incoming HELO or EHLO command.
13927
13928It is also used in HELO commands for callout verification.
13929The active hostname is placed in the $smtp_active_hostname$ variable, which
13930is saved with any messages that are received. It is therefore available for use
13931in routers and transports when the message is later delivered.
13932
13933
13934If this option is unset, or if its expansion is forced to fail, or if the
13935expansion results in an empty string, the value of $primary_hostname$ is
13936used. Other expansion failures cause a message to be written to the main and
13937panic logs, and the SMTP command receives a temporary error. Typically, the
13938value of %smtp_active_hostname% depends on the incoming interface address.
13939For example:
13940
13941....
13942smtp_active_hostname = ${if eq{$interface_address}{10.0.0.1}\
13943 {cox.mydomain}{box.mydomain}}
13944....
13945
13946
13947oindex:[%smtp_banner%]
13948`..'=
13949%smtp_banner%, Use: 'main', Type: 'string'!!, Default: 'see below'
13950===
13951
13952cindex:[SMTP,welcome banner]
13953cindex:[banner for SMTP]
13954cindex:[welcome banner for SMTP]
13955cindex:[customizing,SMTP banner]
13956This string, which is expanded every time it is used, is output as the initial
13957positive response to an SMTP connection. The default setting is:
13958
13959....
13960smtp_banner = $smtp_active_hostname ESMTP Exim \
13961 $version_number $tod_full
13962....
13963
13964Failure to expand the string causes a panic error. If you want to create a
13965multiline response to the initial SMTP connection, use ``\n'' in the string at
13966appropriate points, but not at the end. Note that the 220 code is not included
13967in this string. Exim adds it automatically (several times in the case of a
13968multiline response).
13969
13970
13971oindex:[%smtp_check_spool_space%]
13972`..'=
13973%smtp_check_spool_space%, Use: 'main', Type: 'boolean', Default: 'true'
13974===
13975
13976cindex:[checking disk space]
13977cindex:[disk space, checking]
13978cindex:[spool directory,checking space]
13979When this option is set, if an incoming SMTP session encounters the SIZE
13980option on a MAIL command, it checks that there is enough space in the
13981spool directory's partition to accept a message of that size, while still
13982leaving free the amount specified by %check_spool_space% (even if that value
13983is zero). If there isn't enough space, a temporary error code is returned.
13984
13985
13986oindex:[%smtp_connect_backlog%]
13987`..'=
13988%smtp_connect_backlog%, Use: 'main', Type: 'integer', Default: '20'
13989===
13990
13991cindex:[connection backlog]
13992cindex:[SMTP,connection backlog]
13993cindex:[backlog of connections]
13994This option specifies a maximum number of waiting SMTP connections. Exim passes
13995this value to the TCP/IP system when it sets up its listener. Once this number
13996of connections are waiting for the daemon's attention, subsequent connection
13997attempts are refused at the TCP/IP level. At least, that is what the manuals
13998say; in some circumstances such connection attempts have been observed to time
13999out instead. For large systems it is probably a good idea to increase the
14000value (to 50, say). It also gives some protection against denial-of-service
14001attacks by SYN flooding.
14002
14003
14004oindex:[%smtp_enforce_sync%]
14005`..'=
14006%smtp_enforce_sync%, Use: 'main', Type: 'boolean', Default: 'true'
14007===
14008
14009cindex:[SMTP,synchronization checking]
14010cindex:[synchronization checking in SMTP]
14011The SMTP protocol specification requires the client to wait for a response from
14012the server at certain points in the dialogue. Without PIPELINING these
14013synchronization points are after every command; with PIPELINING they are
14014fewer, but they still exist.
14015
14016Some spamming sites send out a complete set of SMTP commands without waiting
14017for any response. Exim protects against this by rejecting a message if the
14018client has sent further input when it should not have. The error response ``554
14019SMTP synchronization error'' is sent, and the connection is dropped. Testing for
14020this error cannot be perfect because of transmission delays (unexpected input
14021may be on its way but not yet received when Exim checks). However, it does
14022detect many instances.
14023
14024The check can be globally disabled by setting %smtp_enforce_sync% false.
14025If you want to disable the check selectively (for example, only for certain
14026hosts), you can do so by an appropriate use of a %control% modifier in an ACL
14027(see section <<SECTcontrols>>). See also %pipelining_advertise_hosts%.
14028
14029
14030
14031oindex:[%smtp_etrn_command%]
14032`..'=
14033%smtp_etrn_command%, Use: 'main', Type: 'string'!!, Default: 'unset'
14034===
14035
14036cindex:[ETRN,command to be run]
14037If this option is set, the given command is run whenever an SMTP ETRN
14038command is received from a host that is permitted to issue such commands (see
14039chapter <<CHAPACL>>). The string is split up into separate arguments which are
14040independently expanded. The expansion variable $domain$ is set to the
14041argument of the ETRN command, and no syntax checking is done on it. For
14042example:
14043
14044 smtp_etrn_command = /etc/etrn_command $domain $sender_host_address
14045
14046A new process is created to run the command, but Exim does not wait for it to
14047complete. Consequently, its status cannot be checked. If the command cannot be
14048run, a line is written to the panic log, but the ETRN caller still receives
14049a 250 success response. Exim is normally running under its own uid when
14050receiving SMTP, so it is not possible for it to change the uid before running
14051the command.
14052
14053
14054oindex:[%smtp_etrn_serialize%]
14055`..'=
14056%smtp_etrn_serialize%, Use: 'main', Type: 'boolean', Default: 'true'
14057===
14058
14059cindex:[ETRN,serializing]
14060When this option is set, it prevents the simultaneous execution of more than
14061one identical command as a result of ETRN in an SMTP connection. See
14062section <<SECTETRN>> for details.
14063
14064
14065oindex:[%smtp_load_reserve%]
14066`..'=
14067%smtp_load_reserve%, Use: 'main', Type: 'fixed-point', Default: 'unset'
14068===
14069
14070cindex:[load average]
14071If the system load average ever gets higher than this, incoming SMTP calls are
14072accepted only from those hosts that match an entry in %smtp_reserve_hosts%.
14073If %smtp_reserve_hosts% is not set, no incoming SMTP calls are accepted when
14074the load is over the limit. The option has no effect on ancient operating
14075systems on which Exim cannot determine the load average. See also
14076%deliver_queue_load_max% and %queue_only_load%.
14077
14078
14079
14080oindex:[%smtp_max_synprot_errors%]
14081`..'=
14082%smtp_max_synprot_errors%, Use: 'main', Type: 'integer', Default: '3'
14083===
14084
14085cindex:[SMTP,limiting syntax and protocol errors]
14086cindex:[limit,SMTP syntax and protocol errors]
14087Exim rejects SMTP commands that contain syntax or protocol errors. In
14088particular, a syntactically invalid email address, as in this command:
14089
14090 RCPT TO:<abc xyz@a.b.c>
14091
14092causes immediate rejection of the command, before any other tests are done.
14093(The ACL cannot be run if there is no valid address to set up for it.) An
14094example of a protocol error is receiving RCPT before MAIL. If there are
14095too many syntax or protocol errors in one SMTP session, the connection is
14096dropped. The limit is set by this option.
14097
14098cindex:[PIPELINING,expected errors]
14099When the PIPELINING extension to SMTP is in use, some protocol errors are
14100``expected'', for instance, a RCPT command after a rejected MAIL command.
14101Exim assumes that PIPELINING will be used if it advertises it (see
14102%pipelining_advertise_hosts%), and in this situation, ``expected'' errors do
14103not count towards the limit.
14104
14105
14106
14107oindex:[%smtp_max_unknown_commands%]
14108`..'=
14109%smtp_max_unknown_commands%, Use: 'main', Type: 'integer', Default: '3'
14110===
14111
14112cindex:[SMTP,limiting unknown commands]
14113cindex:[limit,unknown SMTP commands]
14114If there are too many unrecognized commands in an incoming SMTP session, an
14115Exim server drops the connection. This is a defence against some kinds of abuse
14116that subvert web
14117clients
14118into making connections to SMTP ports; in these circumstances, a number of
14119non-SMTP command lines are sent first.
14120
14121
14122
14123oindex:[%smtp_ratelimit_hosts%]
14124`..'=
14125%smtp_ratelimit_hosts%, Use: 'main', Type: 'host list'!!, Default: 'unset'
14126===
14127
14128cindex:[SMTP,rate limiting]
14129cindex:[limit,rate of message arrival]
14130cindex:[RCPT,rate limiting]
14131Some sites find it helpful to be able to limit the rate at which certain hosts
14132can send them messages, and the rate at which an individual message can specify
14133recipients. When a host matches %smtp_ratelimit_hosts%, the values of
14134%smtp_ratelimit_mail% and %smtp_ratelimit_rcpt% are used to control the
14135rate of acceptance of MAIL and RCPT commands in a single SMTP session,
14136respectively. Each option, if set, must contain a set of four comma-separated
14137values:
14138
14139- A threshold, before which there is no rate limiting.
14140
14141- An initial time delay. Unlike other times in Exim, numbers with decimal
14142fractional parts are allowed here.
14143
14144- A factor by which to increase the delay each time.
14145
14146- A maximum value for the delay. This should normally be less than 5 minutes,
14147because after that time, the client is liable to timeout the SMTP command.
14148
14149For example, these settings have been used successfully at the site which
14150first suggested this feature, for controlling mail from their customers:
14151
14152 smtp_ratelimit_mail = 2,0.5s,1.05,4m
14153 smtp_ratelimit_rcpt = 4,0.25s,1.015,4m
14154
14155The first setting specifies delays that are applied to MAIL commands after
14156two have been received over a single connection. The initial delay is 0.5
14157seconds, increasing by a factor of 1.05 each time. The second setting applies
14158delays to RCPT commands when more than four occur in a single message.
14159
14160It is also possible to configure delays explicitly in ACLs. See section
14161<<SECTACLmodi>> for details.
14162
14163
14164
14165oindex:[%smtp_ratelimit_mail%]
14166`..'=
14167%smtp_ratelimit_mail%, Use: 'main', Type: 'string', Default: 'unset'
14168===
14169
14170See %smtp_ratelimit_hosts% above.
14171
14172
14173oindex:[%smtp_ratelimit_rcpt%]
14174`..'=
14175%smtp_ratelimit_rcpt%, Use: 'main', Type: 'string', Default: 'unset'
14176===
14177
14178See %smtp_ratelimit_hosts% above.
14179
14180
14181oindex:[%smtp_receive_timeout%]
14182`..'=
14183%smtp_receive_timeout%, Use: 'main', Type: 'time', Default: '5m'
14184===
14185
14186cindex:[timeout,for SMTP input]
14187cindex:[SMTP timeout, input]
14188This sets a timeout value for SMTP reception. It applies to all forms of SMTP
14189input, including batch SMTP. If a line of input (either an SMTP command or a
14190data line) is not received within this time, the SMTP connection is dropped and
14191the message is abandoned.
14192A line is written to the log containing one of the following messages:
14193
14194 SMTP command timeout on connection from...
14195 SMTP data timeout on connection from...
14196
14197The former means that Exim was expecting to read an SMTP command; the latter
14198means that it was in the DATA phase, reading the contents of a message.
14199
14200
14201cindex:[%-os% option]
14202The value set by this option can be overridden by the
14203%-os% command-line option. A setting of zero time disables the timeout, but
14204this should never be used for SMTP over TCP/IP. (It can be useful in some cases
14205of local input using %-bs% or %-bS%.) For non-SMTP input, the reception
14206timeout is controlled by %receive_timeout% and %-or%.
14207
14208
14209oindex:[%smtp_reserve_hosts%]
14210`..'=
14211%smtp_reserve_hosts%, Use: 'main', Type: 'host list'!!, Default: 'unset'
14212===
14213
14214This option defines hosts for which SMTP connections are reserved; see
14215%smtp_accept_reserve% and %smtp_load_reserve% above.
14216
14217
14218oindex:[%smtp_return_error_details%]
14219`..'=
14220%smtp_return_error_details%, Use: 'main', Type: 'boolean', Default: 'false'
14221===
14222
14223cindex:[SMTP,details policy failures]
14224cindex:[policy control rejection, returning details]
14225In the default state, Exim uses bland messages such as
14226``Administrative prohibition'' when it rejects SMTP commands for policy
14227reasons. Many sysadmins like this because it gives away little information
14228to spammers. However, some other syadmins who are applying strict checking
14229policies want to give out much fuller information about failures. Setting
14230%smtp_return_error_details% true causes Exim to be more forthcoming. For
14231example, instead of ``Administrative prohibition'', it might give:
14232
14233 550-Rejected after DATA: '>' missing at end of address:
14234 550 failing address in "From" header is: <user@dom.ain
14235
14236
14237
14238oindex:[%spamd_address%]
14239`..'=
14240%spamd_address%, Use: 'main', Type: 'string', Default: `127.0.0.1 783`
14241===
14242
14243This option is available when Exim is compiled with the content-scanning
14244extension. It specifies how Exim connects to SpamAssassin's %spamd% daemon. See
14245section <<SECTscanspamass>> for more details.
14246
14247
14248
14249oindex:[%split_spool_directory%]
14250`..'=
14251%split_spool_directory%, Use: 'main', Type: 'boolean', Default: 'false'
14252===
14253
14254cindex:[multiple spool directories]
14255cindex:[spool directory,split]
14256cindex:[directories, multiple]
14257If this option is set, it causes Exim to split its input directory into 62
14258subdirectories, each with a single alphanumeric character as its name. The
14259sixth character of the message id is used to allocate messages to
14260subdirectories; this is the least significant base-62 digit of the time of
14261arrival of the message.
14262
14263Splitting up the spool in this way may provide better performance on systems
14264where there are long mail queues, by reducing the number of files in any one
14265directory. The msglog directory is also split up in a similar way to the input
14266directory; however, if %preserve_message_logs% is set, all old msglog files
14267are still placed in the single directory _msglog.OLD_.
14268
14269It is not necessary to take any special action for existing messages when
14270changing %split_spool_directory%. Exim notices messages that are in the
14271``wrong'' place, and continues to process them. If the option is turned off after
14272a period of being on, the subdirectories will eventually empty and be
14273automatically deleted.
14274
14275When %split_spool_directory% is set, the behaviour of queue runner processes
14276changes. Instead of creating a list of all messages in the queue, and then
14277trying to deliver each one in turn, it constructs a list of those in one
14278sub-directory and tries to deliver them, before moving on to the next
14279sub-directory. The sub-directories are processed in a random order. This
14280spreads out the scanning of the input directories, and uses less memory. It is
14281particularly beneficial when there are lots of messages on the queue. However,
14282if %queue_run_in_order% is set, none of this new processing happens. The
14283entire queue has to be scanned and sorted before any deliveries can start.
14284
14285
14286oindex:[%spool_directory%]
14287`..'=
14288%spool_directory%, Use: 'main', Type: 'string'!!, Default: 'set at compile time'
14289===
14290
14291cindex:[spool directory,path to]
14292This defines the directory in which Exim keeps its spool, that is, the messages
14293it is waiting to deliver. The default value is taken from the compile-time
14294configuration setting, if there is one. If not, this option must be set. The
14295string is expanded, so it can contain, for example, a reference to
14296$primary_hostname$.
14297
14298If the spool directory name is fixed on your installation, it is recommended
14299that you set it at build time rather than from this option, particularly if the
14300log files are being written to the spool directory (see %log_file_path%).
14301Otherwise log files cannot be used for errors that are detected early on, such
14302as failures in the configuration file.
14303
14304By using this option to override the compiled-in path, it is possible to run
14305tests of Exim without using the standard spool.
14306
14307
14308oindex:[%strip_excess_angle_brackets%]
14309`..'=
14310%strip_excess_angle_brackets%, Use: 'main', Type: 'boolean', Default: 'false'
14311===
14312
14313cindex:[angle brackets, excess]
14314If this option is set, redundant pairs of angle brackets round ``route-addr''
14315items in addresses are stripped. For example, `\<\<xxx@a.b.c.d\>\>` is treated
14316as `<xxx@a.b.c.d>`. If this is in the envelope and the message is passed on
14317to another MTA, the excess angle brackets are not passed on. If this option is
14318not set, multiple pairs of angle brackets cause a syntax error.
14319
14320
14321oindex:[%strip_trailing_dot%]
14322`..'=
14323%strip_trailing_dot%, Use: 'main', Type: 'boolean', Default: 'false'
14324===
14325
14326cindex:[trailing dot on domain]
14327cindex:[dot,trailing on domain]
14328If this option is set, a trailing dot at the end of a domain in an address is
14329ignored. If this is in the envelope and the message is passed on to another
14330MTA, the dot is not passed on. If this option is not set, a dot at the end of a
14331domain causes a syntax error.
14332However, addresses in header lines are checked only when an ACL requests header
14333syntax checking.
14334
14335
14336oindex:[%syslog_duplication%]
14337`..'=
14338%syslog_duplication%, Use: 'main', Type: 'boolean', Default: 'true'
14339===
14340
14341cindex:[syslog,duplicate log lines; suppressing]
14342When Exim is logging to syslog, it writes the log lines for its three
14343separate logs at different syslog priorities so that they can in principle
14344be separated on the logging hosts. Some installations do not require this
14345separation, and in those cases, the duplication of certain log lines is a
14346nuisance. If %syslog_duplication% is set false, only one copy of any
14347particular log line is written to syslog. For lines that normally go to
14348both the main log and the reject log, the reject log version (possibly
14349containing message header lines) is written, at LOG_NOTICE priority.
14350Lines that normally go to both the main and the panic log are written at
14351the LOG_ALERT priority.
14352
14353
14354oindex:[%syslog_facility%]
14355`..'=
14356%syslog_facility%, Use: 'main', Type: 'string', Default: 'unset'
14357===
14358
14359cindex:[syslog,facility; setting]
14360This option sets the syslog ``facility'' name, used when Exim is logging to
14361syslog. The value must be one of the strings ``mail'', ``user'', ``news'', ``uucp'',
14362``daemon'', or ``local'x'##'' where 'x' is a digit between 0 and 7. If this
14363option is unset, ``mail'' is used. See chapter <<CHAPlog>> for details of Exim's
14364logging.
14365
14366
14367
14368oindex:[%syslog_processname%]
14369`..'=
14370%syslog_processname%, Use: 'main', Type: 'string', Default: `exim`
14371===
14372
14373cindex:[syslog,process name; setting]
14374This option sets the syslog ``ident'' name, used when Exim is logging to syslog.
14375The value must be no longer than 32 characters. See chapter <<CHAPlog>> for
14376details of Exim's logging.
14377
14378
14379
14380oindex:[%syslog_timestamp%]
14381`..'=
14382%syslog_timestamp%, Use: 'main', Type: 'boolean', Default: 'true'
14383===
14384
14385cindex:[syslog,timestamps]
14386If %syslog_timestamp% is set false, the timestamps on Exim's log lines are
14387omitted when these lines are sent to syslog. See chapter <<CHAPlog>> for
14388details of Exim's logging.
14389
14390
14391oindex:[%system_filter%]
14392`..'=
14393%system_filter%, Use: 'main', Type: 'string'!!, Default: 'unset'
14394===
14395
14396cindex:[filter,system filter]
14397cindex:[system filter,specifying]
14398cindex:[Sieve filter,not available for system filter]
14399This option specifies an Exim filter file that is applied to all messages at
14400the start of each delivery attempt, before any routing is done. System filters
14401must be Exim filters; they cannot be Sieve filters. If the system filter
14402generates any deliveries to files or pipes, or any new mail messages, the
14403appropriate %system_filter_..._transport% option(s) must be set, to define
14404which transports are to be used. Details of this facility are given in chapter
14405<<CHAPsystemfilter>>.
14406
14407
14408oindex:[%system_filter_directory_transport%]
14409`..'=
14410%system_filter_directory_transport%, Use: 'main', Type: 'string'!!, Default: 'unset'
14411===
14412
14413This sets the name of the transport driver that is to be used when the
14414%save% command in a system message filter specifies a path ending in ``/'',
14415implying delivery of each message into a separate file in some directory.
14416During the delivery, the variable $address_file$ contains the path name.
14417
14418
14419oindex:[%system_filter_file_transport%]
14420`..'=
14421%system_filter_file_transport%, Use: 'main', Type: 'string'!!, Default: 'unset'
14422===
14423
14424cindex:[file,transport for system filter]
14425This sets the name of the transport driver that is to be used when the %save%
14426command in a system message filter specifies a path not ending in ``/''. During
14427the delivery, the variable $address_file$ contains the path name.
14428
14429oindex:[%system_filter_group%]
14430`..'=
14431%system_filter_group%, Use: 'main', Type: 'string', Default: 'unset'
14432===
14433
14434cindex:[gid (group id),system filter]
14435This option is used only when %system_filter_user% is also set. It sets the
14436gid under which the system filter is run, overriding any gid that is associated
14437with the user. The value may be numerical or symbolic.
14438
14439oindex:[%system_filter_pipe_transport%]
14440`..'=
14441%system_filter_pipe_transport%, Use: 'main', Type: 'string'!!, Default: 'unset'
14442===
14443
14444cindex:[^pipe^ transport,for system filter]
14445This specifies the transport driver that is to be used when a %pipe% command is
14446used in a system filter. During the delivery, the variable $address_pipe$
14447contains the pipe command.
14448
14449
14450oindex:[%system_filter_reply_transport%]
14451`..'=
14452%system_filter_reply_transport%, Use: 'main', Type: 'string'!!, Default: 'unset'
14453===
14454
14455cindex:[^autoreply^ transport,for system filter]
14456This specifies the transport driver that is to be used when a %mail% command is
14457used in a system filter.
14458
14459oindex:[%system_filter_user%]
14460`..'=
14461%system_filter_user%, Use: 'main', Type: 'string', Default: 'unset'
14462===
14463
14464cindex:[uid (user id),system filter]
14465If this option is not set, the system filter is run in the main Exim delivery
14466process, as root. When the option is set, the system filter runs in a separate
14467process, as the given user. Unless the string consists entirely of digits, it
14468is looked up in the password data. Failure to find the named user causes a
14469configuration error. The gid is either taken from the password data, or
14470specified by %system_filter_group%. When the uid is specified numerically,
14471%system_filter_group% is required to be set.
14472
14473If the system filter generates any pipe, file, or reply deliveries, the uid
14474under which the filter is run is used when transporting them, unless a
14475transport option overrides. Normally you should set %system_filter_user% if
14476your system filter generates these kinds of delivery.
14477
14478
14479oindex:[%tcp_nodelay%]
14480`..'=
14481%tcp_nodelay%, Use: 'main', Type: 'boolean', Default: 'true'
14482===
14483
14484cindex:[daemon,TCP_NODELAY on sockets]
14485cindex:[Nagle algorithm]
14486cindex:[TCP_NODELAY on listening sockets]
14487If this option is set false, it stops the Exim daemon setting the
14488TCP_NODELAY option on its listening sockets. Setting TCP_NODELAY
14489turns off the ``Nagle algorithm'', which is a way of improving network
14490performance in interactive (character-by-character) situations. Turning it off
14491should improve Exim's performance a bit, so that is what happens by default.
14492However, it appears that some broken clients cannot cope, and time out. Hence
14493this option. It affects only those sockets that are set up for listening by the
14494daemon. Sockets created by the smtp transport for delivering mail always set
14495TCP_NODELAY.
14496
14497
14498oindex:[%timeout_frozen_after%]
14499`..'=
14500%timeout_frozen_after%, Use: 'main', Type: 'time', Default: '0s'
14501===
14502
14503cindex:[frozen messages,timing out]
14504cindex:[timeout,frozen messages]
14505If %timeout_frozen_after% is set to a time greater than zero, a frozen
14506message of any kind that has been on the queue for longer than the given
14507time is automatically cancelled at the next queue run. If it is a bounce
14508message, it is just discarded; otherwise, a bounce is sent to the sender, in a
14509similar manner to cancellation by the %-Mg% command line option. If you want
14510to timeout frozen bounce messages earlier than other kinds of frozen message,
14511see %ignore_bounce_errors_after%.
14512
14513
14514oindex:[%timezone%]
14515`..'=
14516%timezone%, Use: 'main', Type: 'string', Default: 'unset'
14517===
14518
14519cindex:[timezone, setting]
14520The value of %timezone% is used to set the environment variable TZ while
14521running Exim (if it is different on entry). This ensures that all timestamps
14522created by Exim are in the required timezone. If you want all your timestamps
14523to be in UTC (aka GMT) you should set
14524
14525 timezone = UTC
14526
14527The default value is taken from TIMEZONE_DEFAULT in _Local/Makefile_,
14528or, if that is not set, from the value of the TZ environment variable when Exim
14529is built. If %timezone% is set to the empty string, either at build or run
14530time, any existing TZ variable is removed from the environment when Exim
14531runs. This is appropriate behaviour for obtaining wall-clock time on some, but
14532unfortunately not all, operating systems.
14533
14534
14535oindex:[%tls_advertise_hosts%]
14536`..'=
14537%tls_advertise_hosts%, Use: 'main', Type: 'host list'!!, Default: 'unset'
14538===
14539
14540cindex:[TLS,advertising]
14541cindex:[encryption,on SMTP connection]
14542cindex:[SMTP,encrypted connection]
14543When Exim is built with support for TLS encrypted connections, the availability
14544of the STARTTLS command to set up an encrypted session is advertised in
14545response to EHLO only to those client hosts that match this option. See
14546chapter <<CHAPTLS>> for details of Exim's support for TLS.
14547
14548
14549oindex:[%tls_certificate%]
14550`..'=
14551%tls_certificate%, Use: 'main', Type: 'string'!!, Default: 'unset'
14552===
14553
14554cindex:[TLS,server certificate; location of]
14555cindex:[certificate for server, location of]
14556The value of this option is expanded, and must then be the absolute path to a
14557file which contains the server's certificates. The server's private key is also
14558assumed to be in this file if %tls_privatekey% is unset. See chapter <<CHAPTLS>>
14559for further details.
14560
14561*Note*: The certificates defined by this option are used only when Exim is
14562receiving incoming messages as a server. If you want to supply certificates for
14563use when sending messages as a client, you must set the %tls_certificate%
14564option in the relevant ^smtp^ transport.
14565
14566
14567oindex:[%tls_crl%]
14568`..'=
14569%tls_crl%, Use: 'main', Type: 'string'!!, Default: 'unset'
14570===
14571
14572cindex:[TLS,server certificate revocation list]
14573cindex:[certificate,revocation list for server]
14574This option specifies a certificate revocation list. The expanded value must
14575be the name of a file that contains a CRL in PEM format.
14576
14577
14578oindex:[%tls_dhparam%]
14579`..'=
14580%tls_dhparam%, Use: 'main', Type: 'string'!!, Default: 'unset'
14581===
14582
14583cindex:[TLS,D-H parameters for server]
14584The value of this option is expanded, and must then be the absolute path to
14585a file which contains the server's DH parameter values.
14586This is used only for OpenSSL. When Exim is linked with GnuTLS, this option is
14587ignored. See section <<SECTopenvsgnu>> for further details.
14588
14589
14590oindex:[%tls_on_connect_ports%]
14591`..'=
14592%tls_on_connect_ports%, Use: 'main', Type: 'string list', Default: 'unset'
14593===
14594
14595This option specifies a list of incoming SSMTP (aka SMTPS) ports that should
14596operate the obsolete SSMTP (SMTPS) protocol, where a TLS session is immediately
14597set up without waiting for the client to issue a STARTTLS command. For
14598further details, see section <<SECTsupobssmt>>.
14599
14600
14601
14602oindex:[%tls_privatekey%]
14603`..'=
14604%tls_privatekey%, Use: 'main', Type: 'string'!!, Default: 'unset'
14605===
14606
14607cindex:[TLS,server private key; location of]
14608The value of this option is expanded, and must then be the absolute path to a
14609file which contains the server's private key. If this option is unset, the
14610private key is assumed to be in the same file as the server's certificates. See
14611chapter <<CHAPTLS>> for further details.
14612
14613
14614oindex:[%tls_remember_esmtp%]
14615`..'=
14616%tls_remember_esmtp%, Use: 'main', Type: 'boolean', Default: 'false'
14617===
14618
14619cindex:[TLS,esmtp state; remembering]
14620cindex:[TLS,broken clients]
14621If this option is set true, Exim violates the RFCs by remembering that it is in
14622``esmtp'' state after successfully negotiating a TLS session. This provides
14623support for broken clients that fail to send a new EHLO after starting a
14624TLS session.
14625
14626
14627oindex:[%tls_require_ciphers%]
14628`..'=
14629%tls_require_ciphers%, Use: 'main', Type: 'string'!!, Default: 'unset'
14630===
14631
14632cindex:[TLS,requiring specific ciphers]
14633cindex:[cipher,requiring specific]
14634This option controls which ciphers can be used for incoming TLS connections.
14635The ^smtp^ transport has an option of the same name for controlling outgoing
14636connections. This option is expanded for each connection, so can be varied for
14637different clients if required. The value of this option must be a list of
14638permitted cipher suites. The OpenSSL and GnuTLS libraries handle cipher control
14639in somewhat different ways.
14640
14641If GnuTLS is being used, the client controls the preference order of the
14642available ciphers.
14643
14644Details are given in sections <<SECTreqciphssl>> and <<SECTreqciphgnu>>.
14645
14646
14647oindex:[%tls_try_verify_hosts%]
14648`..'=
14649%tls_try_verify_hosts%, Use: 'main', Type: 'host list'!!, Default: 'unset'
14650===
14651
14652cindex:[TLS,client certificate verification]
14653cindex:[certificate,verification of client]
14654See %tls_verify_hosts% below.
14655
14656
14657oindex:[%tls_verify_certificates%]
14658`..'=
14659%tls_verify_certificates%, Use: 'main', Type: 'string'!!, Default: 'unset'
14660===
14661
14662cindex:[TLS,client certificate verification]
14663cindex:[certificate,verification of client]
14664The value of this option is expanded, and must then be the absolute path to
14665a file containing permitted certificates for clients that
14666match %tls_verify_hosts% or %tls_try_verify_hosts%. Alternatively, if you
14667are using OpenSSL, you can set %tls_verify_certificates% to the name of a
14668directory containing certificate files. This does not work with GnuTLS; the
14669option must be set to the name of a single file if you are using GnuTLS.
14670
14671
14672oindex:[%tls_verify_hosts%]
14673`..'=
14674%tls_verify_hosts%, Use: 'main', Type: 'host list'!!, Default: 'unset'
14675===
14676
14677cindex:[TLS,client certificate verification]
14678cindex:[certificate,verification of client]
14679This option, along with %tls_try_verify_hosts%, controls the checking of
14680certificates from clients.
14681The expected certificates are defined by %tls_verify_certificates%, which
14682must be set. A configuration error occurs if either %tls_verify_hosts% or
14683%tls_try_verify_hosts% is set and %tls_verify_certificates% is not set.
14684
14685Any client that matches %tls_verify_hosts% is constrained by
14686%tls_verify_certificates%. The client must present one of the listed
14687certificates. If it does not, the connection is aborted.
14688
14689A weaker form of checking is provided by %tls_try_verify_hosts%. If a client
14690matches this option (but not %tls_verify_hosts%), Exim requests a
14691certificate and checks it against %tls_verify_certificates%, but does not
14692abort the connection if there is no certificate or if it does not match. This
14693state can be detected in an ACL, which makes it possible to implement policies
14694such as ``accept for relay only if a verified certificate has been received, but
14695accept for local delivery if encrypted, even without a verified certificate''.
14696
14697Client hosts that match neither of these lists are not asked to present
14698certificates.
14699
14700
14701oindex:[%trusted_groups%]
14702`..'=
14703%trusted_groups%, Use: 'main', Type: 'string list', Default: 'unset'
14704===
14705
14706cindex:[trusted group]
14707cindex:[group,trusted]
14708If this option is set, any process that is running in one of the listed groups,
14709or which has one of them as a supplementary group, is trusted.
14710The groups can be specified numerically or by name.
14711See section <<SECTtrustedadmin>> for details of what trusted callers are
14712permitted to do. If neither %trusted_groups% nor %trusted_users% is set, only
14713root and the Exim user are trusted.
14714
14715
14716oindex:[%trusted_users%]
14717`..'=
14718%trusted_users%, Use: 'main', Type: 'string list', Default: 'unset'
14719===
14720
14721cindex:[trusted user]
14722cindex:[user,trusted]
14723If this option is set, any process that is running as one of the listed users
14724is trusted.
14725The users can be specified numerically or by name.
14726See section <<SECTtrustedadmin>> for details of what trusted callers are
14727permitted to do. If neither %trusted_groups% nor %trusted_users% is set, only
14728root and the Exim user are trusted.
14729
14730oindex:[%unknown_login%]
14731`..'=
14732%unknown_login%, Use: 'main', Type: 'string'!!, Default: 'unset'
14733===
14734
14735cindex:[uid (user id),unknown caller]
14736This is a specialized feature for use in unusual configurations. By default, if
14737the uid of the caller of Exim cannot be looked up using 'getpwuid()', Exim
14738gives up. The %unknown_login% option can be used to set a login name to be
14739used in this circumstance. It is expanded, so values like %user\$caller_uid%
14740can be set. When %unknown_login% is used, the value of %unknown_username% is
14741used for the user's real name (gecos field), unless this has been set by the
14742%-F% option.
14743
14744
14745oindex:[%unknown_username%]
14746`..'=
14747%unknown_username%, Use: 'main', Type: 'string', Default: 'unset'
14748===
14749
14750See %unknown_login%.
14751
14752
14753oindex:[%untrusted_set_sender%]
14754`..'=
14755%untrusted_set_sender%, Use: 'main', Type: 'address list'!!, Default: 'unset'
14756===
14757
14758cindex:[trusted user]
14759cindex:[sender,setting by untrusted user]
14760cindex:[untrusted user, setting sender]
14761cindex:[user,untrusted setting sender]
14762cindex:[envelope sender]
14763When an untrusted user submits a message to Exim using the standard input, Exim
14764normally creates an envelope sender address from the user's login and the
14765default qualification domain. Data from the %-f% option (for setting envelope
14766senders on non-SMTP messages) or the SMTP MAIL command (if %-bs% or %-bS%
14767is used) is ignored.
14768
14769However, untrusted users are permitted to set an empty envelope sender address,
14770to declare that a message should never generate any bounces. For example:
14771
14772 exim -f '<>' user@domain.example
14773
14774The %untrusted_set_sender% option allows you to permit untrusted users to set
14775other envelope sender addresses in a controlled way. When it is set, untrusted
14776users are allowed to set envelope sender addresses that match any of the
14777patterns in the list. Like all address lists, the string is expanded. The
14778identity of the user is in $sender_ident$, so you can, for example, restrict
14779users to setting senders that start with their login ids
14780followed by a hyphen
14781by a setting like this:
14782
14783 untrusted_set_sender = ^$sender_ident-
14784
14785If you want to allow untrusted users to set envelope sender addresses without
14786restriction, you can use
14787
14788 untrusted_set_sender = *
14789
14790The %untrusted_set_sender% option applies to all forms of local input, but
14791only to the setting of the envelope sender. It does not permit untrusted users
14792to use the other options which trusted user can use to override message
14793parameters. Furthermore, it does not stop Exim from removing an existing
14794'Sender:' header in the message, or from adding a 'Sender:' header if
14795necessary. See %local_sender_retain% and %local_from_check% for ways of
14796overriding these actions. The handling of the 'Sender:' header is also
14797described in section <<SECTthesenhea>>.
14798
14799The log line for a message's arrival shows the envelope sender following ``<=''.
14800For local messages, the user's login always follows, after ``U=''. In %-bp%
14801displays, and in the Exim monitor, if an untrusted user sets an envelope sender
14802address, the user's login is shown in parentheses after the sender address.
14803
14804
14805oindex:[%uucp_from_pattern%]
14806`..'=
14807%uucp_from_pattern%, Use: 'main', Type: 'string', Default: 'see below'
14808===
14809
14810cindex:[``From'' line]
14811cindex:[UUCP,``From'' line]
14812Some applications that pass messages to an MTA via a command line interface use
14813an initial line starting with ``From'' to pass the envelope sender. In
14814particular, this is used by UUCP software. Exim recognizes such a line by means
14815of a regular expression that is set in %uucp_from_pattern%. When the pattern
14816matches, the sender address is constructed by expanding the contents of
14817%uucp_from_sender%, provided that the caller of Exim is a trusted user. The
14818default pattern recognizes lines in the following two forms:
14819
14820 From ph10 Fri Jan 5 12:35 GMT 1996
14821 From ph10 Fri, 7 Jan 97 14:00:00 GMT
14822
14823The pattern can be seen by running
14824
14825 exim -bP uucp_from_pattern
14826
14827It checks only up to the hours and minutes, and allows for a 2-digit or 4-digit
14828year in the second case. The first word after ``From'' is matched in the regular
14829expression by a parenthesized subpattern. The default value for
14830%uucp_from_sender% is ``$1'', which therefore just uses this first word (``ph10''
14831in the example above) as the message's sender. See also
14832%ignore_fromline_hosts%.
14833
14834
14835oindex:[%uucp_from_sender%]
14836`..'=
14837%uucp_from_sender%, Use: 'main', Type: 'string'!!, Default: `\$1`
14838===
14839
14840See %uucp_from_pattern% above.
14841
14842
14843oindex:[%warn_message_file%]
14844`..'=
14845%warn_message_file%, Use: 'main', Type: 'string', Default: 'unset'
14846===
14847
14848cindex:[warning of delay,customizing the message]
14849cindex:[customizing,warning message]
14850This option defines a template file containing paragraphs of text to be used
14851for constructing the warning message which is sent by Exim when a message has
14852been on the queue for a specified amount of time, as specified by
14853%delay_warning%. Details of the file's contents are given in chapter
14854<<CHAPemsgcust>>. See also %bounce_message_file%.
14855
14856
14857oindex:[%write_rejectlog%]
14858`..'=
14859%write_rejectlog%, Use: 'main', Type: 'boolean', Default: 'true'
14860===
14861
14862cindex:[reject log,disabling]
14863If this option is set false, Exim no longer writes anything to the reject log.
14864See chapter <<CHAPlog>> for details of what Exim writes to its logs.
14865
14866
14867
14868
14869////////////////////////////////////////////////////////////////////////////
14870////////////////////////////////////////////////////////////////////////////
14871
14872[[CHAProutergeneric]]
14873Generic options for routers
14874---------------------------
14875cindex:[options,generic; for routers]
14876cindex:[generic options,router]
14877This chapter describes the generic options that apply to all routers.
14878Those that are preconditions are marked with !? in the ``use'' field.
14879
14880For a general description of how a router operates, see sections
14881<<SECTrunindrou>> and <<SECTrouprecon>>. The latter specifies the order in
14882which the preconditions are tested. The order of expansion of the options that
14883provide data for a transport is: %errors_to%, %headers_add%, %headers_remove%,
14884%transport%.
14885
14886
14887
14888oindex:[%address_data%]
14889`..'=
14890%address_data%, Use: 'routers', Type: 'string'!!, Default: 'unset'
14891===
14892
14893cindex:[router,data attached to address]
14894The string is expanded just before the router is run, that is, after all the
14895precondition tests have succeeded. If the expansion is forced to fail, the
14896router declines. Other expansion failures cause delivery of the address to be
14897deferred.
14898
14899When the expansion succeeds, the value is retained with the address, and can be
14900accessed using the variable $address_data$ in the current router, subsequent
14901routers, and the eventual transport.
14902
14903*Warning*: if the current or any subsequent router is a ^redirect^ router
14904that runs a user's filter file, the contents of $address_data$ are
14905accessible in the filter. This is not normally a problem, because such data is
14906usually either not confidential or it ``belongs'' to the current user, but if you
14907do put confidential data into $address_data$ you need to remember this
14908point.
14909
14910Even if the router declines or passes, the value of $address_data$ remains
14911with the address, though it can be changed by another %address_data% setting
14912on a subsequent router. If a router generates child addresses, the value of
14913$address_data$ propagates to them. This also applies to the special kind of
14914``child'' that is generated by a router with the %unseen% option.
14915
14916The idea of %address_data% is that you can use it to look up a lot of data for
14917the address once, and then pick out parts of the data later. For example, you
14918could use a single LDAP lookup to return a string of the form
14919
14920 uid=1234 gid=5678 mailbox=/mail/xyz forward=/home/xyz/.forward
14921
14922In the transport you could pick out the mailbox by a setting such as
14923
14924 file = ${extract{mailbox}{$address_data}}
14925
14926This makes the configuration file less messy, and also reduces the number of
14927lookups (though Exim does cache lookups).
14928
14929The %address_data% facility is also useful as a means of passing information
14930from one router to another, and from a router to a transport. In addition, if
14931
14932$address_data$ is set by a router when verifying a recipient address from an
14933ACL, it remains available for use in the rest of the ACL statement. After
14934verifying a sender, the value is transferred to $sender_address_data$.
14935
14936
14937
14938
14939oindex:[%address_test%]
14940`..'=
14941%address_test%, Use: 'routers'!?, Type: 'boolean', Default: 'true'
14942===
14943
14944cindex:[%-bt% option]
14945cindex:[router,skipping when address testing]
14946If this option is set false, the router is skipped when routing is being tested
14947by means of the %-bt% command line option. This can be a convenience when your
14948first router sends messages to an external scanner, because it saves you
14949having to set the ``already scanned'' indicator when testing real address
14950routing.
14951
14952
14953
14954oindex:[%cannot_route_message%]
14955`..'=
14956%cannot_route_message%, Use: 'routers', Type: 'string'!!, Default: 'unset'
14957===
14958
14959cindex:[router,customizing ``cannot route'' message]
14960cindex:[customizing,``cannot route'' message]
14961This option specifies a text message that is used when an address cannot be
14962routed because Exim has run out of routers. The default message is ``Unrouteable
14963address''. This option is useful only on routers that have %more% set false, or
14964on the very last router in a configuration, because the value that is used is
14965taken from the last router that inspects an address. For example, using the
14966default configuration, you could put:
14967
14968 cannot_route_message = Remote domain not found in DNS
14969
14970on the first (^dnslookup^) router, and
14971
14972 cannot_route_message = Unknown local user
14973
14974on the final router that checks for local users. If string expansion fails, the
14975default message is used.
14976Unless the expansion failure was explicitly forced, a message about the failure
14977is written to the main and panic logs, in addition to the normal message about
14978the routing failure.
14979
14980
14981oindex:[%caseful_local_part%]
14982`..'=
14983%caseful_local_part%, Use: 'routers', Type: 'boolean', Default: 'false'
14984===
14985
14986cindex:[case of local parts]
14987cindex:[router,case of local parts]
14988By default, routers handle the local parts of addresses in a case-insensitive
14989manner, though the actual case is preserved for transmission with the message.
14990If you want the case of letters to be significant in a router, you must set
14991this option true. For individual router options that contain address or local
14992part lists (for example, %local_parts%), case-sensitive matching can be turned
14993on by ``+caseful'' as a list item. See section <<SECTcasletadd>> for more details.
14994
14995The value of the $local_part$ variable is forced to lower case while a
14996router is running unless %caseful_local_part% is set. When a router assigns
14997an address to a transport, the value of $local_part$ when the transport runs
14998is the same as it was in the router. Similarly, when a router generates child
14999addresses by aliasing or forwarding, the values of $original_local_part$
15000and $parent_local_part$ are those that were used by the redirecting router.
15001
15002This option applies to the processing of an address by a router. When a
15003recipient address is being processed in an ACL, there is a separate %control%
15004modifier that can be used to specify case-sensitive processing within the ACL
15005(see section <<SECTcontrols>>).
15006
15007
15008
15009oindex:[%check_local_user%]
15010`..'=
15011%check_local_user%, Use: 'routers'!?, Type: 'boolean', Default: 'false'
15012===
15013
15014cindex:[local user, checking in router]
15015cindex:[router,checking for local user]
15016cindex:[_/etc/passwd_]
15017When this option is true, Exim checks that the local part of the recipient
15018address (with affixes removed if relevant) is the name of an account on the
15019local system. The check is done by calling the 'getpwnam()' function rather
15020than trying to read _/etc/passwd_ directly. This means that other methods of
15021holding password data (such as NIS) are supported. If the local part is a local
15022user, $home$ is set from the password data, and can be tested in other
15023preconditions that are evaluated after this one (the order of evaluation is
15024given in section <<SECTrouprecon>>). However, the value of $home$ can be
15025overridden by %router_home_directory%. If the local part is not a local user,
15026the router is skipped.
15027
15028If you want to check that the local part is either the name of a local user
15029or matches something else, you cannot combine %check_local_user% with a
15030setting of %local_parts%, because that specifies the logical 'and' of the
15031two conditions. However, you can use a ^passwd^ lookup in a %local_parts%
15032setting to achieve this. For example:
15033
15034 local_parts = passwd;$local_part : lsearch;/etc/other/users
15035
15036Note, however, that the side effects of %check_local_user% (such as setting
15037up a home directory) do not occur when a ^passwd^ lookup is used in a
15038%local_parts% (or any other) precondition.
15039
15040
15041
15042oindex:[%condition%]
15043`..'=
15044%condition%, Use: 'routers'!?, Type: 'string'!!, Default: 'unset'
15045===
15046
15047cindex:[router,customized precondition]
15048This option specifies a general precondition test that has to succeed for the
15049router to be called. The %condition% option is the last precondition to be
15050evaluated (see section <<SECTrouprecon>>). The string is expanded, and if the
15051result is a forced failure, or an empty string, or one of the strings ``0'' or
15052``no'' or ``false'' (checked without regard to the case of the letters), the router
15053is skipped, and the address is offered to the next one.
15054
15055If the result is any other value, the router is run (as this is the last
15056precondition to be evaluated, all the other preconditions must be true).
15057
15058The %condition% option provides a means of applying custom conditions to the
15059running of routers. Note that in the case of a simple conditional expansion,
15060the default expansion values are exactly what is wanted. For example:
15061
15062 condition = ${if >{$message_age}{600}}
15063
15064Because of the default behaviour of the string expansion, this is equivalent to
15065
15066 condition = ${if >{$message_age}{600}{true}{}}
15067
15068
15069If the expansion fails (other than forced failure) delivery is deferred. Some
15070of the other precondition options are common special cases that could in fact
15071be specified using %condition%.
15072
15073
15074
15075oindex:[%debug_print%]
15076`..'=
15077%debug_print%, Use: 'routers', Type: 'string'!!, Default: 'unset'
15078===
15079
15080cindex:[testing,variables in drivers]
15081If this option is set and debugging is enabled (see the %-d% command line
15082option), the string is expanded and included in the debugging output.
15083If expansion of the string fails, the error message is written to the debugging
15084output, and Exim carries on processing.
15085This option is provided to help with checking out the values of variables and
15086so on when debugging router configurations. For example, if a %condition%
15087option appears not to be working, %debug_print% can be used to output the
15088variables it references. The output happens after checks for %domains%,
15089%local_parts%, and %check_local_user% but before any other preconditions are
15090tested. A newline is added to the text if it does not end with one.
15091
15092
15093
15094oindex:[%disable_logging%]
15095`..'=
15096%disable_logging%, Use: 'routers', Type: 'boolean', Default: 'false'
15097===
15098
15099If this option is set true, nothing is logged for any routing errors
15100or for any deliveries caused by this router. You should not set this option
15101unless you really, really know what you are doing. See also the generic
15102transport option of the same name.
15103
15104
15105oindex:[%domains%]
15106`..'=
15107%domains%, Use: 'routers'!?, Type: 'domain list'!!, Default: 'unset'
15108===
15109
15110cindex:[router,restricting to specific domains]
15111If this option is set, the router is skipped unless the current domain matches
15112the list. If the match is achieved by means of a file lookup, the data that the
15113lookup returned for the domain is placed in $domain_data$ for use in string
15114expansions of the driver's private options.
15115See section <<SECTrouprecon>> for a list of the order in which preconditions
15116are evaluated.
15117
15118
15119
15120oindex:[%driver%]
15121`..'=
15122%driver%, Use: 'routers', Type: 'string', Default: 'unset'
15123===
15124
15125This option must always be set. It specifies which of the available routers is
15126to be used.
15127
15128
15129
15130oindex:[%errors_to%]
15131`..'=
15132%errors_to%, Use: 'routers', Type: 'string'!!, Default: 'unset'
15133===
15134
15135cindex:[envelope sender]
15136cindex:[router,changing address for errors]
15137If a router successfully handles an address, it may queue the address for
15138delivery or it may generate child addresses. In both cases, if there is a
15139delivery problem during later processing, the resulting bounce message is sent
15140to the address that results from expanding this string, provided that the
15141address verifies successfully.
15142%errors_to% is expanded before %headers_add%, %headers_remove%, and
15143%transport%.
15144
15145If the option is unset, or the expansion is forced to fail, or the result of
15146the expansion fails to verify, the errors address associated with the incoming
15147address is used. At top level, this is the envelope sender. A non-forced
15148expansion failure causes delivery to be deferred.
15149
15150If an address for which %errors_to% has been set ends up being delivered over
15151SMTP, the envelope sender for that delivery is the %errors_to% value, so that
15152any bounces that are generated by other MTAs on the delivery route are also
15153sent there. The most common use of %errors_to% is probably to direct mailing
15154list bounces to the manager of the list, as described in section
15155<<SECTmailinglists>>.
15156
15157The %errors_to% setting associated with an address can be overridden if it
15158subsequently passes through other routers that have their own %errors_to%
15159settings,
15160or if it is delivered by a transport with a %return_path% setting.
15161
15162You can set %errors_to% to the empty string by either of these settings:
15163
15164 errors_to =
15165 errors_to = ""
15166
15167An expansion item that yields an empty string has the same effect. If you do
15168this, a locally detected delivery error for addresses processed by this router
15169no longer gives rise to a bounce message; the error is discarded. If the
15170address is delivered to a remote host, the return path is set to `<>`, unless
15171overridden by the %return_path% option on the transport.
15172
15173If for some reason you want to discard local errors, but use a non-empty
15174MAIL command for remote delivery, you can preserve the original return
15175path in $address_data$ in the router, and reinstate it in the transport by
15176setting %return_path%.
15177
15178
15179
15180oindex:[%expn%]
15181`..'=
15182%expn%, Use: 'routers'!?, Type: 'boolean', Default: 'true'
15183===
15184
15185cindex:[address,testing]
15186cindex:[testing,addresses]
15187cindex:[EXPN,router skipping]
15188cindex:[router,skipping for EXPN]
15189If this option is turned off, the router is skipped when testing an address
15190as a result of processing an SMTP EXPN command. You might, for example,
15191want to turn it off on a router for users' _.forward_ files, while leaving it
15192on for the system alias file.
15193See section <<SECTrouprecon>> for a list of the order in which preconditions
15194are evaluated.
15195
15196The use of the SMTP EXPN command is controlled by an ACL (see chapter
15197<<CHAPACL>>). When Exim is running an EXPN command, it is similar to testing
15198an address with %-bt%. Compare VRFY, whose counterpart is %-bv%.
15199
15200
15201
15202oindex:[%fail_verify%]
15203`..'=
15204%fail_verify%, Use: 'routers', Type: 'boolean', Default: 'false'
15205===
15206
15207cindex:[router,forcing verification failure]
15208Setting this option has the effect of setting both %fail_verify_sender% and
15209%fail_verify_recipient% to the same value.
15210
15211
15212
15213oindex:[%fail_verify_recipient%]
15214`..'=
15215%fail_verify_recipient%, Use: 'routers', Type: 'boolean', Default: 'false'
15216===
15217
15218If this option is true and an address is accepted by this router when
15219verifying a recipient, verification fails.
15220
15221
15222
15223oindex:[%fail_verify_sender%]
15224`..'=
15225%fail_verify_sender%, Use: 'routers', Type: 'boolean', Default: 'false'
15226===
15227
15228If this option is true and an address is accepted by this router when
15229verifying a sender, verification fails.
15230
15231
15232
15233oindex:[%fallback_hosts%]
15234`..'=
15235%fallback_hosts%, Use: 'routers', Type: 'string list', Default: 'unset'
15236===
15237
15238cindex:[router,fallback hosts]
15239cindex:[fallback,hosts specified on router]
15240String expansion is not applied to this option. The argument must be a
15241colon-separated list of host names or IP addresses. If a router queues an
15242address for a remote transport, this host list is associated with the address,
15243and used instead of the transport's fallback host list. If %hosts_randomize%
15244is set on the transport, the order of the list is randomized for each use. See
15245the %fallback_hosts% option of the ^smtp^ transport for further details.
15246
15247
15248oindex:[%group%]
15249`..'=
15250%group%, Use: 'routers', Type: 'string'!!, Default: 'see below'
15251===
15252
15253cindex:[gid (group id),local delivery]
15254cindex:[local transports,uid and gid]
15255cindex:[transport,local]
15256cindex:[router,setting group]
15257When a router queues an address for a transport, and the transport does not
15258specify a group, the group given here is used when running the delivery
15259process.
15260The group may be specified numerically or by name. If expansion fails, the
15261error is logged and delivery is deferred.
15262The default is unset, unless %check_local_user% is set, when the default
15263is taken from the password information. See also %initgroups% and %user% and
15264the discussion in chapter <<CHAPenvironment>>.
15265
15266
15267
15268oindex:[%headers_add%]
15269`..'=
15270%headers_add%, Use: 'routers', Type: 'string'!!, Default: 'unset'
15271===
15272
15273cindex:[header lines,adding]
15274cindex:[router,adding header lines]
15275This option specifies a string of text that is expanded at routing time, and
15276associated with any addresses that are accepted by the router. However, this
15277option has no effect when an address is just being verified. The way in which
15278the text is used to add header lines at transport time is described in section
15279<<SECTheadersaddrem>>.
15280
15281The %headers_add% option is expanded after %errors_to%, but before
15282%headers_remove% and %transport%. If the expanded string is empty, or if the
15283expansion is forced to fail, the option has no effect. Other expansion failures
15284are treated as configuration errors.
15285
15286*Warning*: The %headers_add% option cannot be used for a ^redirect^
15287router that has the %one_time% option set.
15288
15289
15290
15291
15292oindex:[%headers_remove%]
15293`..'=
15294%headers_remove%, Use: 'routers', Type: 'string'!!, Default: 'unset'
15295===
15296
15297cindex:[header lines,removing]
15298cindex:[router,removing header lines]
15299This option specifies a string of text that is expanded at routing time, and
15300associated with any addresses that are accepted by the router. However, this
15301option has no effect when an address is just being verified. The way in which
15302the text is used to remove header lines at transport time is described in
15303section <<SECTheadersaddrem>>.
15304
15305The %headers_remove% option is expanded after %errors_to% and %headers_add%,
15306but before %transport%. If the expansion is forced to fail, the option has no
15307effect. Other expansion failures are treated as configuration errors.
15308
15309*Warning*: The %headers_remove% option cannot be used for a ^redirect^
15310router that has the %one_time% option set.
15311
15312
15313
15314
15315oindex:[%ignore_target_hosts%]
15316`..'=
15317%ignore_target_hosts%, Use: 'routers', Type: 'host list'!!, Default: 'unset'
15318===
15319
15320cindex:[IP address,discarding]
15321cindex:[router,discarding IP addresses]
15322Although this option is a host list, it should normally contain IP address
15323entries rather than names. If any host that is looked up by the router has an
15324IP address that matches an item in this list, Exim behaves as if that IP
15325address did not exist. This option allows you to cope with rogue DNS entries
15326like
15327
15328 remote.domain.example. A 127.0.0.1
15329
15330by setting
15331
15332 ignore_target_hosts = 127.0.0.1
15333
15334on the relevant router. If all the hosts found by a ^dnslookup^ router are
15335discarded in this way, the router declines. In a conventional configuration, an
15336attempt to mail to such a domain would normally provoke the ``unrouteable
15337domain'' error, and an attempt to verify an address in the domain would fail.
15338
15339Similarly, if %ignore_target_hosts% is set on an ^ipliteral^ router, the
15340router declines if presented with one of the listed addresses.
15341
15342This option may also be useful for ignoring link-local and site-local IPv6
15343addresses. Because, like all host lists, the value of %ignore_target_hosts%
15344is expanded before use as a list, it is possible to make it dependent on the
15345domain that is being routed.
15346
15347During its expansion, $host_address$ is set to the IP address that is being
15348checked.
15349
15350oindex:[%initgroups%]
15351`..'=
15352%initgroups%, Use: 'routers', Type: 'boolean', Default: 'false'
15353===
15354
15355cindex:[additional groups]
15356cindex:[groups, additional]
15357cindex:[local transports,uid and gid]
15358cindex:[transport,local]
15359If the router queues an address for a transport, and this option is true, and
15360the uid supplied by the router is not overridden by the transport, the
15361'initgroups()' function is called when running the transport to ensure that
15362any additional groups associated with the uid are set up. See also %group% and
15363%user% and the discussion in chapter <<CHAPenvironment>>.
15364
15365
15366
15367oindex:[%local_part_prefix%]
15368`..'=
15369%local_part_prefix%, Use: 'routers'!?, Type: 'string list', Default: 'unset'
15370===
15371
15372cindex:[router,prefix for local part]
15373cindex:[prefix,for local part; used in router]
15374If this option is set, the router is skipped unless the local part
15375starts with one of the given strings, or %local_part_prefix_optional% is
15376true.
15377See section <<SECTrouprecon>> for a list of the order in which preconditions
15378are evaluated.
15379
15380The list is scanned from left to right, and the first prefix that matches is
15381used. A limited form of wildcard is available; if the prefix begins with an
15382asterisk, it matches the longest possible sequence of arbitrary characters at
15383the start of the local part. An asterisk should therefore always be followed by
15384some character that does not occur in normal local parts.
15385
15386cindex:[multiple mailboxes]
15387cindex:[mailbox,multiple]
15388Wildcarding can be used to set up multiple user mailboxes, as described in
15389section <<SECTmulbox>>.
15390
15391During the testing of the %local_parts% option, and while the router is
15392running, the prefix is removed from the local part, and is available in the
15393expansion variable $local_part_prefix$. If the router accepts the address,
15394this remains true during subsequent delivery.
15395In particular, the local part that is transmitted in the RCPT command
15396for LMTP, SMTP, and BSMTP deliveries has the prefix removed by default. This
15397behaviour can be overridden by setting %rcpt_include_affixes% true on the
15398relevant transport.
15399
15400The prefix facility is commonly used to handle local parts of the form
15401%owner-something%. Another common use is to support local parts of the form
15402%real-username% to bypass a user's _.forward_ file -- helpful when trying to
15403tell a user their forwarding is broken -- by placing a router like this one
15404immediately before the router that handles _.forward_ files:
15405
15406 real_localuser:
15407 driver = accept
15408 local_part_prefix = real-
15409 check_local_user
15410 transport = local_delivery
15411
15412If both %local_part_prefix% and %local_part_suffix% are set for a router,
15413both conditions must be met if not optional. Care must be taken if wildcards
15414are used in both a prefix and a suffix on the same router. Different
15415separator characters must be used to avoid ambiguity.
15416
15417
15418oindex:[%local_part_prefix_optional%]
15419`..'=
15420%local_part_prefix_optional%, Use: 'routers', Type: 'boolean', Default: 'false'
15421===
15422
15423See %local_part_prefix% above.
15424
15425
15426
15427oindex:[%local_part_suffix%]
15428`..'=
15429%local_part_suffix%, Use: 'routers'!?, Type: 'string list', Default: 'unset'
15430===
15431
15432cindex:[router,suffix for local part]
15433cindex:[suffix for local part, used in router]
15434This option operates in the same way as %local_part_prefix%, except that the
15435local part must end (rather than start) with the given string, the
15436%local_part_suffix_optional% option determines whether the suffix is
15437mandatory, and the wildcard \* character, if present, must be the last
15438character of the suffix. This option facility is commonly used to handle local
15439parts of the form %something-request% and multiple user mailboxes of the form
15440%username-foo%.
15441
15442
15443oindex:[%local_part_suffix_optional%]
15444`..'=
15445%local_part_suffix_optional%, Use: 'routers', Type: 'boolean', Default: 'false'
15446===
15447
15448See %local_part_suffix% above.
15449
15450
15451
15452oindex:[%local_parts%]
15453`..'=
15454%local_parts%, Use: 'routers'!?, Type: 'local part list'!!, Default: 'unset'
15455===
15456
15457cindex:[router,restricting to specific local parts]
15458cindex:[local part,checking in router]
15459The router is run only if the local part of the address matches the list.
15460See section <<SECTrouprecon>> for a list of the order in which preconditions
15461are evaluated, and
15462section <<SECTlocparlis>> for a discussion of local part lists. Because the
15463string is expanded, it is possible to make it depend on the domain, for
15464example:
15465
15466 local_parts = dbm;/usr/local/specials/$domain
15467
15468If the match is achieved by a lookup, the data that the lookup returned
15469for the local part is placed in the variable $local_part_data$ for use in
15470expansions of the router's private options. You might use this option, for
15471example, if you have a large number of local virtual domains, and you want to
15472send all postmaster mail to the same place without having to set up an alias in
15473each virtual domain:
15474
15475 postmaster:
15476 driver = redirect
15477 local_parts = postmaster
15478 data = postmaster@real.domain.example
15479
15480
15481
15482
15483oindex:[%log_as_local%]
15484`..'=
15485%log_as_local%, Use: 'routers', Type: 'boolean', Default: 'see below'
15486===
15487
15488cindex:[log,delivery line]
15489cindex:[delivery,log line format]
15490Exim has two logging styles for delivery, the idea being to make local
15491deliveries stand out more visibly from remote ones. In the ``local'' style, the
15492recipient address is given just as the local part, without a domain. The use of
15493this style is controlled by this option. It defaults to true for the ^accept^
15494router, and false for all the others.
15495
15496
15497
15498oindex:[%more%]
15499`..'=
15500%more%, Use: 'routers', Type: 'boolean'!!, Default: 'true'
15501===
15502
15503The result of string expansion for this option must be a valid boolean value,
15504that is, one of the strings ``yes'', ``no'', ``true'', or ``false''. Any other
15505result causes an error, and delivery is deferred. If the expansion is forced to
15506fail, the default value for the option (true) is used. Other failures cause
15507delivery to be deferred.
15508
15509If this option is set false, and the router is run, but declines to handle the
15510address, no further routers are tried, routing fails, and the address is
15511bounced.
15512cindex:[%self% option]
15513However, if the router explicitly passes an address to the following router by
15514means of the setting
15515
15516 self = pass
15517
15518or otherwise, the setting of %more% is ignored. Also, the setting of %more%
15519does not affect the behaviour if one of the precondition tests fails. In that
15520case, the address is always passed to the next router.
15521
15522
15523
15524oindex:[%pass_on_timeout%]
15525`..'=
15526%pass_on_timeout%, Use: 'routers', Type: 'boolean', Default: 'false'
15527===
15528
15529cindex:[timeout,of router]
15530cindex:[router,timeout]
15531If a router times out during a host lookup, it normally causes deferral of the
15532address. If %pass_on_timeout% is set, the address is passed on to the next
15533router, overriding %no_more%. This may be helpful for systems that are
15534intermittently connected to the Internet, or those that want to pass to a smart
15535host any messages that cannot immediately be delivered.
15536
15537There are occasional other temporary errors that can occur while doing DNS
15538lookups. They are treated in the same way as a timeout, and this option
15539applies to all of them.
15540
15541
15542
15543oindex:[%pass_router%]
15544`..'=
15545%pass_router%, Use: 'routers', Type: 'string', Default: 'unset'
15546===
15547
15548cindex:[router,go to after ``pass'']
15549When a router returns ``pass'', the address is normally handed on to the next
15550router in sequence. This can be changed by setting %pass_router% to the name
15551of another router. However (unlike %redirect_router%) the named router must be
15552below the current router, to avoid loops. Note that this option applies only to
15553the special case of ``pass''. It does not apply when a router returns ``decline''.
15554
15555
15556
15557oindex:[%redirect_router%]
15558`..'=
15559%redirect_router%, Use: 'routers', Type: 'string', Default: 'unset'
15560===
15561
15562cindex:[router,start at after redirection]
15563Sometimes an administrator knows that it is pointless to reprocess addresses
15564generated from alias or forward files with the same router again. For
15565example, if an alias file translates real names into login ids there is no
15566point searching the alias file a second time, especially if it is a large file.
15567
15568The %redirect_router% option can be set to the name of any router instance. It
15569causes the routing of any generated addresses to start at the named router
15570instead of at the first router. This option has no effect if the router in
15571which it is set does not generate new addresses.
15572
15573
15574
15575oindex:[%require_files%]
15576`..'=
15577%require_files%, Use: 'routers'!?, Type: 'string list'!!, Default: 'unset'
15578===
15579
15580cindex:[file,requiring for router]
15581cindex:[router,requiring file existence]
15582This option provides a general mechanism for predicating the running of a
15583router on the existence or non-existence of certain files or directories.
15584Before running a router, as one of its precondition tests, Exim works its way
15585through the %require_files% list, expanding each item separately.
15586
15587Because the list is split before expansion, any colons in expansion items must
15588be doubled, or the facility for using a different list separator must be used.
15589If any expansion is forced to fail, the item is ignored. Other expansion
15590failures cause routing of the address to be deferred.
15591
15592If any expanded string is empty, it is ignored. Otherwise, except as described
15593below, each string must be a fully qualified file path, optionally preceded by
15594``!''. The paths are passed to the 'stat()' function to test for the existence
15595of the files or directories. The router is skipped if any paths not preceded by
15596``!'' do not exist, or if any paths preceded by ``!'' do exist.
15597
15598cindex:[NFS]
15599If 'stat()' cannot determine whether a file exists or not, delivery of
15600the message is deferred. This can happen when NFS-mounted filesystems are
15601unavailable.
15602
15603This option is checked after the %domains%, %local_parts%, and %senders%
15604options, so you cannot use it to check for the existence of a file in which to
15605look up a domain, local part, or sender. (See section <<SECTrouprecon>> for a
15606full list of the order in which preconditions are evaluated.) However, as
15607these options are all expanded, you can use the %exists% expansion condition to
15608make such tests. The %require_files% option is intended for checking files
15609that the router may be going to use internally, or which are needed by a
15610transport (for example _.procmailrc_).
15611
15612During delivery, the 'stat()' function is run as root, but there is a
15613facility for some checking of the accessibility of a file by another user.
15614This is not a proper permissions check, but just a ``rough'' check that
15615operates as follows:
15616
15617If an item in a %require_files% list does not contain any forward slash
15618characters, it is taken to be the user (and optional group, separated by a
15619comma) to be checked for subsequent files in the list. If no group is specified
15620but the user is specified symbolically, the gid associated with the uid is
15621used. For example:
15622
15623 require_files = mail:/some/file
15624 require_files = $local_part:$home/.procmailrc
15625
15626If a user or group name in a %require_files% list does not exist, the
15627%require_files% condition fails.
15628
15629Exim performs the check by scanning along the components of the file path, and
15630checking the access for the given uid and gid. It checks for ``x'' access on
15631directories, and ``r'' access on the final file. Note that this means that file
15632access control lists, if the operating system has them, are ignored.
15633
15634*Warning 1*: When the router is being run to verify addresses for an
15635incoming SMTP message, Exim is not running as root, but under its own uid. This
15636may affect the result of a %require_files% check. In particular, 'stat()'
15637may yield the error EACCES (``Permission denied''). This means that the Exim
15638user is not permitted to read one of the directories on the file's path.
15639
15640*Warning 2*: Even when Exim is running as root while delivering a message,
15641'stat()' can yield EACCES for a file in an NFS directory that is mounted
15642without root access.
15643
15644In this case, if a check for access by a particular user is requested, Exim
15645creates a subprocess that runs as that user, and tries the check again in that
15646process.
15647
15648The default action for handling an unresolved EACCES is to consider it to
15649be caused by a configuration error,
15650
15651and routing is deferred because the existence or non-existence of the file
15652cannot be determined. However, in some circumstances it may be desirable to
15653treat this condition as if the file did not exist. If the file name (or the
15654exclamation mark that precedes the file name for non-existence) is preceded by
15655a plus sign, the EACCES error is treated as if the file did not exist. For
15656example:
15657
15658 require_files = +/some/file
15659
15660If the router is not an essential part of verification (for example, it
15661handles users' _.forward_ files), another solution is to set the %verify%
15662option false so that the router is skipped when verifying.
15663
15664
15665
15666oindex:[%retry_use_local_part%]
15667`..'=
15668%retry_use_local_part%, Use: 'routers', Type: 'boolean', Default: 'see below'
15669===
15670
15671cindex:[hints database,retry keys]
15672cindex:[local part,in retry keys]
15673When a delivery suffers a temporary routing failure, a retry record is created
15674in Exim's hints database. For addresses whose routing depends only on the
15675domain, the key for the retry record should not involve the local part, but for
15676other addresses, both the domain and the local part should be included.
15677Usually, remote routing is of the former kind, and local routing is of the
15678latter kind.
15679
15680This option controls whether the local part is used to form the key for retry
15681hints for addresses that suffer temporary errors while being handled by this
15682router. The default value is true for any router that has %check_local_user%
15683set, and false otherwise. Note that this option does not apply to hints keys
15684for transport delays; they are controlled by a generic transport option of the
15685same name.
15686
15687The setting of %retry_use_local_part% applies only to the router on which it
15688appears. If the router generates child addresses, they are routed
15689independently; this setting does not become attached to them.
15690
15691
15692
15693oindex:[%router_home_directory%]
15694`..'=
15695%router_home_directory%, Use: 'routers', Type: 'string'!!, Default: 'unset'
15696===
15697
15698cindex:[router,home directory for]
15699cindex:[home directory,for router]
15700This option sets a home directory for use while the router is running. (Compare
15701%transport_home_directory%, which sets a home directory for later
15702transporting.) In particular, if used on a ^redirect^ router, this option
15703sets a value for $home$ while a filter is running. The value is expanded;
15704forced expansion failure causes the option to be ignored -- other failures
15705cause the router to defer.
15706
15707Expansion of %router_home_directory% happens immediately after the
15708%check_local_user% test (if configured), before any further expansions take
15709place.
15710(See section <<SECTrouprecon>> for a list of the order in which preconditions
15711are evaluated.)
15712While the router is running, %router_home_directory% overrides the value of
15713$home$ that came from %check_local_user%.
15714
15715When a router accepts an address and routes it to a transport (including the
15716cases when a redirect router generates a pipe, file, or autoreply delivery),
15717the home directory setting for the transport is taken from the first of these
15718values that is set:
15719
15720- The %home_directory% option on the transport;
15721
15722- The %transport_home_directory% option on the router;
15723
15724- The password data if %check_local_user% is set on the router;
15725
15726- The %router_home_directory% option on the router.
15727
15728In other words, %router_home_directory% overrides the password data for the
15729router, but not for the transport.
15730
15731
15732
15733oindex:[%self%]
15734`..'=
15735%self%, Use: 'routers', Type: 'string', Default: 'freeze'
15736===
15737
15738cindex:[MX record,pointing to local host]
15739cindex:[local host,MX pointing to]
15740This option applies to those routers that use a recipient address to find a
15741list of remote hosts. Currently, these are the ^dnslookup^, ^ipliteral^,
15742and ^manualroute^ routers.
15743Certain configurations of the ^queryprogram^ router can also specify a list
15744of remote hosts.
15745Usually such routers are configured to send the message to a remote host via an
15746^smtp^ transport. The %self% option specifies what happens when the first
15747host on the list turns out to be the local host.
15748The way in which Exim checks for the local host is described in section
15749<<SECTreclocipadd>>.
15750
15751Normally this situation indicates either an error in Exim's configuration (for
15752example, the router should be configured not to process this domain), or an
15753error in the DNS (for example, the MX should not point to this host). For this
15754reason, the default action is to log the incident, defer the address, and
15755freeze the message. The following alternatives are provided for use in special
15756cases:
15757
15758%defer%::
15759Delivery of the message is tried again later, but the message is not frozen.
15760
15761%reroute%: <'domain'>::
15762The domain is changed to the given domain, and the address is passed back to
15763be reprocessed by the routers. No rewriting of headers takes place. This
15764behaviour is essentially a redirection.
15765
15766%reroute: rewrite:% <'domain'>::
15767The domain is changed to the given domain, and the address is passed back to be
15768reprocessed by the routers. Any headers that contain the original domain are
15769rewritten.
15770
15771%pass%::
15772The router passes the address to the next router, or to the router named in the
15773%pass_router% option if it is set.
15774cindex:[%more% option]
15775This overrides %no_more%.
15776+
15777During subsequent routing and delivery, the variable $self_hostname$ contains
15778the name of the local host that the router encountered. This can be used to
15779distinguish between different cases for hosts with multiple names. The
15780combination
15781
15782 self = pass
15783 no_more
15784+
15785ensures that only those addresses that routed to the local host are passed on.
15786Without %no_more%, addresses that were declined for other reasons would also
15787be passed to the next router.
15788
15789%fail%::
15790Delivery fails and an error report is generated.
15791
15792%send%::
15793cindex:[local host,sending to]
15794The anomaly is ignored and the address is queued for the transport. This
15795setting should be used with extreme caution. For an ^smtp^ transport, it makes
15796sense only in cases where the program that is listening on the SMTP port is not
15797this version of Exim. That is, it must be some other MTA, or Exim with a
15798different configuration file that handles the domain in another way.
15799
15800
15801
15802oindex:[%senders%]
15803`..'=
15804%senders%, Use: 'routers'!?, Type: 'address list'!!, Default: 'unset'
15805===
15806
15807cindex:[router,checking senders]
15808If this option is set, the router is skipped unless the message's sender
15809address matches something on the list.
15810See section <<SECTrouprecon>> for a list of the order in which preconditions
15811are evaluated.
15812
15813There are issues concerning verification when the running of routers is
15814dependent on the sender. When Exim is verifying the address in an %errors_to%
15815setting, it sets the sender to the null string. When using the %-bt% option to
15816check a configuration file, it is necessary also to use the %-f% option to set
15817an appropriate sender. For incoming mail, the sender is unset when verifying
15818the sender, but is available when verifying any recipients. If the SMTP
15819VRFY command is enabled, it must be used after MAIL if the sender
15820address matters.
15821
15822
15823oindex:[%translate_ip_address%]
15824`..'=
15825%translate_ip_address%, Use: 'routers', Type: 'string'!!, Default: 'unset'
15826===
15827
15828cindex:[IP address,translating]
15829cindex:[packet radio]
15830cindex:[router,IP address translation]
15831There exist some rare networking situations (for example, packet radio) where
15832it is helpful to be able to translate IP addresses generated by normal routing
15833mechanisms into other IP addresses, thus performing a kind of manual IP
15834routing. This should be done only if the normal IP routing of the TCP/IP stack
15835is inadequate or broken. Because this is an extremely uncommon requirement, the
15836code to support this option is not included in the Exim binary unless
15837SUPPORT_TRANSLATE_IP_ADDRESS=yes is set in _Local/Makefile_.
15838
15839The %translate_ip_address% string is expanded for every IP address generated
15840by the router, with the generated address set in $host_address$. If the
15841expansion is forced to fail, no action is taken.
15842For any other expansion error, delivery of the message is deferred.
15843If the result of the expansion is an IP address, that replaces the original
15844address; otherwise the result is assumed to be a host name -- this is looked up
15845using 'gethostbyname()' (or 'getipnodebyname()' when available) to produce
15846one or more replacement IP addresses. For example, to subvert all IP addresses
15847in some specific networks, this could be added to a router:
15848
15849....
15850translate_ip_address = \
15851 ${lookup{${mask:$host_address/26}}lsearch{/some/file}{$value}fail}}
15852....
15853
15854The file would contain lines like
15855
15856 10.2.3.128/26 some.host
15857 10.8.4.34/26 10.44.8.15
15858
15859You should not make use of this facility unless you really understand what you
15860are doing.
15861
15862
15863
15864oindex:[%transport%]
15865`..'=
15866%transport%, Use: 'routers', Type: 'string'!!, Default: 'unset'
15867===
15868
15869This option specifies the transport to be used when a router accepts an address
15870and sets it up for delivery. A transport is never needed if a router is used
15871only for verification. The value of the option is expanded at routing time,
15872after the expansion of %errors_to%, %headers_add%, and %headers_remove%, and
15873result must be the name of one of the configured transports. If it is not,
15874delivery is deferred.
15875
15876The %transport% option is not used by the ^redirect^ router, but it does have
15877some private options that set up transports for pipe and file deliveries (see
15878chapter <<CHAPredirect>>).
15879
15880
15881
15882oindex:[%transport_current_directory%]
15883`..'=
15884%transport_current_directory%, Use: 'routers', Type: 'string'!!, Default: 'unset'
15885===
15886
15887cindex:[current directory for local transport]
15888This option associates a current directory with any address that is routed
15889to a local transport. This can happen either because a transport is
15890explicitly configured for the router, or because it generates a delivery to a
15891file or a pipe. During the delivery process (that is, at transport time), this
15892option string is expanded and is set as the current directory, unless
15893overridden by a setting on the transport.
15894If the expansion fails for any reason, including forced failure, an error is
15895logged, and delivery is deferred.
15896See chapter <<CHAPenvironment>> for details of the local delivery environment.
15897
15898
15899
15900
15901oindex:[%transport_home_directory%]
15902`..'=
15903%transport_home_directory%, Use: 'routers', Type: 'string'!!, Default: 'see below'
15904===
15905
15906cindex:[home directory,for local transport]
15907This option associates a home directory with any address that is routed to a
15908local transport. This can happen either because a transport is explicitly
15909configured for the router, or because it generates a delivery to a file or a
15910pipe. During the delivery process (that is, at transport time), the option
15911string is expanded and is set as the home directory, unless overridden by a
15912setting of %home_directory% on the transport.
15913If the expansion fails for any reason, including forced failure, an error is
15914logged, and delivery is deferred.
15915
15916If the transport does not specify a home directory, and
15917%transport_home_directory% is not set for the router, the home directory for
15918the tranport is taken from the password data if %check_local_user% is set for
15919the router. Otherwise it is taken from %router_home_directory% if that option
15920is set; if not, no home directory is set for the transport.
15921
15922See chapter <<CHAPenvironment>> for further details of the local delivery
15923environment.
15924
15925
15926
15927
15928oindex:[%unseen%]
15929`..'=
15930%unseen%, Use: 'routers', Type: 'boolean'!!, Default: 'false'
15931===
15932
15933cindex:[router,carrying on after success]
15934The result of string expansion for this option must be a valid boolean value,
15935that is, one of the strings ``yes'', ``no'', ``true'', or ``false''. Any other result
15936causes an error, and delivery is deferred. If the expansion is forced to fail,
15937the default value for the option (false) is used. Other failures cause delivery
15938to be deferred.
15939
15940When this option is set true, routing does not cease if the router accepts the
15941address. Instead, a copy of the incoming address is passed to the next router,
15942overriding a false setting of %more%. There is little point in setting %more%
15943false if %unseen% is always true, but it may be useful in cases when the value
15944of %unseen% contains expansion items (and therefore, presumably, is sometimes
15945true and sometimes false).
15946
15947cindex:[copy of message (%unseen% option)]
15948The %unseen% option can be used to cause copies of messages to be delivered to
15949some other destination, while also carrying out a normal delivery. In effect,
15950the current address is made into a ``parent'' that has two children -- one that
15951is delivered as specified by this router, and a clone that goes on to be routed
15952further.
15953
15954Header lines added to the address (or specified for removal) by this router or
15955by previous routers affect the ``unseen'' copy of the message only. The clone
15956that continues to be processed by further routers starts with no added headers
15957and none specified for removal.
15958
15959However, any data that was set by the %address_data% option in the current or
15960previous routers is passed on. Setting this option has a similar effect to the
15961%unseen% command qualifier in filter files.
15962
15963
15964
15965oindex:[%user%]
15966`..'=
15967%user%, Use: 'routers', Type: 'string'!!, Default: 'see below'
15968===
15969
15970cindex:[uid (user id),local delivery]
15971cindex:[local transports,uid and gid]
15972cindex:[transport,local]
15973cindex:[router,user for filter processing]
15974cindex:[filter,user for processing]
15975When a router queues an address for a transport, and the transport does not
15976specify a user, the user given here is used when running the delivery process.
15977The user may be specified numerically or by name. If expansion fails, the
15978error is logged and delivery is deferred.
15979This user is also used by the ^redirect^ router when running a filter file.
15980The default is unset, except when %check_local_user% is set. In this case,
15981the default is taken from the password information. If the user is specified as
15982a name, and %group% is not set, the group associated with the user is used. See
15983also %initgroups% and %group% and the discussion in chapter <<CHAPenvironment>>.
15984
15985
15986
15987oindex:[%verify%]
15988`..'=
15989%verify%, Use: 'routers'!?, Type: 'boolean', Default: 'true'
15990===
15991
15992Setting this option has the effect of setting %verify_sender% and
15993%verify_recipient% to the same value.
15994
15995
15996oindex:[%verify_only%]
15997`..'=
15998%verify_only%, Use: 'routers'!?, Type: 'boolean', Default: 'false'
15999===
16000
16001cindex:[EXPN,with %verify_only%]
16002cindex:[%-bv% option]
16003cindex:[router,used only when verifying]
16004If this option is set, the router is used only when verifying an address or
16005testing with the %-bv% option, not when actually doing a delivery, testing
16006with the %-bt% option, or running the SMTP EXPN command. It can be further
16007restricted to verifying only senders or recipients by means of %verify_sender%
16008and %verify_recipient%.
16009
16010*Warning*: When the router is being run to verify addresses for an incoming
16011SMTP message, Exim is not running as root, but under its own uid. If the router
16012accesses any files, you need to make sure that they are accessible to the Exim
16013user or group.
16014
16015
16016oindex:[%verify_recipient%]
16017`..'=
16018%verify_recipient%, Use: 'routers'!?, Type: 'boolean', Default: 'true'
16019===
16020
16021If this option is false, the router is skipped when verifying recipient
16022addresses
16023or testing recipient verification using %-bv%.
16024See section <<SECTrouprecon>> for a list of the order in which preconditions
16025are evaluated.
16026
16027
16028oindex:[%verify_sender%]
16029`..'=
16030%verify_sender%, Use: 'routers'!?, Type: 'boolean', Default: 'true'
16031===
16032
16033If this option is false, the router is skipped when verifying sender addresses
16034or testing sender verification using %-bvs%.
16035See section <<SECTrouprecon>> for a list of the order in which preconditions
16036are evaluated.
16037
16038
16039
16040
16041
16042
16043////////////////////////////////////////////////////////////////////////////
16044////////////////////////////////////////////////////////////////////////////
16045
16046The accept router
16047-----------------
16048cindex:[^accept^ router]
16049cindex:[routers,^accept^]
16050The ^accept^ router has no private options of its own. Unless it is being used
16051purely for verification (see %verify_only%) a transport is required to be
16052defined by the generic %transport% option. If the preconditions that are
16053specified by generic options are met, the router accepts the address and queues
16054it for the given transport. The most common use of this router is for setting
16055up deliveries to local mailboxes. For example:
16056
16057 localusers:
16058 driver = accept
16059 domains = mydomain.example
16060 check_local_user
16061 transport = local_delivery
16062
16063The %domains% condition in this example checks the domain of the address, and
16064%check_local_user% checks that the local part is the login of a local user.
16065When both preconditions are met, the ^accept^ router runs, and queues the
16066address for the ^local_delivery^ transport.
16067
16068
16069
16070
16071
16072
16073////////////////////////////////////////////////////////////////////////////
16074////////////////////////////////////////////////////////////////////////////
16075
16076[[CHAPdnslookup]]
16077The dnslookup router
16078--------------------
16079cindex:[^dnslookup^ router]
16080cindex:[routers,^dnslookup^]
16081The ^dnslookup^ router looks up the hosts that handle mail for the
16082recipient's domain in the DNS. A transport must always be set for this router,
16083unless %verify_only% is set.
16084
16085If SRV support is configured (see %check_srv% below), Exim first searches for
16086SRV records. If none are found, or if SRV support is not configured,
16087MX records are looked up. If no MX records exist, address records are sought.
16088However, %mx_domains% can be set to disable the direct use of address records.
16089
16090MX records of equal priority are sorted by Exim into a random order. Exim then
16091looks for address records for the host names obtained from MX or SRV records.
16092When a host has more than one IP address, they are sorted into a random order,
16093except that IPv6 addresses are always sorted before IPv4 addresses. If all the
16094IP addresses found are discarded by a setting of the %ignore_target_hosts%
16095generic option, the router declines.
16096
16097Unless they have the highest priority (lowest MX value), MX records that point
16098to the local host, or to any host name that matches %hosts_treat_as_local%,
16099are discarded, together with any other MX records of equal or lower priority.
16100
16101cindex:[MX record,pointing to local host]
16102cindex:[local host,MX pointing to]
16103cindex:[%self% option,in ^dnslookup^ router]
16104If the host pointed to by the highest priority MX record, or looked up as an
16105address record, is the local host, or matches %hosts_treat_as_local%, what
16106happens is controlled by the generic %self% option.
16107
16108
16109[[SECTprowitdnsloo]]
16110Problems with DNS lookups
16111~~~~~~~~~~~~~~~~~~~~~~~~~
16112There have been problems with DNS servers when SRV records are looked up.
16113Some mis-behaving servers return a DNS error or timeout when a non-existent
16114SRV record is sought. Similar problems have in the past been reported for
16115MX records. The global %dns_again_means_nonexist% option can help with this
16116problem, but it is heavy-handed because it is a global option.
16117
16118For this reason, there are two options, %srv_fail_domains% and
16119%mx_fail_domains%, that control what happens when a DNS lookup in a
16120^dnslookup^ router results in a DNS failure or a ``try again'' response. If an
16121attempt to look up an SRV or MX record causes one of these results, and the
16122domain matches the relevant list, Exim behaves as if the DNS had responded ``no
16123such record''. In the case of an SRV lookup, this means that the router proceeds
16124to look for MX records; in the case of an MX lookup, it proceeds to look for A
16125or AAAA records, unless the domain matches %mx_domains%, in which case routing
16126fails.
16127
16128
16129
16130
16131Private options for dnslookup
16132~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16133cindex:[options,^dnslookup^ router]
16134The private options for the ^dnslookup^ router are as follows:
16135
16136oindex:[%check_secondary_mx%]
16137`..'=
16138%check_secondary_mx%, Use: 'dnslookup', Type: 'boolean', Default: 'false'
16139===
16140
16141cindex:[MX record,checking for secondary]
16142If this option is set, the router declines unless the local host is found in
16143(and removed from) the list of hosts obtained by MX lookup. This can be used to
16144process domains for which the local host is a secondary mail exchanger
16145differently to other domains. The way in which Exim decides whether a host is
16146the local host is described in section <<SECTreclocipadd>>.
16147
16148
16149oindex:[%check_srv%]
16150`..'=
16151%check_srv%, Use: 'dnslookup', Type: 'string'!!, Default: 'unset'
16152===
16153
16154cindex:[SRV record,enabling use of]
16155The ^dnslookup^ router supports the use of SRV records (see RFC 2782) in
16156addition to MX and address records. The support is disabled by default. To
16157enable SRV support, set the %check_srv% option to the name of the service
16158required. For example,
16159
16160 check_srv = smtp
16161
16162looks for SRV records that refer to the normal smtp service. The option is
16163expanded, so the service name can vary from message to message or address
16164to address. This might be helpful if SRV records are being used for a
16165submission service. If the expansion is forced to fail, the %check_srv%
16166option is ignored, and the router proceeds to look for MX records in the
16167normal way.
16168
16169When the expansion succeeds, the router searches first for SRV records for
16170the given service (it assumes TCP protocol). A single SRV record with a
16171host name that consists of just a single dot indicates ``no such service for
16172this domain''; if this is encountered, the router declines. If other kinds of
16173SRV record are found, they are used to construct a host list for delivery
16174according to the rules of RFC 2782. MX records are not sought in this case.
16175
16176When no SRV records are found, MX records (and address records) are sought in
16177the traditional way. In other words, SRV records take precedence over MX
16178records, just as MX records take precedence over address records. Note that
16179this behaviour is not sanctioned by RFC 2782, though a previous draft RFC
16180defined it. It is apparently believed that MX records are sufficient for email
16181and that SRV records should not be used for this purpose. However, SRV records
16182have an additional ``weight'' feature which some people might find useful when
16183trying to split an SMTP load between hosts of different power.
16184
16185See section <<SECTprowitdnsloo>> above for a discussion of Exim's behaviour when
16186there is a DNS lookup error.
16187
16188
16189
16190oindex:[%mx_domains%]
16191`..'=
16192%mx_domains%, Use: 'dnslookup', Type: 'domain list'!!, Default: 'unset'
16193===
16194
16195cindex:[MX record,required to exist]
16196cindex:[SRV record,required to exist]
16197A domain that matches %mx_domains% is required to have either an MX or an SRV
16198record in order to be recognised. (The name of this option could be improved.)
16199For example, if all the mail hosts in 'fict.example' are known to have MX
16200records, except for those in 'discworld.fict.example', you could use this
16201setting:
16202
16203 mx_domains = ! *.discworld.fict.example : *.fict.example
16204
16205This specifies that messages addressed to a domain that matches the list but
16206has no MX record should be bounced immediately instead of being routed using
16207the address record.
16208
16209
16210oindex:[%mx_fail_domains%]
16211`..'=
16212%mx_fail_domains%, Use: 'dnslookup', Type: 'domain list'!!, Default: 'unset'
16213===
16214
16215If the DNS lookup for MX records for one of the domains in this list causes a
16216DNS lookup error, Exim behaves as if no MX records were found. See section
16217<<SECTprowitdnsloo>> for more discussion.
16218
16219
16220
16221
16222oindex:[%qualify_single%]
16223`..'=
16224%qualify_single%, Use: 'dnslookup', Type: 'boolean', Default: 'true'
16225===
16226
16227cindex:[DNS,resolver options]
16228cindex:[DNS,qualifying single-component names]
16229When this option is true, the resolver option RES_DEFNAMES is set for DNS
16230lookups. Typically, but not standardly, this causes the resolver to qualify
16231single-component names with the default domain. For example, on a machine
16232called 'dictionary.ref.example', the domain 'thesaurus' would be changed to
16233'thesaurus.ref.example' inside the resolver. For details of what your resolver
16234actually does, consult your man pages for 'resolver' and 'resolv.conf'.
16235
16236
16237
16238oindex:[%rewrite_headers%]
16239`..'=
16240%rewrite_headers%, Use: 'dnslookup', Type: 'boolean', Default: 'true'
16241===
16242
16243cindex:[rewriting,header lines]
16244cindex:[header lines,rewriting]
16245If the domain name in the address that is being processed is not fully
16246qualified, it may be expanded to its full form by a DNS lookup. For example, if
16247an address is specified as 'dormouse@teaparty', the domain might be
16248expanded to 'teaparty.wonderland.fict.example'. Domain expansion can also
16249occur as a result of setting the %widen_domains% option. If %rewrite_headers%
16250is true, all occurrences of the abbreviated domain name in any 'Bcc:', 'Cc:',
16251'From:', 'Reply-to:', 'Sender:', and 'To:' header lines of the message are
16252rewritten with the full domain name.
16253
16254This option should be turned off only when it is known that no message is
16255ever going to be sent outside an environment where the abbreviation makes
16256sense.
16257
16258When an MX record is looked up in the DNS and matches a wildcard record, name
16259servers normally return a record containing the name that has been looked up,
16260making it impossible to detect whether a wildcard was present or not. However,
16261some name servers have recently been seen to return the wildcard entry. If the
16262name returned by a DNS lookup begins with an asterisk, it is not used for
16263header rewriting.
16264
16265
16266oindex:[%same_domain_copy_routing%]
16267`..'=
16268%same_domain_copy_routing%, Use: 'dnslookup', Type: 'boolean', Default: 'false'
16269===
16270
16271cindex:[address,copying routing]
16272Addresses with the same domain are normally routed by the ^dnslookup^ router
16273to the same list of hosts. However, this cannot be presumed, because the router
16274options and preconditions may refer to the local part of the address. By
16275default, therefore, Exim routes each address in a message independently. DNS
16276servers run caches, so repeated DNS lookups are not normally expensive, and in
16277any case, personal messages rarely have more than a few recipients.
16278
16279If you are running mailing lists with large numbers of subscribers at the same
16280domain, and you are using a ^dnslookup^ router which is independent of the
16281local part, you can set %same_domain_copy_routing% to bypass repeated DNS
16282lookups for identical domains in one message. In this case, when ^dnslookup^
16283routes an address to a remote transport, any other unrouted addresses in the
16284message that have the same domain are automatically given the same routing
16285without processing them independently,
16286provided the following conditions are met:
16287
16288- No router that processed the address specified %headers_add% or
16289%headers_remove%.
16290
16291- The router did not change the address in any way, for example, by ``widening''
16292the domain.
16293
16294
16295
16296
16297oindex:[%search_parents%]
16298`..'=
16299%search_parents%, Use: 'dnslookup', Type: 'boolean', Default: 'false'
16300===
16301
16302cindex:[DNS,resolver options]
16303When this option is true, the resolver option RES_DNSRCH is set for DNS
16304lookups. This is different from the %qualify_single% option in that it applies
16305to domains containing dots. Typically, but not standardly, it causes the
16306resolver to search for the name in the current domain and in parent domains.
16307For example, on a machine in the 'fict.example' domain, if looking up
16308'teaparty.wonderland' failed, the resolver would try
16309'teaparty.wonderland.fict.example'. For details of what your resolver
16310actually does, consult your man pages for 'resolver' and 'resolv.conf'.
16311
16312Setting this option true can cause problems in domains that have a wildcard MX
16313record, because any domain that does not have its own MX record matches the
16314local wildcard.
16315
16316
16317
16318oindex:[%srv_fail_domains%]
16319`..'=
16320%srv_fail_domains%, Use: 'dnslookup', Type: 'domain list'!!, Default: 'unset'
16321===
16322
16323If the DNS lookup for SRV records for one of the domains in this list causes a
16324DNS lookup error, Exim behaves as if no SRV records were found. See section
16325<<SECTprowitdnsloo>> for more discussion.
16326
16327
16328
16329
16330oindex:[%widen_domains%]
16331`..'=
16332%widen_domains%, Use: 'dnslookup', Type: 'string list', Default: 'unset'
16333===
16334
16335cindex:[domain,partial; widening]
16336If a DNS lookup fails and this option is set, each of its strings in turn is
16337added onto the end of the domain, and the lookup is tried again. For example,
16338if
16339
16340 widen_domains = fict.example:ref.example
16341
16342is set and a lookup of 'klingon.dictionary' fails,
16343'klingon.dictionary.fict.example' is looked up, and if this fails,
16344'klingon.dictionary.ref.example' is tried. Note that the %qualify_single%
16345and %search_parents% options can cause some widening to be undertaken inside
16346the DNS resolver.
16347
16348
16349
16350Effect of qualify_single and search_parents
16351~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16352When a domain from an envelope recipient is changed by the resolver as a result
16353of the %qualify_single% or %search_parents% options, Exim rewrites the
16354corresponding address in the message's header lines unless %rewrite_headers%
16355is set false. Exim then re-routes the address, using the full domain.
16356
16357These two options affect only the DNS lookup that takes place inside the router
16358for the domain of the address that is being routed. They do not affect lookups
16359such as that implied by
16360
16361 domains = @mx_any
16362
16363that may happen while processing a router precondition before the router is
16364entered. No widening ever takes place for these lookups.
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374////////////////////////////////////////////////////////////////////////////
16375////////////////////////////////////////////////////////////////////////////
16376
16377The ipliteral router
16378--------------------
16379cindex:[^ipliteral^ router]
16380cindex:[domain literal,routing]
16381cindex:[routers,^ipliteral^]
16382This router has no private options. Unless it is being used purely for
16383verification (see %verify_only%) a transport is required to be defined by the
16384generic %transport% option. The router accepts the address if its domain part
16385takes the form of an RFC 2822 domain literal, that is, an IP address enclosed
16386in square brackets. For example, this router handles the address
16387
16388 root@[192.168.1.1]
16389
16390by setting up delivery to the host with that IP address.
16391
16392cindex:[%self% option,in ^ipliteral^ router]
16393If the IP address matches something in %ignore_target_hosts%, the router
16394declines. If an IP literal turns out to refer to the local host, the generic
16395%self% option determines what happens.
16396
16397The RFCs require support for domain literals; however, their use is
16398controversial in today's Internet. If you want to use this router, you must
16399also set the main configuration option %allow_domain_literals%. Otherwise,
16400Exim will not recognize the domain literal syntax in addresses.
16401
16402
16403
16404////////////////////////////////////////////////////////////////////////////
16405////////////////////////////////////////////////////////////////////////////
16406
16407The iplookup router
16408-------------------
16409cindex:[^iplookup^ router]
16410cindex:[routers,^iplookup^]
16411The ^iplookup^ router was written to fulfil a specific requirement in
16412Cambridge University (which in fact no longer exists). For this reason, it is
16413not included in the binary of Exim by default. If you want to include it, you
16414must set
16415
16416 ROUTER_IPLOOKUP=yes
16417
16418in your _Local/Makefile_ configuration file.
16419
16420The ^iplookup^ router routes an address by sending it over a TCP or UDP
16421connection to one or more specific hosts. The host can then return the same or
16422a different address -- in effect rewriting the recipient address in the
16423message's envelope. The new address is then passed on to subsequent routers. If
16424this process fails, the address can be passed on to other routers, or delivery
16425can be deferred.
16426
16427Background, for those that are interested: We have an Oracle database of all
16428Cambridge users, and one of the items of data it maintains for each user is
16429where to send mail addressed to 'user@cam.ac.uk'. The MX records for
16430'cam.ac.uk' point to a central machine that has a large alias list that is
16431abstracted from the database. Mail from outside is switched by this system, and
16432originally internal mail was also done this way. However, this resulted in a
16433fair number of messages travelling from some of our larger systems to the
16434switch and back again. The Oracle machine now runs a UDP service that can be
16435called by the ^iplookup^ router in Exim to find out where 'user@cam.ac.uk'
16436addresses really have to go; this saves passing through the central switch, and
16437in many cases saves doing any remote delivery at all.
16438
16439Since ^iplookup^ is just a rewriting router, a transport must not be
16440specified for it.
16441cindex:[options,^iplookup^ router]
16442
16443
16444oindex:[%hosts%]
16445`..'=
16446%hosts%, Use: 'iplookup', Type: 'string', Default: 'unset'
16447===
16448
16449This option must be supplied. Its value is a colon-separated list of host
16450names. The hosts are looked up using 'gethostbyname()'
16451(or 'getipnodebyname()' when available)
16452and are tried in order until one responds to the query. If none respond, what
16453happens is controlled by %optional%.
16454
16455
16456oindex:[%optional%]
16457`..'=
16458%optional%, Use: 'iplookup', Type: 'boolean', Default: 'false'
16459===
16460
16461If %optional% is true, if no response is obtained from any host, the address is
16462passed to the next router, overriding %no_more%. If %optional% is false,
16463delivery to the address is deferred.
16464
16465
16466oindex:[%port%]
16467`..'=
16468%port%, Use: 'iplookup', Type: 'integer', Default: '0'
16469===
16470
16471cindex:[port,^iplookup^ router]
16472This option must be supplied. It specifies the port number for the TCP or UDP
16473call.
16474
16475
16476oindex:[%protocol%]
16477`..'=
16478%protocol%, Use: 'iplookup', Type: 'string', Default: 'udp'
16479===
16480
16481This option can be set to ``udp'' or ``tcp'' to specify which of the two protocols
16482is to be used.
16483
16484
16485oindex:[%query%]
16486`..'=
16487%query%, Use: 'iplookup', Type: 'string'!!, Default: `\$local_part@\$domain \$local_part@\$domain`
16488===
16489
16490This defines the content of the query that is sent to the remote hosts. The
16491repetition serves as a way of checking that a response is to the correct query
16492in the default case (see %response_pattern% below).
16493
16494
16495oindex:[%reroute%]
16496`..'=
16497%reroute%, Use: 'iplookup', Type: 'string'!!, Default: 'unset'
16498===
16499
16500If this option is not set, the rerouted address is precisely the byte string
16501returned by the remote host, up to the first white space, if any. If set, the
16502string is expanded to form the rerouted address. It can include parts matched
16503in the response by %response_pattern% by means of numeric variables such as
16504$1$, $2$, etc. The variable $0$ refers to the entire input string,
16505whether or not a pattern is in use. In all cases, the rerouted address must end
16506up in the form 'local_part@domain'.
16507
16508
16509oindex:[%response_pattern%]
16510`..'=
16511%response_pattern%, Use: 'iplookup', Type: 'string', Default: 'unset'
16512===
16513
16514This option can be set to a regular expression that is applied to the string
16515returned from the remote host. If the pattern does not match the response, the
16516router declines. If %response_pattern% is not set, no checking of the response
16517is done, unless the query was defaulted, in which case there is a check that
16518the text returned after the first white space is the original address. This
16519checks that the answer that has been received is in response to the correct
16520question. For example, if the response is just a new domain, the following
16521could be used:
16522
16523 response_pattern = ^([^@]+)$
16524 reroute = $local_part@$1
16525
16526
16527
16528oindex:[%timeout%]
16529`..'=
16530%timeout%, Use: 'iplookup', Type: 'time', Default: '5s'
16531===
16532
16533This specifies the amount of time to wait for a response from the remote
16534machine. The same timeout is used for the 'connect()' function for a TCP
16535call. It does not apply to UDP.
16536
16537
16538
16539
16540////////////////////////////////////////////////////////////////////////////
16541////////////////////////////////////////////////////////////////////////////
16542
16543The manualroute router
16544----------------------
16545cindex:[^manualroute^ router]
16546cindex:[routers,^manualroute^]
16547cindex:[domain,manually routing]
16548The ^manualroute^ router is so-called because it provides a way of manually
16549routing an address according to its domain. It is mainly used when you want to
16550route addresses to remote hosts according to your own rules, bypassing the
16551normal DNS routing that looks up MX records. However, ^manualroute^ can also
16552route to local transports, a facility that may be useful if you want to save
16553messages for dial-in hosts in local files.
16554
16555The ^manualroute^ router compares a list of domain patterns with the domain it
16556is trying to route. If there is no match, the router declines. Each pattern has
16557associated with it a list of hosts and some other optional data, which may
16558include a transport. The combination of a pattern and its data is called a
16559``routing rule''. For patterns that do not have an associated transport, the
16560generic %transport% option must specify a transport, unless the router is being
16561used purely for verification (see %verify_only%).
16562
16563In the case of verification, matching the domain pattern is sufficient for the
16564router to accept the address. When actually routing an address for delivery,
16565an address that matches a domain pattern is queued for the associated
16566transport. If the transport is not a local one, a host list must be associated
16567with the pattern; IP addresses are looked up for the hosts, and these are
16568passed to the transport along with the mail address. For local transports, a
16569host list is optional. If it is present, it is passed in $host$ as a single
16570text string.
16571
16572The list of routing rules can be provided as an inline string in %route_list%,
16573or the data can be obtained by looking up the domain in a file or database by
16574setting %route_data%. Only one of these settings may appear in any one
16575instance of ^manualroute^. The format of routing rules is described below,
16576following the list of private options.
16577
16578
16579[[SECTprioptman]]
16580Private options for manualroute
16581~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16582
16583cindex:[options,^manualroute^ router]
16584The private options for the ^manualroute^ router are as follows:
16585
16586
16587oindex:[%host_find_failed%]
16588`..'=
16589%host_find_failed%, Use: 'manualroute', Type: 'string', Default: 'freeze'
16590===
16591
16592This option controls what happens when ^manualroute^ tries to find an IP
16593address for a host, and the host does not exist. The option can be set to one
16594of
16595
16596 decline
16597 defer
16598 fail
16599 freeze
16600 pass
16601
16602The default assumes that this state is a serious configuration error. The
16603difference between ``pass'' and ``decline'' is that the former forces the address
16604to be passed to the next router (or the router defined by %pass_router%),
16605cindex:[%more% option]
16606overriding %no_more%, whereas the latter passes the address to the next router
16607only if %more% is true.
16608
16609This option applies only to a definite ``does not exist'' state; if a host lookup
16610gets a temporary error, delivery is deferred unless the generic
16611%pass_on_timeout% option is set.
16612
16613
16614oindex:[%hosts_randomize%]
16615`..'=
16616%hosts_randomize%, Use: 'manualroute', Type: 'boolean', Default: 'false'
16617===
16618
16619cindex:[randomized host list]
16620cindex:[host,list of; randomized]
16621If this option is set, the order of the items in a host list in a routing rule
16622is randomized each time the list is used, unless an option in the routing rule
16623overrides (see below). Randomizing the order of a host list can be used to do
16624crude load sharing. However, if more than one mail address is routed by the
16625same router to the same host list, the host lists are considered to be the same
16626(even though they may be randomized into different orders) for the purpose of
16627deciding whether to batch the deliveries into a single SMTP transaction.
16628
16629When %hosts_randomize% is true, a host list may be split
16630into groups whose order is separately randomized. This makes it possible to
16631set up MX-like behaviour. The boundaries between groups are indicated by an
16632item that is just `+` in the host list. For example:
16633
16634 route_list = * host1:host2:host3:+:host4:host5
16635
16636The order of the first three hosts and the order of the last two hosts is
16637randomized for each use, but the first three always end up before the last two.
16638If %hosts_randomize% is not set, a `+` item in the list is ignored. If a
16639randomized host list is passed to an ^smtp^ transport that also has
16640%hosts_randomize set%, the list is not re-randomized.
16641
16642
16643oindex:[%route_data%]
16644`..'=
16645%route_data%, Use: 'manualroute', Type: 'string'!!, Default: 'unset'
16646===
16647
16648If this option is set, it must expand to yield the data part of a routing rule.
16649Typically, the expansion string includes a lookup based on the domain. For
16650example:
16651
16652 route_data = ${lookup{$domain}dbm{/etc/routes}}
16653
16654If the expansion is forced to fail, or the result is an empty string, the
16655router declines. Other kinds of expansion failure cause delivery to be
16656deferred.
16657
16658
16659oindex:[%route_list%]
16660`..'=
16661%route_list%, Use: 'manualroute', "Type: 'string list, semicolon-separated'", Default: 'unset'
16662===
16663
16664This string is a list of routing rules, in the form defined below. Note that,
16665unlike most string lists, the items are separated by semicolons. This is so
16666that they may contain colon-separated host lists.
16667
16668
16669oindex:[%same_domain_copy_routing%]
16670`..'=
16671%same_domain_copy_routing%, Use: 'manualroute', Type: 'boolean', Default: 'false'
16672===
16673
16674cindex:[address,copying routing]
16675Addresses with the same domain are normally routed by the ^manualroute^ router
16676to the same list of hosts. However, this cannot be presumed, because the router
16677options and preconditions may refer to the local part of the address. By
16678default, therefore, Exim routes each address in a message independently. DNS
16679servers run caches, so repeated DNS lookups are not normally expensive, and in
16680any case, personal messages rarely have more than a few recipients.
16681
16682If you are running mailing lists with large numbers of subscribers at the same
16683domain, and you are using a ^manualroute^ router which is independent of the
16684local part, you can set %same_domain_copy_routing% to bypass repeated DNS
16685lookups for identical domains in one message. In this case, when ^manualroute^
16686routes an address to a remote transport, any other unrouted addresses in the
16687message that have the same domain are automatically given the same routing
16688without processing them independently. However, this is only done if
16689%headers_add% and %headers_remove% are unset.
16690
16691
16692
16693
16694Routing rules in route_list
16695~~~~~~~~~~~~~~~~~~~~~~~~~~~
16696The value of %route_list% is a string consisting of a sequence of routing
16697rules, separated by semicolons. If a semicolon is needed in a rule, it can be
16698entered as two semicolons. Empty rules are ignored. The format of each rule is
16699
16700 <domain pattern> <list of hosts> <options>
16701
16702The following example contains two rules, each with a simple domain pattern and
16703no options:
16704
16705....
16706route_list = \
16707 dict.ref.example mail-1.ref.example:mail-2.ref.example ; \
16708 thes.ref.example mail-3.ref.example:mail-4.ref.example
16709....
16710
16711The three parts of a rule are separated by white space. The pattern and the
16712list of hosts can be enclosed in quotes if necessary, and if they are, the
16713usual quoting rules apply. Each rule in a %route_list% must start with a
16714single domain pattern, which is the only mandatory item in the rule. The
16715pattern is in the same format as one item in a domain list (see section
16716<<SECTdomainlist>>),
16717except that it may not be the name of an interpolated file.
16718That is, it may be wildcarded, or a regular expression, or a file or database
16719lookup (with semicolons doubled, because of the use of semicolon as a separator
16720in a %route_list%).
16721
16722The rules in %route_list% are searched in order until one of the patterns
16723matches the domain that is being routed. The list of hosts and then options are
16724then used as described below. If there is no match, the router declines. When
16725%route_list% is set, %route_data% must not be set.
16726
16727
16728
16729Routing rules in route_data
16730~~~~~~~~~~~~~~~~~~~~~~~~~~~
16731The use of %route_list% is convenient when there are only a small number of
16732routing rules. For larger numbers, it is easier to use a file or database to
16733hold the routing information, and use the %route_data% option instead.
16734The value of %route_data% is a list of hosts, followed by (optional) options.
16735Most commonly, %route_data% is set as a string that contains an
16736expansion lookup. For example, suppose we place two routing rules in a file
16737like this:
16738
16739 dict.ref.example: mail-1.ref.example:mail-2.ref.example
16740 thes.ref.example: mail-3.ref.example:mail-4.ref.example
16741
16742This data can be accessed by setting
16743
16744 route_data = ${lookup{$domain}lsearch{/the/file/name}}
16745
16746Failure of the lookup results in an empty string, causing the router to
16747decline. However, you do not have to use a lookup in %route_data%. The only
16748requirement is that the result of expanding the string is a list of hosts,
16749possibly followed by options, separated by white space. The list of hosts must
16750be enclosed in quotes if it contains white space.
16751
16752
16753
16754
16755Format of the list of hosts
16756~~~~~~~~~~~~~~~~~~~~~~~~~~~
16757A list of hosts, whether obtained via %route_data% or %route_list%, is always
16758separately expanded before use. If the expansion fails, the router declines.
16759The result of the expansion must be a colon-separated list of names and/or
16760IP addresses. IP addresses are not enclosed in brackets.
16761
16762If the list of hosts was obtained from a %route_list% item, the following
16763variables are set during its expansion:
16764
16765- cindex:[numerical variables ($1$ $2$ etc),in ^manualroute^ router]
16766If the domain was matched against a regular expression, the numeric variables
16767$1$, $2$, etc. may be set.
16768
16769- $0$ is always set to the entire domain.
16770
16771- $1$ is also set when partial matching is done in a file lookup.
16772
16773- cindex:[$value$]
16774If the pattern that matched the domain was a lookup item, the data that was
16775looked up is available in the expansion variable $value$.
16776
16777
16778
16779
16780How the list of hosts is used
16781~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16782When an address is routed to an ^smtp^ transport by ^manualroute^, each of
16783the hosts is tried, in the order specified, when carrying out the SMTP
16784delivery. However, the order can be changed by setting the %hosts_randomize%
16785option, either on the router (see section <<SECTprioptman>> above), or on the
16786transport.
16787
16788Hosts may be listed by name or by IP address. An unadorned name in the list of
16789hosts is interpreted as a host name. A name that is followed by `/MX` is
16790interpreted as an indirection to a sublist of hosts obtained by looking up MX
16791records in the DNS. For example:
16792
16793 route_list = * x.y.z:p.q.r/MX:e.f.g
16794
16795If the %hosts_randomize% option is set, the order of the items in the list is
16796randomized before any lookups are done. Exim then scans the list; for any name
16797that is not followed by `/MX` it looks up an IP address. If this turns out to
16798be an interface on the local host and the item is not the first in the list,
16799Exim discards it and any subsequent items. If it is the first item, what
16800happens is controlled by the
16801cindex:[%self% option,in ^manualroute^ router]
16802%self% option of the router.
16803
16804A name on the list that is followed by `/MX` is replaced with the list of
16805hosts obtained by looking up MX records for the name. This is always a DNS
16806lookup; the %bydns% and %byname% options (see section <<SECThowoptused>> below)
16807are not relevant here. The order of these hosts is determined by the preference
16808values in the MX records, according to the usual rules. Because randomizing
16809happens before the MX lookup, it does not affect the order that is defined by
16810MX preferences.
16811
16812If the local host is present in the sublist obtained from MX records, but is
16813not the most preferred host in that list, it and any equally or less
16814preferred hosts are removed before the sublist is inserted into the main list.
16815
16816If the local host is the most preferred host in the MX list, what happens
16817depends on where in the original list of hosts the `/MX` item appears. If it
16818is not the first item (that is, there are previous hosts in the main list),
16819Exim discards this name and any subsequent items in the main list.
16820
16821If the MX item is first in the list of hosts, and the local host is the
16822most preferred host, what happens is controlled by the %self% option of the
16823router.
16824
16825DNS failures when lookup up the MX records are treated in the same way as DNS
16826failures when looking up IP addresses: %pass_on_timeout% and
16827%host_find_failed% are used when relevant.
16828
16829The generic %ignore_target_hosts% option applies to all hosts in the list,
16830whether obtained from an MX lookup or not.
16831
16832
16833
16834[[SECThowoptused]]
16835How the options are used
16836~~~~~~~~~~~~~~~~~~~~~~~~
16837The options are a sequence of words; in practice no more than three are ever
16838present. One of the words can be the name of a transport; this overrides the
16839%transport% option on the router for this particular routing rule only. The
16840other words (if present) control randomization of the list of hosts on a
16841per-rule basis, and how the IP addresses of the hosts are to be found when
16842routing to a remote transport. These options are as follows:
16843
16844- %randomize%: randomize the order of the hosts in this list, overriding the
16845setting of %hosts_randomize% for this routing rule only.
16846
16847- %no_randomize%: do not randomize the order of the hosts in this list,
16848overriding the setting of %hosts_randomize% for this routing rule only.
16849
16850- %byname%: use 'getipnodebyname()' ('gethostbyname()' on older systems) to
16851find IP addresses. This function may ultimately cause a DNS lookup, but it may
16852also look in _/etc/hosts_ or other sources of information.
16853
16854- %bydns%: look up address records for the hosts directly in the DNS; fail if
16855no address records are found. If there is a temporary DNS error (such as a
16856timeout), delivery is deferred.
16857
16858For example:
16859
16860....
16861route_list = domain1 host1:host2:host3 randomize bydns;\
16862 domain2 host4:host5
16863....
16864
16865If neither %byname% nor %bydns% is given, Exim behaves as follows: First, a DNS
16866lookup is done. If this yields anything other than HOST_NOT_FOUND, that
16867result is used. Otherwise, Exim goes on to try a call to 'getipnodebyname()'
16868or 'gethostbyname()', and the result of the lookup is the result of that
16869call.
16870
16871*Warning*: It has been discovered that on some systems, if a DNS lookup
16872called via 'getipnodebyname()' times out, HOST_NOT_FOUND is returned
16873instead of TRY_AGAIN. That is why the default action is to try a DNS
16874lookup first. Only if that gives a definite ``no such host'' is the local
16875function called.
16876
16877
16878
16879If no IP address for a host can be found, what happens is controlled by the
16880%host_find_failed% option.
16881
16882When an address is routed to a local transport, IP addresses are not looked up.
16883The host list is passed to the transport in the $host$ variable.
16884
16885
16886
16887Manualroute examples
16888~~~~~~~~~~~~~~~~~~~~
16889In some of the examples that follow, the presence of the %remote_smtp%
16890transport, as defined in the default configuration file, is assumed:
16891
16892- cindex:[smart host,example router]
16893The ^manualroute^ router can be used to forward all external mail to a
16894'smart host'. If you have set up, in the main part of the configuration, a
16895named domain list that contains your local domains, for example,
16896
16897 domainlist local_domains = my.domain.example
16898+
16899you can arrange for all other domains to be routed to a smart host by making
16900your first router something like this:
16901+
16902 smart_route:
16903 driver = manualroute
16904 domains = !+local_domains
16905 transport = remote_smtp
16906 route_list = * smarthost.ref.example
16907+
16908This causes all non-local addresses to be sent to the single host
16909'smarthost.ref.example'. If a colon-separated list of smart hosts is given,
16910they are tried in order
16911(but you can use %hosts_randomize% to vary the order each time).
16912Another way of configuring the same thing is this:
16913+
16914 smart_route:
16915 driver = manualroute
16916 transport = remote_smtp
16917 route_list = !+local_domains smarthost.ref.example
16918+
16919There is no difference in behaviour between these two routers as they stand.
16920However, they behave differently if %no_more% is added to them. In the first
16921example, the router is skipped if the domain does not match the %domains%
16922precondition; the following router is always tried. If the router runs, it
16923always matches the domain and so can never decline. Therefore, %no_more% would
16924have no effect. In the second case, the router is never skipped; it always
16925runs. However, if it doesn't match the domain, it declines. In this case
16926%no_more% would prevent subsequent routers from running.
16927
16928- cindex:[mail hub example]
16929A 'mail hub' is a host which receives mail for a number of domains via MX
16930records in the DNS and delivers it via its own private routing mechanism. Often
16931the final destinations are behind a firewall, with the mail hub being the one
16932machine that can connect to machines both inside and outside the firewall. The
16933^manualroute^ router is usually used on a mail hub to route incoming messages
16934to the correct hosts. For a small number of domains, the routing can be inline,
16935using the %route_list% option, but for a larger number a file or database
16936lookup is easier to manage.
16937+
16938If the domain names are in fact the names of the machines to which the mail is
16939to be sent by the mail hub, the configuration can be quite simple. For
16940example,
16941
16942 hub_route:
16943 driver = manualroute
16944 transport = remote_smtp
16945 route_list = *.rhodes.tvs.example $domain
16946+
16947This configuration routes domains that match `*.rhodes.tvs.example` to hosts
16948whose names are the same as the mail domains. A similar approach can be taken
16949if the host name can be obtained from the domain name by a string manipulation
16950that the expansion facilities can handle. Otherwise, a lookup based on the
16951domain can be used to find the host:
16952
16953 through_firewall:
16954 driver = manualroute
16955 transport = remote_smtp
16956 route_data = ${lookup {$domain} cdb {/internal/host/routes}}
16957+
16958The result of the lookup must be the name or IP address of the host (or
16959hosts) to which the address is to be routed. If the lookup fails, the route
16960data is empty, causing the router to decline. The address then passes to the
16961next router.
16962
16963- cindex:[batched SMTP output example]
16964cindex:[SMTP,batched outgoing; example]
16965You can use ^manualroute^ to deliver messages to pipes or files in batched
16966SMTP format for onward transportation by some other means. This is one way of
16967storing mail for a dial-up host when it is not connected. The route list entry
16968can be as simple as a single domain name in a configuration like this:
16969
16970 save_in_file:
16971 driver = manualroute
16972 transport = batchsmtp_appendfile
16973 route_list = saved.domain.example
16974+
16975though often a pattern is used to pick up more than one domain. If there are
16976several domains or groups of domains with different transport requirements,
16977different transports can be listed in the routing information:
16978+
16979....
16980save_in_file:
16981 driver = manualroute
16982 route_list = \
16983 *.saved.domain1.example $domain batch_appendfile; \
16984 *.saved.domain2.example \
16985 ${lookup{$domain}dbm{/domain2/hosts}{$value}fail} \
16986 batch_pipe
16987....
16988+
16989The first of these just passes the domain in the $host$ variable, which
16990doesn't achieve much (since it is also in $domain$), but the second does a
16991file lookup to find a value to pass, causing the router to decline to handle
16992the address if the lookup fails.
16993
16994- cindex:[UUCP,example of router for]
16995Routing mail directly to UUCP software is a specific case of the use of
16996^manualroute^ in a gateway to another mail environment. This is an example of
16997one way it can be done:
16998+
16999....
17000# Transport
17001uucp:
17002 driver = pipe
17003 user = nobody
17004 command = /usr/local/bin/uux -r - \
17005 ${substr_-5:$host}!rmail ${local_part}
17006 return_fail_output = true
17007
17008# Router
17009uucphost:
17010 transport = uucp
17011 driver = manualroute
17012 route_data = \
17013 ${lookup{$domain}lsearch{/usr/local/exim/uucphosts}}
17014....
17015+
17016The file _/usr/local/exim/uucphosts_ contains entries like
17017
17018 darksite.ethereal.example: darksite.UUCP
17019+
17020It can be set up more simply without adding and removing ``.UUCP'' but this way
17021makes clear the distinction between the domain name
17022'darksite.ethereal.example' and the UUCP host name 'darksite'.
17023
17024
17025
17026
17027
17028
17029
17030
17031////////////////////////////////////////////////////////////////////////////
17032////////////////////////////////////////////////////////////////////////////
17033
17034[[CHAPdriverlast]]
17035The queryprogram router
17036-----------------------
17037cindex:[^queryprogram^ router]
17038cindex:[routers,^queryprogram^]
17039cindex:[routing,by external program]
17040The ^queryprogram^ router routes an address by running an external command and
17041acting on its output. This is an expensive way to route, and is intended mainly
17042for use in lightly-loaded systems, or for performing experiments. However, if
17043it is possible to use the precondition options (%domains%, %local_parts%,
17044etc) to skip this router for most addresses, it could sensibly be used in
17045special cases, even on a busy host. There are the following private options:
17046cindex:[options,^queryprogram^ router]
17047
17048oindex:[%command%]
17049`..'=
17050%command%, Use: 'queryprogram', Type: 'string'!!, Default: 'unset'
17051===
17052
17053This option must be set. It specifies the command that is to be run. The
17054command is split up into a command name and arguments, and then each is
17055expanded separately (exactly as for a ^pipe^ transport, described in chapter
17056<<CHAPpipetransport>>).
17057
17058
17059oindex:[%command_group%]
17060`..'=
17061%command_group%, Use: 'queryprogram', Type: 'string', Default: 'unset'
17062===
17063
17064cindex:[gid (group id),in ^queryprogram^ router]
17065This option specifies a gid to be set when running the command. It must be set
17066if %command_user% specifies a numerical uid. If it begins with a digit, it is
17067interpreted as the numerical value of the gid. Otherwise it is looked up using
17068'getgrnam()'.
17069
17070
17071oindex:[%command_user%]
17072`..'=
17073%command_user%, Use: 'queryprogram', Type: 'string', Default: 'unset'
17074===
17075
17076cindex:[uid (user id),for ^queryprogram^]
17077This option must be set. It specifies the uid which is set when running the
17078command. If it begins with a digit it is interpreted as the numerical value of
17079the uid. Otherwise, it is looked up using 'getpwnam()' to obtain a value for
17080the uid and, if %command_group% is not set, a value for the gid also.
17081
17082
17083oindex:[%current_directory%]
17084`..'=
17085%current_directory%, Use: 'queryprogram', Type: 'string', Default: '/'
17086===
17087
17088This option specifies an absolute path which is made the current directory
17089before running the command.
17090
17091
17092oindex:[%timeout%]
17093`..'=
17094%timeout%, Use: 'queryprogram', Type: 'time', Default: '1h'
17095===
17096
17097If the command does not complete within the timeout period, its process group
17098is killed and the message is frozen. A value of zero time specifies no
17099timeout.
17100
17101
17102The standard output of the command is connected to a pipe, which is read when
17103the command terminates. It should consist of a single line of output,
17104containing up to five fields, separated by white space. The maximum length of
17105the line is 1023 characters. Longer lines are silently truncated. The first
17106field is one of the following words (case-insensitive):
17107
17108- 'Accept': routing succeeded; the remaining fields specify what to do (see
17109below).
17110
17111- 'Decline': the router declines; pass the address to the next router, unless
17112%no_more% is set.
17113
17114- 'Fail': routing failed; do not pass the address to any more routers. Any
17115subsequent text on the line is an error message. If the router is run as part
17116of address verification during an incoming SMTP message, the message is
17117included in the SMTP response.
17118
17119- 'Defer': routing could not be completed at this time; try again later. Any
17120subsequent text on the line is an error message which is logged. It is not
17121included in any SMTP response.
17122
17123- 'Freeze': the same as 'defer', except that the message is frozen.
17124
17125- 'Pass': pass the address to the next router (or the router specified by
17126%pass_router%), overriding %no_more%.
17127
17128- 'Redirect': the message is redirected. The remainder of the line is a list of
17129new addresses, which are routed independently, starting with the first router,
17130or the router specified by %redirect_router%, if set.
17131
17132When the first word is 'accept', the remainder of the line consists of a
17133number of keyed data values, as follows (split into two lines here, to fit on
17134the page):
17135
17136 ACCEPT TRANSPORT=<transport> HOSTS=<list of hosts>
17137 LOOKUP=byname|bydns DATA=<text>
17138
17139The data items can be given in any order, and all are optional. If no transport
17140is included, the transport specified by the generic %transport% option is used.
17141The list of hosts and the lookup type are needed only if the transport is an
17142^smtp^ transport that does not itself supply a list of hosts.
17143
17144The format of the list of hosts is the same as for the ^manualroute^ router.
17145As well as host names and IP addresses, it may contain names followed by
17146`/MX` to specify sublists of hosts that are obtained by looking up MX
17147records.
17148
17149If the lookup type is not specified, Exim behaves as follows when trying to
17150find an IP address for each host: First, a DNS lookup is done. If this yields
17151anything other than HOST_NOT_FOUND, that result is used. Otherwise, Exim
17152goes on to try a call to 'getipnodebyname()' or 'gethostbyname()', and the
17153result of the lookup is the result of that call.
17154
17155If the DATA field is set, its value is placed in the $address_data$
17156variable. For example, this return line
17157
17158 accept hosts=x1.y.example:x2.y.example data="rule1"
17159
17160routes the address to the default transport, passing a list of two hosts. When
17161the transport runs, the string ``rule1'' is in $address_data$.
17162
17163
17164
17165
17166////////////////////////////////////////////////////////////////////////////
17167////////////////////////////////////////////////////////////////////////////
17168
17169[[CHAPredirect]]
17170The redirect router
17171-------------------
17172cindex:[^redirect^ router]
17173cindex:[routers,^redirect^]
17174cindex:[alias file,in a ^redirect^ router]
17175cindex:[address redirection,^redirect^ router]
17176The ^redirect^ router handles several kinds of address redirection. Its most
17177common uses are for resolving local part aliases from a central alias file
17178(usually called _/etc/aliases_) and for handling users' personal _.forward_
17179files, but it has many other potential uses. The incoming address can be
17180redirected in several different ways:
17181
17182- It can be replaced by one or more new addresses which are themselves routed
17183independently.
17184
17185- It can be routed to be delivered to a given file or directory.
17186
17187- It can be routed to be delivered to a specified pipe command.
17188
17189- It can cause an automatic reply to be generated.
17190
17191- It can be forced to fail, with a custom error message.
17192
17193- It can be temporarily deferred.
17194
17195- It can be discarded.
17196
17197The generic %transport% option must not be set for ^redirect^ routers.
17198However, there are some private options which define transports for delivery to
17199files and pipes, and for generating autoreplies. See the %file_transport%,
17200%pipe_transport% and %reply_transport% descriptions below.
17201
17202
17203
17204Redirection data
17205~~~~~~~~~~~~~~~~
17206The router operates by interpreting a text string which it obtains either by
17207expanding the contents of the %data% option, or by reading the entire contents
17208of a file whose name is given in the %file% option. These two options are
17209mutually exclusive. The first is commonly used for handling system aliases, in
17210a configuration like this:
17211
17212 system_aliases:
17213 driver = redirect
17214 data = ${lookup{$local_part}lsearch{/etc/aliases}}
17215
17216If the lookup fails, the expanded string in this example is empty. When the
17217expansion of %data% results in an empty string, the router declines. A forced
17218expansion failure also causes the router to decline; other expansion failures
17219cause delivery to be deferred.
17220
17221A configuration using %file% is commonly used for handling users' _.forward_
17222files, like this:
17223
17224 userforward:
17225 driver = redirect
17226 check_local_user
17227 file = $home/.forward
17228 no_verify
17229
17230If the file does not exist, or causes no action to be taken (for example, it is
17231empty or consists only of comments), the router declines. *Warning*: This
17232is not the case when the file contains syntactically valid items that happen to
17233yield empty addresses, for example, items containing only RFC 2822 address
17234comments.
17235
17236
17237
17238Forward files and address verification
17239~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17240cindex:[address redirection,while verifying]
17241It is usual to set %no_verify% on ^redirect^ routers which handle users'
17242_.forward_ files, as in the example above. There are two reasons for this:
17243
17244- When Exim is receiving an incoming SMTP message from a remote host, it is
17245running under the Exim uid, not as root.
17246No additional groups are set up, even if the Exim uid is a member of other
17247groups (that is, the 'initgroups()' function is not run).
17248Exim is unable to change uid to read the file as the user, and it may not be
17249able to read it as the Exim user. So in practice the router may not be able to
17250operate.
17251
17252- However, even when the router can operate, the existence of a _.forward_ file
17253is unimportant when verifying an address. What should be checked is whether the
17254local part is a valid user name or not. Cutting out the redirection processing
17255saves some resources.
17256
17257
17258
17259
17260
17261
17262Interpreting redirection data
17263~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17264cindex:[Sieve filter,specifying in redirection data]
17265cindex:[filter,specifying in redirection data]
17266The contents of the data string, whether obtained from %data% or %file%, can be
17267interpreted in two different ways:
17268
17269- If the %allow_filter% option is set true, and the data begins with the text
17270``#Exim filter'' or ``#Sieve filter'', it is interpreted as a list of
17271'filtering' instructions in the form of an Exim or Sieve filter file,
17272respectively. Details of the syntax and semantics of filter files are described
17273in a separate document entitled 'Exim's interfaces to mail filtering'; this
17274document is intended for use by end users.
17275
17276- Otherwise, the data must be a comma-separated list of redirection items, as
17277described in the next section.
17278
17279When a message is redirected to a file (a ``mail folder''), the file name given
17280in a non-filter redirection list must always be an absolute path. A filter may
17281generate a relative path -- how this is handled depends on the transport's
17282configuration. See section <<SECTfildiropt>> for a discussion of this issue for
17283the ^appendfile^ transport.
17284
17285
17286
17287[[SECTitenonfilred]]
17288Items in a non-filter redirection list
17289~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17290cindex:[address redirection,non-filter list items]
17291When the redirection data is not an Exim or Sieve filter, for example, if it
17292comes from a conventional alias or forward file, it consists of a list of
17293addresses, file names, pipe commands, or certain special items (see section
17294<<SECTspecitredli>> below). The special items can be individually enabled or
17295disabled by means of options whose names begin with %allow_% or %forbid_%,
17296depending on their default values. The items in the list are separated by
17297commas or newlines.
17298If a comma is required in an item, the entire item must be enclosed in double
17299quotes.
17300
17301Lines starting with a # character are comments, and are ignored, and # may
17302also appear following a comma, in which case everything between the # and the
17303next newline character is ignored.
17304
17305If an item is entirely enclosed in double quotes, these are removed. Otherwise
17306double quotes are retained because some forms of mail address require their use
17307(but never to enclose the entire address). In the following description, ``item''
17308refers to what remains after any surrounding double quotes have been removed.
17309
17310*Warning*: If you use an Exim expansion to construct a redirection address,
17311and the expansion contains a reference to $local_part$, you should make use
17312of the %quote% expansion operator, in case the local part contains special
17313characters. For example, to redirect all mail for the domain
17314'obsolete.example', retaining the existing local part, you could use this
17315setting:
17316
17317 data = ${quote:$local_part}@newdomain.example
17318
17319
17320
17321
17322[[SECTredlocmai]]
17323Redirecting to a local mailbox
17324~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17325cindex:[routing,loops in]
17326cindex:[loop while routing, avoidance of]
17327cindex:[address redirection,to local mailbox]
17328A redirection item may safely be the same as the address currently under
17329consideration. This does not cause a routing loop, because a router is
17330automatically skipped if any ancestor of the address that is being processed
17331is the same as the current address and was processed by the current router.
17332Such an address is therefore passed to the following routers, so it is handled
17333as if there were no redirection. When making this loop-avoidance test, the
17334complete local part, including any prefix or suffix, is used.
17335
17336cindex:[address redirection,local part without domain]
17337Specifying the same local part without a domain is a common usage in personal
17338filter files when the user wants to have messages delivered to the local
17339mailbox and also forwarded elsewhere. For example, the user whose login is
17340'cleo' might have a _.forward_ file containing this:
17341
17342 cleo, cleopatra@egypt.example
17343
17344cindex:[backslash in alias file]
17345cindex:[alias file,backslash in]
17346For compatibility with other MTAs, such unqualified local parts may be
17347preceeded by ``\'', but this is not a requirement for loop prevention. However,
17348it does make a difference if more than one domain is being handled
17349synonymously.
17350
17351If an item begins with ``\'' and the rest of the item parses as a valid RFC 2822
17352address that does not include a domain, the item is qualified using the domain
17353of the incoming address. In the absence of a leading ``\'', unqualified
17354addresses are qualified using the value in %qualify_recipient%, but you can
17355force the incoming domain to be used by setting %qualify_preserve_domain%.
17356
17357Care must be taken if there are alias names for local users.
17358Consider an MTA handling a single local domain where the system alias file
17359contains:
17360
17361 Sam.Reman: spqr
17362
17363Now suppose that Sam (whose login id is 'spqr') wants to save copies of
17364messages in the local mailbox, and also forward copies elsewhere. He creates
17365this forward file:
17366
17367 Sam.Reman, spqr@reme.elsewhere.example
17368
17369With these settings, an incoming message addressed to 'Sam.Reman' fails. The
17370^redirect^ router for system aliases does not process 'Sam.Reman' the
17371second time round, because it has previously routed it,
17372and the following routers presumably cannot handle the alias. The forward file
17373should really contain
17374
17375 spqr, spqr@reme.elsewhere.example
17376
17377but because this is such a common error, the %check_ancestor% option (see
17378below) exists to provide a way to get round it. This is normally set on a
17379^redirect^ router that is handling users' _.forward_ files.
17380
17381
17382
17383[[SECTspecitredli]]
17384Special items in redirection lists
17385~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17386In addition to addresses, the following types of item may appear in redirection
17387lists (that is, in non-filter redirection data):
17388
17389- cindex:[pipe,in redirection list]
17390cindex:[address redirection,to pipe]
17391An item is treated as a pipe command if it begins with ``|'' and does not parse
17392as a valid RFC 2822 address that includes a domain. A transport for running the
17393command must be specified by the %pipe_transport% option.
17394Normally, either the router or the transport specifies a user and a group under
17395which to run the delivery. The default is to use the Exim user and group.
17396+
17397Single or double quotes can be used for enclosing the individual arguments of
17398the pipe command; no interpretation of escapes is done for single quotes. If
17399the command contains a comma character, it is necessary to put the whole item
17400in double quotes, for example:
17401
17402 "|/some/command ready,steady,go"
17403+
17404since items in redirection lists are terminated by commas. Do not, however,
17405quote just the command. An item such as
17406
17407 |"/some/command ready,steady,go"
17408+
17409is interpreted as a pipe with a rather strange command name, and no arguments.
17410
17411- cindex:[file,in redirection list]
17412cindex:[address redirection,to file]
17413An item is interpreted as a path name if it begins with ``/'' and does not parse
17414as a valid RFC 2822 address that includes a domain. For example,
17415
17416 /home/world/minbari
17417+
17418is treated as a file name, but
17419
17420 /s=molari/o=babylon/@x400gate.way
17421+
17422is treated as an address. For a file name, a transport must be specified using
17423the %file_transport% option. However, if the generated path name ends with a
17424forward slash character, it is interpreted as a directory name rather than a
17425file name, and %directory_transport% is used instead.
17426+
17427Normally, either the router or the transport specifies a user and a group under
17428which to run the delivery. The default is to use the Exim user and group.
17429+
17430cindex:[_/dev/null_]
17431However, if a redirection item is the path _/dev/null_, delivery to it is
17432bypassed at a high level, and the log entry shows ``\*\*bypassed\*\*''
17433instead of a transport name. In this case the user and group are not used.
17434
17435- cindex:[included address list]
17436cindex:[address redirection,included external list]
17437If an item is of the form
17438
17439 :include:<path name>
17440+
17441a list of further items is taken from the given file and included at that
17442point. *Note*: such a file can not be a filter file; it is just an out-of-line
17443addition to the list. The items in the included list are separated by commas or
17444newlines and are not subject to expansion. If this is the first item in an
17445alias list in an ^lsearch^ file, a colon must be used to terminate the alias
17446name. This example is incorrect:
17447
17448 list1 :include:/opt/lists/list1
17449+
17450It must be given as
17451
17452 list1: :include:/opt/lists/list1
17453+
17454- cindex:[address redirection,to black hole]
17455Sometimes you want to throw away mail to a particular local part. Making the
17456%data% option expand to an empty string does not work, because that causes the
17457router to decline. Instead, the alias item
17458cindex:[black hole]
17459cindex:[abandoning mail]
17460
17461 :blackhole:
17462+
17463can be used. It does what its name implies. No delivery is done, and no error
17464message is generated. This has the same effect as specifing _/dev/null_, but
17465can be independently disabled.
17466+
17467*Warning*: If `:blackhole:` appears anywhere in a redirection list, no
17468delivery is done for the original local part, even if other redirection items
17469are present. If you are generating a multi-item list (for example, by reading a
17470database) and need the ability to provide a no-op item, you must use
17471_/dev/null_.
17472
17473- cindex:[delivery,forcing failure]
17474cindex:[delivery,forcing deferral]
17475cindex:[failing delivery,forcing]
17476cindex:[deferred delivery, forcing]
17477cindex:[customizing,failure message]
17478An attempt to deliver a particular address can be deferred or forced to fail by
17479redirection items of the form
17480
17481 :defer:
17482 :fail:
17483+
17484respectively. When a redirection list contains such an item, it applies to the
17485entire redirection; any other items in the list are ignored (':blackhole:' is
17486different). Any text following ':fail:' or ':defer:' is placed in the error
17487text associated with the failure. For example, an alias file might contain:
17488
17489 X.Employee: :fail: Gone away, no forwarding address
17490+
17491In the case of an address that is being verified from an ACL or as the subject
17492of a
17493cindex:[VRFY error text, display of]
17494VRFY command, the text is included in the SMTP error response by
17495default.
17496cindex:[EXPN error text, display of]
17497The text is not included in the response to an EXPN command.
17498+
17499In an ACL, an explicitly provided message overrides the default, but the
17500default message is available in the variable $acl_verify_message$ and can
17501therefore be included in a custom message if this is desired. Exim sends a 451
17502SMTP code for a ':defer:', and 550 for ':fail:'. In non-SMTP cases the text
17503is included in the error message that Exim generates.
17504+
17505Normally the error text is the rest of the redirection list -- a comma does not
17506terminate it -- but a newline does act as a terminator. Newlines are not
17507normally present in alias expansions. In ^lsearch^ lookups they are removed as
17508part of the continuation process, but they may exist in other kinds of lookup
17509and in ':include:' files.
17510+
17511During routing for message delivery (as opposed to verification), a redirection
17512containing ':fail:' causes an immediate failure of the incoming address,
17513whereas ':defer:' causes the message to remain on the queue so that a
17514subsequent delivery attempt can happen at a later time. If an address is
17515deferred for too long, it will ultimately fail, because the normal retry
17516rules still apply.
17517
17518- cindex:[alias file,exception to default]
17519Sometimes it is useful to use a single-key search type with a default (see
17520chapter <<CHAPfdlookup>>) to look up aliases. However, there may be a need for
17521exceptions to the default. These can be handled by aliasing them to
17522
17523 :unknown:
17524+
17525This differs from ':fail:' in that it causes the ^redirect^ router to decline,
17526whereas ':fail:' forces routing to fail. A lookup which results in an empty
17527redirection list has the same effect.
17528
17529
17530
17531Duplicate addresses
17532~~~~~~~~~~~~~~~~~~~
17533cindex:[duplicate addresses]
17534cindex:[address duplicate, discarding]
17535cindex:[pipe,duplicated]
17536Exim removes duplicate addresses from the list to which it is delivering, so as
17537to deliver just one copy to each address. This does not apply to deliveries
17538routed to pipes by different immediate parent addresses, but an indirect
17539aliasing scheme of the type
17540
17541 pipe: |/some/command $local_part
17542 localpart1: pipe
17543 localpart2: pipe
17544
17545does not work with a message that is addressed to both local parts, because
17546when the second is aliased to the intermediate local part ``pipe'' it gets
17547discarded as being the same as a previously handled address. However, a scheme
17548such as
17549
17550 localpart1: |/some/command $local_part
17551 localpart2: |/some/command $local_part
17552
17553does result in two different pipe deliveries, because the immediate parents of
17554the pipes are distinct.
17555
17556
17557
17558Repeated redirection expansion
17559~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17560cindex:[repeated redirection expansion]
17561cindex:[address redirection,repeated for each delivery attempt]
17562When a message cannot be delivered to all of its recipients immediately,
17563leading to two or more delivery attempts, redirection expansion is carried out
17564afresh each time for those addresses whose children were not all previously
17565delivered. If redirection is being used as a mailing list, this can lead to new
17566members of the list receiving copies of old messages. The %one_time% option
17567can be used to avoid this.
17568
17569
17570Errors in redirection lists
17571~~~~~~~~~~~~~~~~~~~~~~~~~~~
17572cindex:[address redirection,errors]
17573If %skip_syntax_errors% is set, a malformed address that causes a parsing
17574error is skipped, and an entry is written to the main log. This may be useful
17575for mailing lists that are automatically managed. Otherwise, if an error is
17576detected while generating the list of new addresses, the original address is
17577deferred. See also %syntax_errors_to%.
17578
17579
17580
17581Private options for the redirect router
17582~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17583
17584cindex:[options,^redirect^ router]
17585The private options for the ^redirect^ router are as follows:
17586
17587
17588oindex:[%allow_defer%]
17589`..'=
17590%allow_defer%, Use: 'redirect', Type: 'boolean', Default: 'false'
17591===
17592
17593Setting this option allows the use of ':defer:' in non-filter redirection
17594data,
17595or the %defer% command in an Exim filter file.
17596
17597
17598oindex:[%allow_fail%]
17599`..'=
17600%allow_fail%, Use: 'redirect', Type: 'boolean', Default: 'false'
17601===
17602
17603cindex:[failing delivery,from filter]
17604If this option is true, the ':fail:' item can be used in a redirection list,
17605and the %fail% command may be used in a filter file.
17606
17607
17608oindex:[%allow_filter%]
17609`..'=
17610%allow_filter%, Use: 'redirect', Type: 'boolean', Default: 'false'
17611===
17612
17613cindex:[filter,enabling use of]
17614cindex:[Sieve filter,enabling use of]
17615Setting this option allows Exim to interpret redirection data that starts with
17616``#Exim filter'' or ``#Sieve filter'' as a set of filtering instructions. There
17617are some features of Exim filter files that some administrators may wish to
17618lock out; see the %forbid_filter_xxx% options below.
17619
17620It is also possible to lock out Exim filters or Sieve filters while allowing
17621the other type; see %forbid_exim_filter% and %forbid_sieve_filter%.
17622
17623
17624The filter is run using the uid and gid set by the generic %user% and %group%
17625options. These take their defaults from the password data if
17626%check_local_user% is set, so in the normal case of users' personal filter
17627files, the filter is run as the relevant user. When %allow_filter% is set
17628true, Exim insists that either %check_local_user% or %user% is set.
17629
17630
17631
17632oindex:[%allow_freeze%]
17633`..'=
17634%allow_freeze%, Use: 'redirect', Type: 'boolean', Default: 'false'
17635===
17636
17637cindex:[freezing messages,allowing in filter]
17638Setting this option allows the use of the %freeze% command in an Exim filter.
17639This command is more normally encountered in system filters, and is disabled by
17640default for redirection filters because it isn't something you usually want to
17641let ordinary users do.
17642
17643
17644
17645oindex:[%check_ancestor%]
17646`..'=
17647%check_ancestor%, Use: 'redirect', Type: 'boolean', Default: 'false'
17648===
17649
17650This option is concerned with handling generated addresses that are the same
17651as some address in the list of redirection ancestors of the current address.
17652Although it is turned off by default in the code, it is set in the default
17653configuration file for handling users' _.forward_ files. It is recommended
17654for this use of the ^redirect^ router.
17655
17656When %check_ancestor% is set, if a generated address (including the domain) is
17657the same as any ancestor of the current address, it is replaced by a copy of
17658the current address. This helps in the case where local part A is aliased to B,
17659and B has a _.forward_ file pointing back to A. For example, within a single
17660domain, the local part ``Joe.Bloggs'' is aliased to ``jb'' and _~jb/.forward_
17661contains:
17662
17663 \Joe.Bloggs, <other item(s)>
17664
17665Without the %check_ancestor% setting, either local part (``jb'' or ``joe.bloggs'')
17666gets processed once by each router and so ends up as it was originally. If ``jb''
17667is the real mailbox name, mail to ``jb'' gets delivered (having been turned into
17668``joe.bloggs'' by the _.forward_ file and back to ``jb'' by the alias), but mail
17669to ``joe.bloggs'' fails. Setting %check_ancestor% on the ^redirect^ router that
17670handles the _.forward_ file prevents it from turning ``jb'' back into
17671``joe.bloggs'' when that was the original address. See also the %repeat_use%
17672option below.
17673
17674
17675oindex:[%check_group%]
17676`..'=
17677%check_group%, Use: 'redirect', Type: 'boolean', Default: 'see below'
17678===
17679
17680When the %file% option is used, the group owner of the file is checked only
17681when this option is set. The permitted groups are those listed in the
17682%owngroups% option, together with the user's default group if
17683%check_local_user% is set. If the file has the wrong group, routing is
17684deferred. The default setting for this option is true if %check_local_user%
17685is set and the %modemask% option permits the group write bit, or if the
17686%owngroups% option is set. Otherwise it is false, and no group check occurs.
17687
17688
17689
17690oindex:[%check_owner%]
17691`..'=
17692%check_owner%, Use: 'redirect', Type: 'boolean', Default: 'see below'
17693===
17694
17695When the %file% option is used, the owner of the file is checked only when this
17696option is set. If %check_local_user% is set, the local user is permitted;
17697otherwise the owner must be one of those listed in the %owners% option. The
17698default value for this option is true if %check_local_user% or %owners% is
17699set. Otherwise the default is false, and no owner check occurs.
17700
17701
17702oindex:[%data%]
17703`..'=
17704%data%, Use: 'redirect', Type: 'string'!!, Default: 'unset'
17705===
17706
17707This option is mutually exclusive with %file%. One or other of them must be
17708set, but not both. The contents of %data% are expanded, and then used as the
17709list of forwarding items, or as a set of filtering instructions. If the
17710expansion is forced to fail, or the result is an empty string or a string that
17711has no effect (consists entirely of comments), the router declines.
17712
17713When filtering instructions are used, the string must begin with ``#Exim
17714filter'', and all comments in the string, including this initial one, must be
17715terminated with newline characters. For example:
17716
17717....
17718data = #Exim filter\n\
17719 if $h_to: contains Exim then save $home/mail/exim endif
17720....
17721
17722If you are reading the data from a database where newlines cannot be included,
17723you can use the $\{sg\}$ expansion item to turn the escape string of your
17724choice into a newline.
17725
17726
17727oindex:[%directory_transport%]
17728`..'=
17729%directory_transport%, Use: 'redirect', Type: 'string'!!, Default: 'unset'
17730===
17731
17732A ^redirect^ router sets up a direct delivery to a directory when a path name
17733ending with a slash is specified as a new ``address''. The transport used is
17734specified by this option, which, after expansion, must be the name of a
17735configured transport. This should normally be an ^appendfile^ transport.
17736
17737
17738oindex:[%file%]
17739`..'=
17740%file%, Use: 'redirect', Type: 'string'!!, Default: 'unset'
17741===
17742
17743This option specifies the name of a file that contains the redirection data. It
17744is mutually exclusive with the %data% option. The string is expanded before
17745use; if the expansion is forced to fail, the router declines. Other expansion
17746failures cause delivery to be deferred. The result of a successful expansion
17747must be an absolute path. The entire file is read and used as the redirection
17748data. If the data is an empty string or a string that has no effect (consists
17749entirely of comments), the router declines.
17750
17751cindex:[NFS,checking for file existence]
17752If the attempt to open the file fails with a ``does not exist'' error, Exim
17753runs a check on the containing directory,
17754unless %ignore_enotdir% is true (see below).
17755If the directory does not appear to exist, delivery is deferred. This can
17756happen when users' _.forward_ files are in NFS-mounted directories, and there
17757is a mount problem. If the containing directory does exist, but the file does
17758not, the router declines.
17759
17760
17761oindex:[%file_transport%]
17762`..'=
17763%file_transport%, Use: 'redirect', Type: 'string'!!, Default: 'unset'
17764===
17765
17766A ^redirect^ router sets up a direct delivery to a file when a path name not
17767ending in a slash is specified as a new ``address''. The transport used is
17768specified by this option, which, after expansion, must be the name of a
17769configured transport.
17770This should normally be an ^appendfile^ transport.
17771When it is running, the file name is in $address_file$.
17772
17773
17774oindex:[%forbid_blackhole%]
17775`..'=
17776%forbid_blackhole%, Use: 'redirect', Type: 'boolean', Default: 'false'
17777===
17778
17779If this option is true, the ':blackhole:' item may not appear in a redirection
17780list.
17781
17782
17783oindex:[%forbid_exim_filter%]
17784`..'=
17785%forbid_exim_filter%, Use: 'redirect', Type: 'boolean', Default: 'false'
17786===
17787
17788If this option is set true, only Sieve filters are permitted when
17789%allow_filter% is true.
17790
17791
17792
17793
17794oindex:[%forbid_file%]
17795`..'=
17796%forbid_file%, Use: 'redirect', Type: 'boolean', Default: 'false'
17797===
17798
17799cindex:[delivery,to file; forbidding]
17800cindex:[Sieve filter,forbidding delivery to a file]
17801cindex:[Sieve filter,``keep'' facility; disabling]
17802If this option is true, this router may not generate a new address that
17803specifies delivery to a local file or directory, either from a filter or from a
17804conventional forward file. This option is forced to be true if %one_time% is
17805set. It applies to Sieve filters as well as to Exim filters, but if true, it
17806locks out the Sieve's ``keep'' facility.
17807
17808
17809oindex:[%forbid_filter_existstest%]
17810`..'=
17811%forbid_filter_existstest%, Use: 'redirect', Type: 'boolean', Default: 'false'
17812===
17813
17814cindex:[filter,locking out certain features]
17815If this option is true, string expansions in Exim filters are not allowed to
17816make use of the %exists% condition.
17817
17818
17819oindex:[%forbid_filter_logwrite%]
17820`..'=
17821%forbid_filter_logwrite%, Use: 'redirect', Type: 'boolean', Default: 'false'
17822===
17823
17824If this option is true, use of the logging facility in Exim filters is not
17825permitted. Logging is in any case available only if the filter is being run
17826under some unprivileged uid (which is normally the case for ordinary users'
17827_.forward_ files).
17828
17829
17830oindex:[%forbid_filter_lookup%]
17831`..'=
17832%forbid_filter_lookup%, Use: 'redirect', Type: 'boolean', Default: 'false'
17833===
17834
17835If this option is true, string expansions in Exim filter files are not allowed
17836to make use of %lookup% items.
17837
17838
17839oindex:[%forbid_filter_perl%]
17840`..'=
17841%forbid_filter_perl%, Use: 'redirect', Type: 'boolean', Default: 'false'
17842===
17843
17844This option is available only if Exim is built with embedded Perl support. If
17845it is true, string expansions in Exim filter files are not allowed to make use
17846of the embedded Perl support.
17847
17848
17849oindex:[%forbid_filter_readfile%]
17850`..'=
17851%forbid_filter_readfile%, Use: 'redirect', Type: 'boolean', Default: 'false'
17852===
17853
17854If this option is true, string expansions in Exim filter files are not allowed
17855to make use of %readfile% items.
17856
17857
17858oindex:[%forbid_filter_readsocket%]
17859`..'=
17860%forbid_filter_readsocket%, Use: 'redirect', Type: 'boolean', Default: 'false'
17861===
17862
17863If this option is true, string expansions in Exim filter files are not allowed
17864to make use of %readsocket% items.
17865
17866
17867oindex:[%forbid_filter_reply%]
17868`..'=
17869%forbid_filter_reply%, Use: 'redirect', Type: 'boolean', Default: 'false'
17870===
17871
17872If this option is true, this router may not generate an automatic reply
17873message. Automatic replies can be generated only from Exim
17874
17875or Sieve filter files, not from traditional forward files.
17876
17877This option is forced to be true if %one_time% is set.
17878
17879
17880oindex:[%forbid_filter_run%]
17881`..'=
17882%forbid_filter_run%, Use: 'redirect', Type: 'boolean', Default: 'false'
17883===
17884
17885If this option is true, string expansions in Exim filter files are not allowed
17886to make use of %run% items.
17887
17888
17889oindex:[%forbid_include%]
17890`..'=
17891%forbid_include%, Use: 'redirect', Type: 'boolean', Default: 'false'
17892===
17893
17894If this option is true, items of the form
17895
17896 :include:<path name>
17897
17898are not permitted in non-filter redirection lists.
17899
17900
17901oindex:[%forbid_pipe%]
17902`..'=
17903%forbid_pipe%, Use: 'redirect', Type: 'boolean', Default: 'false'
17904===
17905
17906cindex:[delivery,to pipe; forbidding]
17907If this option is true, this router may not generate a new address which
17908specifies delivery to a pipe, either from an Exim filter or from a conventional
17909forward file. This option is forced to be true if %one_time% is set.
17910
17911
17912oindex:[%forbid_sieve_filter%]
17913`..'=
17914%forbid_sieve_filter%, Use: 'redirect', Type: 'boolean', Default: 'false'
17915===
17916
17917If this option is set true, only Exim filters are permitted when
17918%allow_filter% is true.
17919
17920
17921
17922
17923oindex:[%hide_child_in_errmsg%]
17924`..'=
17925%hide_child_in_errmsg%, Use: 'redirect', Type: 'boolean', Default: 'false'
17926===
17927
17928cindex:[bounce message,redirection details; suppressing]
17929If this option is true, it prevents Exim from quoting a child address if it
17930generates a bounce or delay message for it. Instead it says ``an address
17931generated from <''the top level address'>'. Of course, this applies only to
17932bounces generated locally. If a message is forwarded to another host, 'its'
17933bounce may well quote the generated address.
17934
17935
17936oindex:[%ignore_eacces%]
17937`..'=
17938%ignore_eacces%, Use: 'redirect', Type: 'boolean', Default: 'false'
17939===
17940
17941cindex:[EACCES]
17942If this option is set and an attempt to open a redirection file yields the
17943EACCES error (permission denied), the ^redirect^ router behaves as if the
17944file did not exist.
17945
17946
17947oindex:[%ignore_enotdir%]
17948`..'=
17949%ignore_enotdir%, Use: 'redirect', Type: 'boolean', Default: 'false'
17950===
17951
17952cindex:[ENOTDIR]
17953If this option is set and an attempt to open a redirection file yields the
17954ENOTDIR error (something on the path is not a directory), the ^redirect^
17955router behaves as if the file did not exist.
17956
17957Setting %ignore_enotdir% has another effect as well: When a ^redirect^
17958router that has the %file% option set discovers that the file does not exist
17959(the ENOENT error), it tries to 'stat()' the parent directory, as a check
17960against unmounted NFS directories. If the parent can not be statted, delivery
17961is deferred. However, it seems wrong to do this check when %ignore_enotdir% is
17962set, because that option tells Exim to ignore ``something on the path is not a
17963directory'' (the ENOTDIR error). This is a confusing area, because it seems
17964that some operating systems give ENOENT where others give ENOTDIR.
17965
17966
17967
17968oindex:[%include_directory%]
17969`..'=
17970%include_directory%, Use: 'redirect', Type: 'string', Default: 'unset'
17971===
17972
17973If this option is set, the path names of any ':include:' items in a redirection
17974list must start with this directory.
17975
17976
17977oindex:[%modemask%]
17978`..'=
17979%modemask%, Use: 'redirect', Type: 'octal integer', Default: '022'
17980===
17981
17982This specifies mode bits which must not be set for a file specified by the
17983%file% option. If any of the forbidden bits are set, delivery is deferred.
17984
17985
17986oindex:[%one_time%]
17987`..'=
17988%one_time%, Use: 'redirect', Type: 'boolean', Default: 'false'
17989===
17990
17991cindex:[one-time aliasing/forwarding expansion]
17992cindex:[alias file,one-time expansion]
17993cindex:[forward file,one-time expansion]
17994cindex:[mailing lists,one-time expansion]
17995cindex:[address redirection,one-time expansion]
17996Sometimes the fact that Exim re-evaluates aliases and reprocesses redirection
17997files each time it tries to deliver a message causes a problem
17998when one or more of the generated addresses fails be delivered at the first
17999attempt. The problem is not one of duplicate delivery -- Exim is clever enough
18000to handle that -- but of what happens when the redirection list changes during
18001the time that the message is on Exim's queue. This is particularly true in the
18002case of mailing lists, where new subscribers might receive copies of messages
18003that were posted before they subscribed.
18004
18005If %one_time% is set and any addresses generated by the router fail to
18006deliver at the first attempt, the failing addresses are added to the message as
18007``top level'' addresses, and the parent address that generated them is marked
18008``delivered''. Thus, redirection does not happen again at the next
18009delivery attempt.
18010
18011*Warning 1*: This means that any header line addition or removal that is
18012specified by this router would be lost if delivery did not succeed at the
18013first attempt. For this reason, the %headers_add% and %headers_remove%
18014generic options are not permitted when %one_time% is set.
18015
18016*Warning 2*: To ensure that the router generates only addresses (as opposed
18017to pipe or file deliveries or auto-replies) %forbid_file%, %forbid_pipe%,
18018and %forbid_filter_reply% are forced to be true when %one_time% is set.
18019
18020The original top-level address is remembered with each of the generated
18021addresses, and is output in any log messages. However, any intermediate parent
18022addresses are not recorded. This makes a difference to the log only if
18023%all_parents% log selector is set. It is expected that %one_time% will
18024typically be used for mailing lists, where there is normally just one level of
18025expansion.
18026
18027
18028oindex:[%owners%]
18029`..'=
18030%owners%, Use: 'redirect', Type: 'string list', Default: 'unset'
18031===
18032
18033cindex:[ownership,alias file]
18034cindex:[ownership,forward file]
18035cindex:[alias file,ownership]
18036cindex:[forward file,ownership]
18037This specifies a list of permitted owners for the file specified by %file%.
18038This list is in addition to the local user when %check_local_user% is set.
18039See %check_owner% above.
18040
18041
18042oindex:[%owngroups%]
18043`..'=
18044%owngroups%, Use: 'redirect', Type: 'string list', Default: 'unset'
18045===
18046
18047This specifies a list of permitted groups for the file specified by %file%. The
18048list is in addition to the local user's primary group when %check_local_user%
18049is set. See %check_group% above.
18050
18051
18052oindex:[%pipe_transport%]
18053`..'=
18054%pipe_transport%, Use: 'redirect', Type: 'string'!!, Default: 'unset'
18055===
18056
18057A ^redirect^ router sets up a direct delivery to a pipe when a string starting
18058with a vertical bar character is specified as a new ``address''. The transport
18059used is specified by this option, which, after expansion, must be the name of a
18060configured transport.
18061This should normally be a ^pipe^ transport.
18062When the transport is run, the pipe command is in $address_pipe$.
18063
18064
18065oindex:[%qualify_domain%]
18066`..'=
18067%qualify_domain%, Use: 'redirect', Type: 'string'!!, Default: 'unset'
18068===
18069
18070If this option is set and an unqualified address (one without a domain) is
18071generated, it is qualified with the domain specified by expanding this string,
18072instead of the global setting in %qualify_recipient%. If the expansion fails,
18073the router declines. If you want to revert to the default, you can have the
18074expansion generate $qualify_recipient$.
18075
18076
18077oindex:[%qualify_preserve_domain%]
18078`..'=
18079%qualify_preserve_domain%, Use: 'redirect', Type: 'boolean', Default: 'false'
18080===
18081
18082cindex:[domain,in redirection; preserving]
18083cindex:[preserving domain in redirection]
18084cindex:[address redirection,domain; preserving]
18085If this is set and an unqualified address (one without a domain) is generated,
18086it is qualified with the domain of the
18087parent address (the immediately preceding ancestor) instead of the local
18088%qualify_domain% or global %qualify_recipient% value.
18089
18090
18091oindex:[%repeat_use%]
18092`..'=
18093%repeat_use%, Use: 'redirect', Type: 'boolean', Default: 'true'
18094===
18095
18096If this option is set false, the router is skipped for a child address that has
18097any ancestor that was routed by this router. This test happens before any of
18098the other preconditions are tested. Exim's default anti-looping rules skip
18099only when the ancestor is the same as the current address. See also
18100%check_ancestor% above and the generic %redirect_router% option.
18101
18102
18103oindex:[%reply_transport%]
18104`..'=
18105%reply_transport%, Use: 'redirect', Type: 'string'!!, Default: 'unset'
18106===
18107
18108A ^redirect^ router sets up an automatic reply when a %mail% or %vacation%
18109command is used in a filter file. The transport used is specified by this
18110option, which, after expansion, must be the name of a configured transport.
18111This should normally be an ^autoreply^ transport. Other transports are
18112unlikely to do anything sensible or useful.
18113
18114
18115oindex:[%rewrite%]
18116`..'=
18117%rewrite%, Use: 'redirect', Type: 'boolean', Default: 'true'
18118===
18119
18120cindex:[address redirection,disabling rewriting]
18121If this option is set false, addresses generated by the router are not
18122subject to address rewriting. Otherwise, they are treated like new addresses
18123and are rewritten according to the global rewriting rules.
18124
18125
18126
18127oindex:[%sieve_vacation_directory%]
18128`..'=
18129%sieve_vacation_directory%, Use: 'redirect', Type: 'string'!!, Default: 'unset'
18130===
18131
18132cindex:[Sieve filter,vacation directory]
18133To enable the ``vacation'' extension for Sieve filters, you must set
18134%sieve_vacation_directory% to the directory where vacation databases are held
18135(do not put anything else in that directory), and ensure that the
18136%reply_transport% option refers to an ^autoreply^ transport.
18137
18138
18139
18140
18141oindex:[%skip_syntax_errors%]
18142`..'=
18143%skip_syntax_errors%, Use: 'redirect', Type: 'boolean', Default: 'false'
18144===
18145
18146cindex:[forward file,broken]
18147cindex:[address redirection,broken files]
18148cindex:[alias file,broken]
18149cindex:[broken alias or forward files]
18150cindex:[ignoring faulty addresses]
18151cindex:[skipping faulty addresses]
18152cindex:[error,skipping bad syntax]
18153If %skip_syntax_errors% is set, syntactically malformed addresses in
18154non-filter redirection data are skipped, and each failing address is logged. If
18155%syntax_errors_to% is set, a message is sent to the address it defines,
18156giving details of the failures. If %syntax_errors_text% is set, its contents
18157are expanded and placed at the head of the error message generated by
18158%syntax_errors_to%. Usually it is appropriate to set %syntax_errors_to% to
18159be the same address as the generic %errors_to% option. The
18160%skip_syntax_errors% option is often used when handling mailing lists.
18161
18162If all the addresses in a redirection list are skipped because of syntax
18163errors, the router declines to handle the original address, and it is passed to
18164the following routers.
18165
18166If %skip_syntax_errors% is set when an Exim filter is interpreted, any syntax
18167error in the filter causes filtering to be abandoned without any action being
18168taken. The incident is logged, and the router declines to handle the address,
18169so it is passed to the following routers.
18170
18171cindex:[Sieve filter,syntax errors in]
18172Syntax errors in a Sieve filter file cause the ``keep'' action to occur. This
18173action is specified by RFC 3028. The values of %skip_syntax_errors%,
18174%syntax_errors_to%, and %syntax_errors_text% are not used.
18175
18176%skip_syntax_errors% can be used to specify that errors in users' forward
18177lists or filter files should not prevent delivery. The %syntax_errors_to%
18178option, used with an address that does not get redirected, can be used to
18179notify users of these errors, by means of a router like this:
18180
18181....
18182userforward:
18183 driver = redirect
18184 allow_filter
18185 check_local_user
18186 file = $home/.forward
18187 file_transport = address_file
18188 pipe_transport = address_pipe
18189 reply_transport = address_reply
18190 no_verify
18191 skip_syntax_errors
18192 syntax_errors_to = real-$local_part\$domain
18193 syntax_errors_text = \
18194 This is an automatically generated message. An error has\n\
18195 been found in your .forward file. Details of the error are\n\
18196 reported below. While this error persists, you will receive\n\
18197 a copy of this message for every message that is addressed\n\
18198 to you. If your .forward file is a filter file, or if it is\n\
18199 a non-filter file containing no valid forwarding addresses,\n\
18200 a copy of each incoming message will be put in your normal\n\
18201 mailbox. If a non-filter file contains at least one valid\n\
18202 forwarding address, forwarding to the valid addresses will\n\
18203 happen, and those will be the only deliveries that occur.
18204....
18205
18206You also need a router to ensure that local addresses that are prefixed by
18207`real-` are recognized, but not forwarded or filtered. For example, you could
18208put this immediately before the ^userforward^ router:
18209
18210 real_localuser:
18211 driver = accept
18212 check_local_user
18213 local_part_prefix = real-
18214 transport = local_delivery
18215
18216
18217
18218oindex:[%syntax_errors_text%]
18219`..'=
18220%syntax_errors_text%, Use: 'redirect', Type: 'string'!!, Default: 'unset'
18221===
18222
18223See %skip_syntax_errors% above.
18224
18225
18226oindex:[%syntax_errors_to%]
18227`..'=
18228%syntax_errors_to%, Use: 'redirect', Type: 'string', Default: 'unset'
18229===
18230
18231See %skip_syntax_errors% above.
18232
18233
18234
18235
18236
18237
18238////////////////////////////////////////////////////////////////////////////
18239////////////////////////////////////////////////////////////////////////////
18240
18241[[CHAPenvironment]]
18242[titleabbrev="Environment for local transports"]
18243Environment for running local transports
18244----------------------------------------
18245cindex:[local transports,environment for]
18246cindex:[environment for local transports]
18247cindex:[transport,local; environment for]
18248Local transports handle deliveries to files and pipes. (The ^autoreply^
18249transport can be thought of as similar to a pipe.) Exim always runs transports
18250in subprocesses, under specified uids and gids. Typical deliveries to local
18251mailboxes run under the uid and gid of the local user.
18252
18253Exim also sets a specific current directory while running the transport; for
18254some transports a home directory setting is also relevant. The ^pipe^
18255transport is the only one that sets up environment variables; see section
18256<<SECTpipeenv>> for details.
18257
18258The values used for the uid, gid, and the directories may come from several
18259different places. In many cases, the router that handles the address associates
18260settings with that address as a result of its %check_local_user%, %group%, or
18261%user% options. However, values may also be given in the transport's own
18262configuration, and these override anything that comes from the router.
18263
18264
18265
18266Concurrent deliveries
18267~~~~~~~~~~~~~~~~~~~~~
18268cindex:[concurrent deliveries]
18269cindex:[simultaneous deliveries]
18270If two different messages for the same local recpient arrive more or less
18271simultaneously, the two delivery processes are likely to run concurrently. When
18272the ^appendfile^ transport is used to write to a file, Exim applies locking
18273rules to stop concurrent processes from writing to the same file at the same
18274time.
18275
18276However, when you use a ^pipe^ transport, it is up to you to arrange any
18277locking that is needed. Here is a silly example:
18278
18279 my_transport:
18280 driver = pipe
18281 command = /bin/sh -c 'cat >>/some/file'
18282
18283This is supposed to write the message at the end of the file. However, if two
18284messages arrive at the same time, the file will be scrambled. You can use the
18285%exim_lock% utility program (see section <<SECTmailboxmaint>>) to lock a file
18286using the same algorithm that Exim itself uses.
18287
18288
18289
18290
18291[[SECTenvuidgid]]
18292Uids and gids
18293~~~~~~~~~~~~~
18294cindex:[local transports,uid and gid]
18295cindex:[transport,local; uid and gid]
18296All transports have the options %group% and %user%. If %group% is set, it
18297overrides any group that the router set in the address, even if %user% is not
18298set for the transport. This makes it possible, for example, to run local mail
18299delivery under the uid of the recipient (set by the router), but in a special
18300group (set by the transport). For example:
18301
18302 # Routers ...
18303 # User/group are set by check_local_user in this router
18304 local_users:
18305 driver = accept
18306 check_local_user
18307 transport = group_delivery
18308
18309 # Transports ...
18310 # This transport overrides the group
18311 group_delivery:
18312 driver = appendfile
18313 file = /var/spool/mail/$local_part
18314 group = mail
18315
18316If %user% is set for a transport, its value overrides what is set in the
18317address. If %user% is non-numeric and %group% is not set, the gid associated
18318with the user is used. If %user% is numeric, %group% must be set.
18319
18320cindex:[%initgroups% option]
18321When the uid is taken from the transport's configuration, the 'initgroups()'
18322function is called for the groups associated with that uid if the %initgroups%
18323option is set for the transport. When the uid is not specified by the
18324transport, but is associated with the address by a router, the option for
18325calling 'initgroups()' is taken from the router configuration.
18326
18327cindex:[^pipe^ transport,uid for]
18328The ^pipe^ transport contains the special option %pipe_as_creator%. If this
18329is set and %user% is not set, the uid of the process that called Exim to
18330receive the message is used, and if %group% is not set, the corresponding
18331original gid is also used.
18332
18333
18334
18335Current and home directories
18336~~~~~~~~~~~~~~~~~~~~~~~~~~~~
18337cindex:[current directory for local transport]
18338cindex:[home directory,for local transport]
18339cindex:[transport,local; home directory for]
18340cindex:[transport,local; current directory for]
18341Routers may set current and home directories for local transports by means of
18342the %transport_current_directory% and %transport_home_directory% options.
18343However, if the transport's %current_directory% or %home_directory% options
18344are set, they override the router's values. In detail, the home directory
18345for a local transport is taken from the first of these values that is set:
18346
18347- The %home_directory% option on the transport;
18348
18349- The %transport_home_directory% option on the router;
18350
18351- The password data if %check_local_user% is set on the router;
18352
18353- The %router_home_directory% option on the router.
18354
18355The current directory is taken from the first of these values that is set:
18356
18357- The %current_directory% option on the transport;
18358
18359- The %transport_current_directory% option on the router.
18360
18361
18362If neither the router nor the transport sets a current directory, Exim uses the
18363value of the home directory, if it is set. Otherwise it sets the current
18364directory to _/_ before running a local transport.
18365
18366
18367
18368Expansion variables derived from the address
18369~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
18370Normally a local delivery is handling a single address, and in that case the
18371variables such as $domain$ and $local_part$ are set during local
18372deliveries. However, in some circumstances more than one address may be handled
18373at once (for example, while writing batch SMTP for onward transmission by some
18374other means). In this case, the variables associated with the local part are
18375never set, $domain$ is set only if all the addresses have the same
18376domain, and $original_domain$ is never set.
18377
18378
18379
18380
18381
18382
18383
18384////////////////////////////////////////////////////////////////////////////
18385////////////////////////////////////////////////////////////////////////////
18386
18387[[CHAPtransportgeneric]]
18388Generic options for transports
18389------------------------------
18390
18391cindex:[generic options,transport]
18392cindex:[options,generic; for transports]
18393cindex:[transport,generic options for]
18394The following generic options apply to all transports:
18395
18396
18397oindex:[%body_only%]
18398`..'=
18399%body_only%, Use: 'transports', Type: 'boolean', Default: 'false'
18400===
18401
18402cindex:[transport,body only]
18403cindex:[message,transporting body only]
18404cindex:[body of message,transporting]
18405If this option is set, the message's headers are not transported. It is
18406mutually exclusive with %headers_only%. If it is used with the ^appendfile^ or
18407^pipe^ transports, the settings of %message_prefix% and %message_suffix%
18408should be checked, because this option does not automatically suppress them.
18409
18410
18411oindex:[%current_directory%]
18412`..'=
18413%current_directory%, Use: 'transports', Type: 'string'!!, Default: 'unset'
18414===
18415
18416cindex:[transport,current directory for]
18417This specifies the current directory that is to be set while running the
18418transport, overriding any value that may have been set by the router.
18419If the expansion fails for any reason, including forced failure, an error is
18420logged, and delivery is deferred.
18421
18422
18423oindex:[%disable_logging%]
18424`..'=
18425%disable_logging%, Use: 'transports', Type: 'boolean', Default: 'false'
18426===
18427
18428If this option is set true, nothing is logged for any
18429deliveries by the transport or for any
18430transport errors. You should not set this option unless you really, really know
18431what you are doing.
18432
18433
18434oindex:[%debug_print%]
18435`..'=
18436%debug_print%, Use: 'transports', Type: 'string'!!, Default: 'unset'
18437===
18438
18439cindex:[testing,variables in drivers]
18440If this option is set and debugging is enabled (see the %-d% command line
18441option), the string is expanded and included in the debugging output when the
18442transport is run.
18443If expansion of the string fails, the error message is written to the debugging
18444output, and Exim carries on processing.
18445This facility is provided to help with checking out the values of variables and
18446so on when debugging driver configurations. For example, if a %headers_add%
18447option is not working properly, %debug_print% could be used to output the
18448variables it references. A newline is added to the text if it does not end with
18449one.
18450
18451
18452oindex:[%delivery_date_add%]
18453`..'=
18454%delivery_date_add%, Use: 'transports', Type: 'boolean', Default: 'false'
18455===
18456
18457cindex:['Delivery-date:' header line]
18458If this option is true, a 'Delivery-date:' header is added to the message. This
18459gives the actual time the delivery was made. As this is not a standard header,
18460Exim has a configuration option (%delivery_date_remove%) which requests its
18461removal from incoming messages, so that delivered messages can safely be resent
18462to other recipients.
18463
18464
18465oindex:[%driver%]
18466`..'=
18467%driver%, Use: 'transports', Type: 'string', Default: 'unset'
18468===
18469
18470This specifies which of the available transport drivers is to be used.
18471There is no default, and this option must be set for every transport.
18472
18473
18474oindex:[%envelope_to_add%]
18475`..'=
18476%envelope_to_add%, Use: 'transports', Type: 'boolean', Default: 'false'
18477===
18478
18479cindex:['Envelope-to:' header line]
18480If this option is true, an 'Envelope-to:' header is added to the message. This
18481gives the original address(es) in the incoming envelope that caused this
18482delivery to happen. More than one address may be present if the transport is
18483configured to handle several addresses at once, or if more than one original
18484address was redirected to the same final address. As this is not a standard
18485header, Exim has a configuration option (%envelope_to_remove%) which requests
18486its removal from incoming messages, so that delivered messages can safely be
18487resent to other recipients.
18488
18489
18490oindex:[%group%]
18491`..'=
18492%group%, Use: 'transports', Type: 'string'!!, Default: 'Exim group'
18493===
18494
18495cindex:[transport,group; specifying]
18496This option specifies a gid for running the transport process, overriding any
18497value that the router supplies, and also overriding any value associated with
18498%user% (see below).
18499
18500
18501oindex:[%headers_add%]
18502`..'=
18503%headers_add%, Use: 'transports', Type: 'string'!!, Default: 'unset'
18504===
18505
18506cindex:[header lines,adding in transport]
18507cindex:[transport,header lines; adding]
18508This option specifies a string of text that is expanded and added to the header
18509portion of a message as it is transported, as described in section
18510<<SECTheadersaddrem>>. Additional header lines can also be specified by routers.
18511If the result of the expansion is an empty string, or if the expansion is
18512forced to fail, no action is taken. Other expansion failures are treated as
18513errors and cause the delivery to be deferred.
18514
18515
18516
18517oindex:[%headers_only%]
18518`..'=
18519%headers_only%, Use: 'transports', Type: 'boolean', Default: 'false'
18520===
18521
18522cindex:[transport,header lines only]
18523cindex:[message,transporting headers only]
18524cindex:[header lines,transporting]
18525If this option is set, the message's body is not transported. It is mutually
18526exclusive with %body_only%. If it is used with the ^appendfile^ or ^pipe^
18527transports, the settings of %message_prefix% and %message_suffix% should be
18528checked, since this option does not automatically suppress them.
18529
18530
18531oindex:[%headers_remove%]
18532`..'=
18533%headers_remove%, Use: 'transports', Type: 'string'!!, Default: 'unset'
18534===
18535
18536cindex:[header lines,removing]
18537cindex:[transport,header lines; removing]
18538This option specifies a string that is expanded into a list of header names;
18539these headers are omitted from the message as it is transported, as described
18540in section <<SECTheadersaddrem>>. Header removal can also be specified by
18541routers. If the result of the expansion is an empty string, or if the expansion
18542is forced to fail, no action is taken. Other expansion failures are treated as
18543errors and cause the delivery to be deferred.
18544
18545
18546
18547oindex:[%headers_rewrite%]
18548`..'=
18549%headers_rewrite%, Use: 'transports', Type: 'string', Default: 'unset'
18550===
18551
18552cindex:[transport,header lines; rewriting]
18553cindex:[rewriting,at transport time]
18554This option allows addresses in header lines to be rewritten at transport time,
18555that is, as the message is being copied to its destination. The contents of the
18556option are a colon-separated list of rewriting rules. Each rule is in exactly
18557the same form as one of the general rewriting rules that are applied when a
18558message is received. These are described in chapter <<CHAPrewrite>>. For example,
18559
18560....
18561headers_rewrite = a@b c@d f : \
18562 x@y w@z
18563....
18564
18565changes %a@b% into %c@d% in 'From:' header lines, and %x@y% into %w@z% in
18566all address-bearing header lines. The rules are applied to the header lines
18567just before they are written out at transport time, so they affect only those
18568copies of the message that pass through the transport. However, only the
18569message's original header lines, and any that were added by a system filter,
18570are rewritten. If a router or transport adds header lines, they are
18571not affected by this option. These rewriting rules are 'not' applied to the
18572envelope. You can change the return path using %return_path%, but you cannot
18573change envelope recipients at this time.
18574
18575
18576oindex:[%home_directory%]
18577`..'=
18578%home_directory%, Use: 'transports', Type: 'string'!!, Default: 'unset'
18579===
18580
18581cindex:[transport,home directory for]
18582This option specifies a home directory setting for the transport, overriding
18583any value that may be set by the router. The home directory is placed in
18584$home$ while expanding the transport's private options. It is also used as
18585the current directory if no current directory is set by the
18586%current_directory% option on the transport or the
18587%transport_current_directory% option on the router.
18588If the expansion fails for any reason, including forced failure, an error is
18589logged, and delivery is deferred.
18590
18591
18592oindex:[%initgroups%]
18593`..'=
18594%initgroups%, Use: 'transports', Type: 'boolean', Default: 'false'
18595===
18596
18597cindex:[additional groups]
18598cindex:[groups, additional]
18599cindex:[transport,group; additional]
18600If this option is true and the uid for the delivery process is provided by the
18601transport, the 'initgroups()' function is called when running the transport
18602to ensure that any additional groups associated with the uid are set up.
18603
18604
18605oindex:[%message_size_limit%]
18606`..'=
18607%message_size_limit%, Use: 'transports', Type: 'string'!!, Default: '0'
18608===
18609
18610cindex:[limit,message size per transport]
18611cindex:[size of message, limit]
18612cindex:[transport,message size; limiting]
18613This option controls the size of messages passed through the transport. It is
18614expanded before use; the result of the expansion must be a sequence of digits,
18615optionally followed by K or M.
18616If the expansion fails for any reason, including forced failure, or if the
18617result is not of the required form, delivery is deferred.
18618If the value is greater than zero and the size of a message exceeds this
18619limit, the address is failed. If there is any chance that the resulting bounce
18620message could be routed to the same transport, you should ensure that
18621%return_size_limit% is less than the transport's %message_size_limit%, as
18622otherwise the bounce message will fail to get delivered.
18623
18624
18625
18626oindex:[%rcpt_include_affixes%]
18627`..'=
18628%rcpt_include_affixes%, Use: 'transports', Type: 'boolean', Default: 'false'
18629===
18630
18631cindex:[prefix,for local part; including in envelope]
18632cindex:[suffix,for local part; including in envelope]
18633cindex:[local part,prefix]
18634cindex:[local part,suffix]
18635When this option is false (the default), and an address that has had any
18636affixes (prefixes or suffixes) removed from the local part is delivered by any
18637form of SMTP or LMTP, the affixes are not included. For example, if a router
18638that contains
18639
18640 local_part_prefix = *-
18641
18642routes the address 'abc-xyz@some.domain' to an SMTP transport, the envelope
18643is delivered with
18644
18645 RCPT TO:<xyz@some.domain>
18646
18647If %rcpt_include_affixes% is set true, the whole local part is included in
18648the RCPT command. This option applies to BSMTP deliveries by the
18649^appendfile^ and ^pipe^ transports as well as to the ^lmtp^ and ^smtp^
18650transports.
18651
18652
18653oindex:[%retry_use_local_part%]
18654`..'=
18655%retry_use_local_part%, Use: 'transports', Type: 'boolean', Default: 'see below'
18656===
18657
18658cindex:[hints database,retry keys]
18659When a delivery suffers a temporary failure, a retry record is created
18660in Exim's hints database. For remote deliveries, the key for the retry record
18661is based on the name and/or IP address of the failing remote host. For local
18662deliveries, the key is normally the entire address, including both the local
18663part and the domain. This is suitable for most common cases of local delivery
18664temporary failure -- for example, exceeding a mailbox quota should delay only
18665deliveries to that mailbox, not to the whole domain.
18666
18667However, in some special cases you may want to treat a temporary local delivery
18668as a failure associated with the domain, and not with a particular local part.
18669(For example, if you are storing all mail for some domain in files.) You can do
18670this by setting %retry_use_local_part% false.
18671
18672For all the local transports, its default value is true. For remote transports,
18673the default value is false for tidiness, but changing the value has no effect
18674on a remote transport in the current implementation.
18675
18676
18677oindex:[%return_path%]
18678`..'=
18679%return_path%, Use: 'transports', Type: 'string'!!, Default: 'unset'
18680===
18681
18682cindex:[envelope sender]
18683cindex:[transport,return path; changing]
18684cindex:[return path,changing in transport]
18685If this option is set, the string is expanded at transport time and replaces
18686the existing return path (envelope sender) value in the copy of the message
18687that is being delivered. An empty return path is permitted. This feature is
18688designed for remote deliveries, where the value of this option is used in the
18689SMTP MAIL command. If you set %return_path% for a local transport, the
18690only effect is to change the address that is placed in the 'Return-path:'
18691header line, if one is added to the message (see the next option).
18692
18693The expansion can refer to the existing value via $return_path$. This is
18694either the message's envelope sender, or an address set by the
18695%errors_to% option on a router. If the expansion is forced to fail, no
18696replacement occurs; if it fails for another reason, delivery is deferred. This
18697option can be used to support VERP (Variable Envelope Return Paths) -- see
18698chapter <<CHAPSMTP>>.
18699
18700*Note*: If a delivery error is detected locally,
18701including the case when a remote server rejects a message at SMTP time,
18702the bounce message is not sent to the value of this option, but to the
18703previously set errors address (which defaults to the incoming sender address).
18704
18705
18706
18707oindex:[%return_path_add%]
18708`..'=
18709%return_path_add%, Use: 'transports', Type: 'boolean', Default: 'false'
18710===
18711
18712cindex:['Return-path:' header line]
18713If this option is true, a 'Return-path:' header is added to the message.
18714Although the return path is normally available in the prefix line of BSD
18715mailboxes, this is commonly not displayed by MUAs, and so the user does not
18716have easy access to it.
18717
18718RFC 2821 states that the 'Return-path:' header is added to a message ``when the
18719delivery SMTP server makes the final delivery''. This implies that this header
18720should not be present in incoming messages. Exim has a configuration option,
18721%return_path_remove%, which requests removal of this header from incoming
18722messages, so that delivered messages can safely be resent to other recipients.
18723
18724
18725oindex:[%shadow_condition%]
18726`..'=
18727%shadow_condition%, Use: 'transports', Type: 'string'!!, Default: 'unset'
18728===
18729
18730See %shadow_transport% below.
18731
18732
18733oindex:[%shadow_transport%]
18734`..'=
18735%shadow_transport%, Use: 'transports', Type: 'string', Default: 'unset'
18736===
18737
18738cindex:[shadow transport]
18739cindex:[transport,shadow]
18740A local transport may set the %shadow_transport% option to the name of another
18741local transport. Shadow remote transports are not supported.
18742
18743Whenever a delivery to the main transport succeeds, and either
18744%shadow_condition% is unset, or its expansion does not result in the empty
18745string or one of the strings ``0'' or ``no'' or ``false'', the message is also passed
18746to the shadow transport, with the same delivery address or addresses.
18747If expansion fails, no action is taken except that non-forced expansion
18748failures cause a log line to be written.
18749
18750The result of the shadow transport is discarded and does not affect the
18751subsequent processing of the message. Only a single level of shadowing is
18752provided; the %shadow_transport% option is ignored on any transport when it is
18753running as a shadow. Options concerned with output from pipes are also ignored.
18754
18755The log line for the successful delivery has an item added on the end, of the
18756form
18757
18758 ST=<shadow transport name>
18759
18760If the shadow transport did not succeed, the error message is put in
18761parentheses afterwards.
18762
18763Shadow transports can be used for a number of different purposes, including
18764keeping more detailed log information than Exim normally provides, and
18765implementing automatic acknowledgement policies based on message headers that
18766some sites insist on.
18767
18768
18769oindex:[%transport_filter%]
18770`..'=
18771%transport_filter%, Use: 'transports', Type: 'string'!!, Default: 'unset'
18772===
18773
18774cindex:[transport,filter]
18775cindex:[filter,transport filter]
18776This option sets up a filtering (in the Unix shell sense) process for messages
18777at transport time. It should not be confused with mail filtering as set up by
18778individual users or via a system filter.
18779
18780When the message is about to be written out, the command specified by
18781%transport_filter% is started up in a separate process, and the entire
18782message, including the header lines, is passed to it on its standard input
18783(this in fact is done from a third process, to avoid deadlock).
18784The command must be specified as an absolute path.
18785
18786The lines of the message that are written to the transport filter are
18787terminated by newline (``\n'').
18788
18789The message is passed to the filter before any SMTP-specific processing, such
18790as turning ``\n'' into ``\r\n'' and escaping lines beginning with a dot, and
18791also before any processing implied by the settings of %check_string% and
18792%escape_string% in the ^appendfile^ or ^pipe^ transports.
18793
18794The standard error for the filter process is set to the same destination as its
18795standard output; this is read and written to the message's ultimate
18796destination.
18797
18798The filter can perform any transformations it likes, but of course should take
18799care not to break RFC 2822 syntax. A demonstration Perl script is provided in
18800_util/transport-filter.pl_; this makes a few arbitrary modifications just to
18801show the possibilities. Exim does not check the result, except to test for a
18802final newline when SMTP is in use. All messages transmitted over SMTP must end
18803with a newline, so Exim supplies one if it is missing.
18804
18805cindex:[SMTP,SIZE]
18806A problem might arise if the filter increases the size of a message that is
18807being sent down an SMTP connection. If the receiving SMTP server has indicated
18808support for the SIZE parameter, Exim will have sent the size of the message
18809at the start of the SMTP session. If what is actually sent is substantially
18810more, the server might reject the message. This can be worked round by setting
18811the %size_addition% option on the ^smtp^ transport, either to allow for
18812additions to the message, or to disable the use of SIZE altogether.
18813
18814The value of the %transport_filter% option is the command string for starting
18815the filter, which is run directly from Exim, not under a shell. The string is
18816parsed by Exim in the same way as a command string for the ^pipe^ transport:
18817Exim breaks it up into arguments and then expands each argument separately. The
18818special argument $pipe_addresses$ is replaced by a number of arguments, one
18819for each address that applies to this delivery. (This isn't an ideal name for
18820this feature here, but as it was already implemented for the ^pipe^
18821transport, it seemed sensible not to change it.)
18822
18823cindex:[$host$]
18824cindex:[$host_address$]
18825The expansion variables $host$ and $host_address$ are available when the
18826transport is a remote one. They contain the name and IP address of the host to
18827which the message is being sent. For example:
18828
18829....
18830transport_filter = /some/directory/transport-filter.pl \
18831 $host $host_address $sender_address $pipe_addresses
18832....
18833
18834The filter process is run under the same uid and gid as the normal delivery.
18835For remote deliveries this is the Exim uid/gid by default.
18836
18837The command should normally yield a zero return code. A non-zero code is taken
18838to mean that the transport filter failed in some way. Delivery of the message
18839is deferred. It is not possible to cause a message to be bounced from a
18840transport filter.
18841
18842
18843If a transport filter is set on an autoreply transport, the original message is
18844passed through the filter as it is being copied into the newly generated
18845message, which happens if the %return_message% option is set.
18846
18847
18848oindex:[%transport_filter_timeout%]
18849`..'=
18850%transport_filter_timeout%, Use: 'transports', Type: 'time', Default: '5m'
18851===
18852
18853cindex:[transport filter, timeout]
18854When Exim is reading the output of a transport filter, it a applies a timeout
18855that can be set by this option. Exceeding the timeout is treated as a
18856temporary delivery failure.
18857
18858
18859
18860oindex:[%user%]
18861`..'=
18862%user%, Use: 'transports', Type: 'string'!!, Default: 'Exim user'
18863===
18864
18865cindex:[uid (user id),local delivery]
18866cindex:[transport user, specifying]
18867This option specifies the user under whose uid the delivery process is to be
18868run, overriding any uid that may have been set by the router. If the user is
18869given as a name, the uid is looked up from the password data, and the
18870associated group is taken as the value of the gid to be used if the %group%
18871option is not set.
18872
18873For deliveries that use local transports, a user and group are normally
18874specified explicitly or implicitly (for example, as a result of
18875%check_local_user%) by the router or transport.
18876
18877cindex:[hints database,access by remote transport]
18878For remote transports, you should leave this option unset unless you really are
18879sure you know what you are doing. When a remote transport is running, it needs
18880to be able to access Exim's hints databases, because each host may have its own
18881retry data.
18882
18883
18884
18885
18886
18887
18888////////////////////////////////////////////////////////////////////////////
18889////////////////////////////////////////////////////////////////////////////
18890
18891[[CHAPbatching]]
18892[titleabbrev="Address batching"]
18893Address batching in local transports
18894------------------------------------
18895cindex:[transport,local; address batching in]
18896The only remote transport (^smtp^) is normally configured to handle more than
18897one address at a time, so that when several addresses are routed to the same
18898remote host, just one copy of the message is sent. Local transports, however,
18899normally handle one address at a time. That is, a separate instance of the
18900transport is run for each address that is routed to the transport. A separate
18901copy of the message is delivered each time.
18902
18903cindex:[batched local delivery]
18904cindex:[%batch_max%]
18905cindex:[%batch_id%]
18906In special cases, it may be desirable to handle several addresses at once in a
18907local transport, for example:
18908
18909- In an ^appendfile^ transport, when storing messages in files for later
18910delivery by some other means, a single copy of the message with multiple
18911recipients saves space.
18912
18913- In an ^lmtp^ transport, when delivering over ``local SMTP'' to some process,
18914a single copy saves time, and is the normal way LMTP is expected to work.
18915
18916- In a ^pipe^ transport, when passing the message
18917to a scanner program or
18918to some other delivery mechanism such as UUCP, multiple recipients may be
18919acceptable.
18920
18921The three local transports (^appendfile^, ^lmtp^, and ^pipe^) all have
18922the same options for controlling multiple (``batched'') deliveries, namely
18923%batch_max% and %batch_id%. To save repeating the information for each
18924transport, these options are described here.
18925
18926The %batch_max% option specifies the maximum number of addresses that can be
18927delivered together in a single run of the transport. Its default value is one.
18928When more than one address is routed to a transport that has a %batch_max%
18929value greater than one, the addresses are delivered in a batch (that is, in a
18930single run of the transport), subject to certain conditions:
18931
18932- If any of the transport's options contain a reference to $local_part$, no
18933batching is possible.
18934
18935- If any of the transport's options contain a reference to $domain$, only
18936addresses with the same domain are batched.
18937
18938- cindex:[customizing,batching condition]
18939If %batch_id% is set, it is expanded for each address, and only those
18940addresses with the same expanded value are batched. This allows you to specify
18941customized batching conditions.
18942Failure of the expansion for any reason, including forced failure, disables
18943batching, but it does not stop the delivery from taking place.
18944
18945- Batched addresses must also have the same errors address (where to send
18946delivery errors), the same header additions and removals, the same user and
18947group for the transport, and if a host list is present, the first host must
18948be the same.
18949
18950cindex:['Envelope-to:' header line]
18951If the generic %envelope_to_add% option is set for the transport, the
18952'Envelope-to:' header that is added to the message contains all the addresses
18953that are batched together.
18954
18955The ^appendfile^ and ^pipe^ transports have an option called %use_bsmtp%,
18956which causes them to deliver the message in ``batched SMTP'' format, with the
18957envelope represented as SMTP commands. The %check_string% and %escape_string%
18958options are forced to the values
18959
18960 check_string = "."
18961 escape_string = ".."
18962
18963when batched SMTP is in use. A full description of the batch SMTP mechanism is
18964given in section <<SECTbatchSMTP>>. The ^lmtp^ transport does not have a
18965%use_bsmtp% option, because it always delivers using the SMTP protocol.
18966
18967cindex:[^pipe^ transport,with multiple addresses]
18968If you are not using BSMTP, but are using a ^pipe^ transport, you can include
18969$pipe_addresses$ as part of the command. This is not a true variable; it is
18970a bit of magic that causes each of the recipient addresses to be inserted into
18971the command as a separate argument. This provides a way of accessing all the
18972addresses that are being delivered in the batch.
18973
18974If you are using a batching ^appendfile^ transport without %use_bsmtp%, the
18975only way to preserve the recipient addresses is to set the %envelope_to_add%
18976option. This causes an 'Envelope-to:' header line to be added to the message,
18977containing all the recipients.
18978
18979
18980
18981////////////////////////////////////////////////////////////////////////////
18982////////////////////////////////////////////////////////////////////////////
18983
18984[[CHAPappendfile]]
18985The appendfile transport
18986------------------------
18987cindex:[^appendfile^ transport]
18988cindex:[transports,^appendfile^]
18989cindex:[directory creation]
18990cindex:[creating directories]
18991The ^appendfile^ transport delivers a message by appending it to an existing
18992file, or by creating an entirely new file in a specified directory. Single
18993files to which messages are appended can be in the traditional Unix mailbox
18994format, or optionally in the MBX format supported by the Pine MUA and
18995University of Washington IMAP daemon, 'inter alia'. When each message is
18996being delivered as a separate file, ``maildir'' format can optionally be used to
18997give added protection against failures that happen part-way through the
18998delivery. A third form of separate-file delivery known as ``mailstore'' is also
18999supported. For all file formats, Exim attempts to create as many levels of
19000directory as necessary, provided that %create_directory% is set.
19001
19002The code for the optional formats is not included in the Exim binary by
19003default. It is necessary to set SUPPORT_MBX, SUPPORT_MAILDIR and/or
19004SUPPORT_MAILSTORE in _Local/Makefile_ to have the appropriate code
19005included.
19006
19007cindex:[quota,system]
19008Exim recognises system quota errors, and generates an appropriate message. Exim
19009also supports its own quota control within the transport, for use when the
19010system facility is unavailable or cannot be used for some reason.
19011
19012If there is an error while appending to a file (for example, quota exceeded or
19013partition filled), Exim attempts to reset the file's length and last
19014modification time back to what they were before. If there is an error while
19015creating an entirely new file, the new file is removed.
19016
19017Before appending to a file, a number of security checks are made, and the
19018file is locked. A detailed description is given below, after the list of
19019private options.
19020
19021^appendfile^ is most commonly used for local deliveries to users' mailboxes.
19022However, it can also be used as a pseudo-remote transport for putting messages
19023into files for remote delivery by some means other than Exim. ``Batch SMTP''
19024format is often used in this case (see the %use_bsmtp% option).
19025
19026
19027
19028[[SECTfildiropt]]
19029The file and directory options
19030~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19031The %file% option specifies a single file, to which the message is appended;
19032the %directory% option specifies a directory, in which a new file containing
19033the message is created. Only one of these two options can be set, and for
19034normal deliveries to mailboxes, one of them 'must' be set.
19035
19036However, ^appendfile^ is also used for delivering messages to files or
19037directories whose names (or parts of names) are obtained from alias,
19038forwarding, or filtering operations (for example, a %save% command in a user's
19039Exim filter). When such a transport is running, $local_part$ contains the
19040local part that was aliased or forwarded, and $address_file$ contains the
19041name (or partial name) of the file or directory generated by the redirection
19042operation. There are two cases:
19043
19044- If neither %file% nor %directory% is set, the redirection operation
19045must specify an absolute path (one that begins with `/`). This is the most
19046common case when users with local accounts use filtering to sort mail into
19047different folders. See for example, the ^address_file^ transport in the
19048default configuration. If the path ends with a slash, it is assumed to be the
19049name of a directory. A delivery to a directory can also be forced by setting
19050%maildir_format% or %mailstore_format%.
19051
19052- If %file% or %directory% is set for a delivery from a redirection, it is used
19053to determine the file or directory name for the delivery. Normally, the
19054contents of $address_file$ are used in some way in the string expansion.
19055
19056
19057cindex:[Sieve filter,configuring ^appendfile^]
19058cindex:[Sieve filter,relative mailbox path handling]
19059As an example of the second case, consider an environment where users do not
19060have home directories. They may be permitted to use Exim filter commands of the
19061form:
19062
19063 save folder23
19064
19065or Sieve filter commands of the form:
19066
19067 require "fileinto";
19068 fileinto "folder23";
19069
19070In this situation, the expansion of %file% or %directory% in the transport must
19071transform the relative path into an appropriate absolute file name. In the case
19072of Sieve filters, the name 'inbox' must be handled. It is the name that is
19073used as a result of a ``keep'' action in the filter. This example shows one way
19074of handling this requirement:
19075
19076....
19077file = ${if eq{$address_file}{inbox} \
19078 {/var/mail/$local_part} \
19079 {${if eq{${substr_0_1:$address_file}}{/} \
19080 {$address_file} \
19081 {$home/mail/$address_file} \
19082 }} \
19083 }
19084....
19085
19086With this setting of %file%, 'inbox' refers to the standard mailbox location,
19087absolute paths are used without change, and other folders are in the _mail_
19088directory within the home directory.
19089
19090*Note 1*: While processing an Exim filter, a relative path such as
19091_folder23_ is turned into an absolute path if a home directory is known to
19092the router. In particular, this is the case if %check_local_user% is set. If
19093you want to prevent this happening at routing time, you can set
19094%router_home_directory% empty. This forces the router to pass the relative
19095path to the transport.
19096
19097*Note 2*: An absolute path in $address_file$ is not treated specially;
19098the %file% or %directory% option is still used if it is set.
19099
19100
19101
19102
19103Private options for appendfile
19104~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19105cindex:[options,^appendfile^ transport]
19106
19107
19108
19109oindex:[%allow_fifo%]
19110`..'=
19111%allow_fifo%, Use: 'appendfile', Type: 'boolean', Default: 'false'
19112===
19113
19114cindex:[fifo (named pipe)]
19115cindex:[named pipe (fifo)]
19116cindex:[pipe,named (fifo)]
19117Setting this option permits delivery to named pipes (FIFOs) as well as to
19118regular files. If no process is reading the named pipe at delivery time, the
19119delivery is deferred.
19120
19121
19122oindex:[%allow_symlink%]
19123`..'=
19124%allow_symlink%, Use: 'appendfile', Type: 'boolean', Default: 'false'
19125===
19126
19127cindex:[symbolic link,to mailbox]
19128cindex:[mailbox,symbolic link]
19129By default, ^appendfile^ will not deliver if the path name for the file is
19130that of a symbolic link. Setting this option relaxes that constraint, but there
19131are security issues involved in the use of symbolic links. Be sure you know
19132what you are doing if you set this. Details of exactly what this option affects
19133are included in the discussion which follows this list of options.
19134
19135
19136oindex:[%batch_id%]
19137`..'=
19138%batch_id%, Use: 'appendfile', Type: 'string'!!, Default: 'unset'
19139===
19140
19141See the description of local delivery batching in chapter <<CHAPbatching>>.
19142However, batching is automatically disabled for ^appendfile^ deliveries that
19143happen as a result of forwarding or aliasing or other redirection directly to a
19144file.
19145
19146
19147oindex:[%batch_max%]
19148`..'=
19149%batch_max%, Use: 'appendfile', Type: 'integer', Default: '1'
19150===
19151
19152See the description of local delivery batching in chapter <<CHAPbatching>>.
19153
19154
19155oindex:[%check_group%]
19156`..'=
19157%check_group%, Use: 'appendfile', Type: 'boolean', Default: 'false'
19158===
19159
19160When this option is set, the group owner of the file defined by the %file%
19161option is checked to see that it is the same as the group under which the
19162delivery process is running. The default setting is false because the default
19163file mode is 0600, which means that the group is irrelevant.
19164
19165
19166oindex:[%check_owner%]
19167`..'=
19168%check_owner%, Use: 'appendfile', Type: 'boolean', Default: 'true'
19169===
19170
19171When this option is set, the owner of the file defined by the %file% option is
19172checked to ensure that it is the same as the user under which the delivery
19173process is running.
19174
19175
19176oindex:[%check_string%]
19177`..'=
19178%check_string%, Use: 'appendfile', Type: 'string', Default: 'see below'
19179===
19180
19181cindex:[``From'' line]
19182As ^appendfile^ writes the message, the start of each line is tested for
19183matching %check_string%, and if it does, the initial matching characters are
19184replaced by the contents of %escape_string%. The value of %check_string% is a
19185literal string, not a regular expression, and the case of any letters it
19186contains is significant.
19187
19188If %use_bsmtp% is set the values of %check_string% and %escape_string% are
19189forced to ``.'' and ``..'' respectively, and any settings in the configuration are
19190ignored. Otherwise, they default to ``From '' and ``>From '' when the %file% option
19191is set, and unset when
19192any of the %directory%, %maildir%, or %mailstore% options are set.
19193
19194The default settings, along with %message_prefix% and %message_suffix%, are
19195suitable for traditional ``BSD'' mailboxes, where a line beginning with ``From
19196'' indicates the start of a new message. All four options need changing if
19197another format is used. For example, to deliver to mailboxes in MMDF format:
19198cindex:[MMDF format mailbox]
19199cindex:[mailbox,MMDF format]
19200
19201 check_string = "\1\1\1\1\n"
19202 escape_string = "\1\1\1\1 \n"
19203 message_prefix = "\1\1\1\1\n"
19204 message_suffix = "\1\1\1\1\n"
19205
19206oindex:[%create_directory%]
19207`..'=
19208%create_directory%, Use: 'appendfile', Type: 'boolean', Default: 'true'
19209===
19210
19211cindex:[directory creation]
19212When this option is true, Exim attempts to create any missing superior
19213directories for the file that it is about to write. A created directory's mode
19214is given by the %directory_mode% option.
19215
19216The group ownership of a newly created directory is highly dependent on the
19217operating system (and possibly the file system) that is being used. For
19218example, in Solaris, if the parent directory has the setgid bit set, its group
19219is propagated to the child; if not, the currently set group is used. However,
19220in FreeBSD, the parent's group is always used.
19221
19222
19223
19224oindex:[%create_file%]
19225`..'=
19226%create_file%, Use: 'appendfile', Type: 'string', Default: 'anywhere'
19227===
19228
19229This option constrains the location of files and directories that are created
19230by this transport. It applies to files defined by the %file% option and
19231directories defined by the %directory% option. In the case of maildir delivery,
19232it applies to the top level directory, not the maildir directories beneath.
19233
19234The option must be set to one of the words ``anywhere'', ``inhome'', or
19235``belowhome''. In the second and third cases, a home directory must have been set
19236for the transport. This option is not useful when an explicit file name is
19237given for normal mailbox deliveries. It is intended for the case when file
19238names are generated from users' _.forward_ files. These are usually handled
19239by an ^appendfile^ transport called %address_file%. See also
19240%file_must_exist%.
19241
19242
19243oindex:[%directory%]
19244`..'=
19245%directory%, Use: 'appendfile', Type: 'string'!!, Default: 'unset'
19246===
19247
19248This option is mutually exclusive with the %file% option, but one of %file% or
19249%directory% must be set, unless the delivery is the direct result of a
19250redirection (see section <<SECTfildiropt>>).
19251
19252When %directory% is set, the string is expanded, and the message is delivered
19253into a new file or files in or below the given directory, instead of being
19254appended to a single mailbox file. A number of different formats are provided
19255(see %maildir_format% and %mailstore_format%), and see section <<SECTopdir>>
19256for further details of this form of delivery.
19257
19258
19259oindex:[%directory_file%]
19260`..'=
19261%directory_file%, Use: 'appendfile', Type: 'string'!!, Default: `q\$\{base62{co}\$tod_epoch\}-\$inode`
19262===
19263
19264cindex:[base62]
19265When %directory% is set, but neither %maildir_format% nor %mailstore_format%
19266is set, ^appendfile^ delivers each message into a file whose name is obtained
19267by expanding this string. The default value generates a unique name from the
19268current time, in base 62 form, and the inode of the file. The variable
19269$inode$ is available only when expanding this option.
19270
19271
19272oindex:[%directory_mode%]
19273`..'=
19274%directory_mode%, Use: 'appendfile', Type: 'octal integer', Default: '0700'
19275===
19276
19277If ^appendfile^ creates any directories as a result of the %create_directory%
19278option, their mode is specified by this option.
19279
19280
19281oindex:[%escape_string%]
19282`..'=
19283%escape_string%, Use: 'appendfile', Type: 'string', Default: 'see description'
19284===
19285
19286See %check_string% above.
19287
19288
19289oindex:[%file%]
19290`..'=
19291%file%, Use: 'appendfile', Type: 'string'!!, Default: 'unset'
19292===
19293
19294This option is mutually exclusive with the %directory% option, but one of
19295%file% or %directory% must be set, unless the delivery is the direct result of
19296a redirection (see section <<SECTfildiropt>>). The %file% option specifies a
19297single file, to which the message is appended. One or more of
19298%use_fcntl_lock%, %use_flock_lock%, or %use_lockfile% must be set with
19299%file%.
19300
19301cindex:[NFS,lock file]
19302cindex:[locking files]
19303cindex:[lock files]
19304If you are using more than one host to deliver over NFS into the same
19305mailboxes, you should always use lock files.
19306
19307The string value is expanded for each delivery, and must yield an absolute
19308path. The most common settings of this option are variations on one of these
19309examples:
19310
19311 file = /var/spool/mail/$local_part
19312 file = /home/$local_part/inbox
19313 file = $home/inbox
19314
19315cindex:[``sticky'' bit]
19316In the first example, all deliveries are done into the same directory. If Exim
19317is configured to use lock files (see %use_lockfile% below) it must be able to
19318create a file in the directory, so the ``sticky'' bit must be turned on for
19319deliveries to be possible, or alternatively the %group% option can be used to
19320run the delivery under a group id which has write access to the directory.
19321
19322
19323
19324oindex:[%file_format%]
19325`..'=
19326%file_format%, Use: 'appendfile', Type: 'string', Default: 'unset'
19327===
19328
19329cindex:[file,mailbox; checking existing format]
19330This option requests the transport to check the format of an existing file
19331before adding to it. The check consists of matching a specific string at the
19332start of the file. The value of the option consists of an even number of
19333colon-separated strings. The first of each pair is the test string, and the
19334second is the name of a transport. If the transport associated with a matched
19335string is not the current transport, control is passed over to the other
19336transport. For example, suppose the standard ^local_delivery^ transport has
19337this added to it:
19338
19339....
19340file_format = "From : local_delivery :\
19341 \1\1\1\1\n : local_mmdf_delivery"
19342....
19343
19344Mailboxes that begin with ``From'' are still handled by this transport, but if a
19345mailbox begins with four binary ones followed by a newline, control is passed
19346to a transport called %local_mmdf_delivery%, which presumably is configured
19347to do the delivery in MMDF format. If a mailbox does not exist or is empty, it
19348is assumed to match the current transport. If the start of a mailbox doesn't
19349match any string, or if the transport named for a given string is not defined,
19350delivery is deferred.
19351
19352
19353oindex:[%file_must_exist%]
19354`..'=
19355%file_must_exist%, Use: 'appendfile', Type: 'boolean', Default: 'false'
19356===
19357
19358If this option is true, the file specified by the %file% option must exist, and
19359an error occurs if it does not. Otherwise, it is created if it does not exist.
19360
19361
19362oindex:[%lock_fcntl_timeout%]
19363`..'=
19364%lock_fcntl_timeout%, Use: 'appendfile', Type: 'time', Default: '0s'
19365===
19366
19367cindex:[timeout,mailbox locking]
19368cindex:[mailbox locking,blocking and non-blocking]
19369cindex:[locking files]
19370By default, the ^appendfile^ transport uses non-blocking calls to 'fcntl()'
19371when locking an open mailbox file. If the call fails, the delivery process
19372sleeps for %lock_interval% and tries again, up to %lock_retries% times.
19373Non-blocking calls are used so that the file is not kept open during the wait
19374for the lock; the reason for this is to make it as safe as possible for
19375deliveries over NFS in the case when processes might be accessing an NFS
19376mailbox without using a lock file. This should not be done, but
19377misunderstandings and hence misconfigurations are not unknown.
19378
19379On a busy system, however, the performance of a non-blocking lock approach is
19380not as good as using a blocking lock with a timeout. In this case, the waiting
19381is done inside the system call, and Exim's delivery process acquires the lock
19382and can proceed as soon as the previous lock holder releases it.
19383
19384If %lock_fcntl_timeout% is set to a non-zero time, blocking locks, with that
19385timeout, are used. There may still be some retrying: the maximum number of
19386retries is
19387
19388 (lock_retries * lock_interval) / lock_fcntl_timeout
19389
19390rounded up to the next whole number. In other words, the total time during
19391which ^appendfile^ is trying to get a lock is roughly the same, unless
19392%lock_fcntl_timeout% is set very large.
19393
19394You should consider setting this option if you are getting a lot of delayed
19395local deliveries because of errors of the form
19396
19397 failed to lock mailbox /some/file (fcntl)
19398
19399
19400
19401oindex:[%lock_flock_timeout%]
19402`..'=
19403%lock_flock_timeout%, Use: 'appendfile', Type: 'time', Default: '0s'
19404===
19405
19406This timeout applies to file locking when using 'flock()' (see %use_flock%);
19407the timeout operates in a similar manner to %lock_fcntl_timeout%.
19408
19409
19410oindex:[%lock_interval%]
19411`..'=
19412%lock_interval%, Use: 'appendfile', Type: 'time', Default: '3s'
19413===
19414
19415This specifies the time to wait between attempts to lock the file. See below
19416for details of locking.
19417
19418
19419oindex:[%lock_retries%]
19420`..'=
19421%lock_retries%, Use: 'appendfile', Type: 'integer', Default: '10'
19422===
19423
19424This specifies the maximum number of attempts to lock the file. A value of zero
19425is treated as 1. See below for details of locking.
19426
19427
19428oindex:[%lockfile_mode%]
19429`..'=
19430%lockfile_mode%, Use: 'appendfile', Type: 'octal integer', Default: '0600'
19431===
19432
19433This specifies the mode of the created lock file, when a lock file is being
19434used (see %use_lockfile%).
19435
19436
19437oindex:[%lockfile_timeout%]
19438`..'=
19439%lockfile_timeout%, Use: 'appendfile', Type: 'time', Default: '30m'
19440===
19441
19442cindex:[timeout,mailbox locking]
19443When a lock file is being used (see %use_lockfile%), if a lock file already
19444exists and is older than this value, it is assumed to have been left behind by
19445accident, and Exim attempts to remove it.
19446
19447
19448oindex:[%mailbox_filecount%]
19449`..'=
19450%mailbox_filecount%, Use: 'appendfile', Type: 'string'!!, Default: 'unset'
19451===
19452
19453cindex:[mailbox,specifying size of]
19454cindex:[size,of mailbox]
19455If this option is set, it is expanded, and the result is taken as the current
19456number of files in the mailbox. It must be a decimal number, optionally
19457followed by K or M. This provides a way of obtaining this information from an
19458external source that maintains the data.
19459
19460
19461oindex:[%mailbox_size%]
19462`..'=
19463%mailbox_size%, Use: 'appendfile', Type: 'string'!!, Default: 'unset'
19464===
19465
19466cindex:[mailbox,specifying size of]
19467cindex:[size,of mailbox]
19468If this option is set, it is expanded, and the result is taken as the current
19469size the mailbox. It must be a decimal number, optionally followed by K or M.
19470This provides a way of obtaining this information from an external source that
19471maintains the data. This is likely to be helpful for maildir deliveries where
19472it is computationally expensive to compute the size of a mailbox.
19473
19474
19475
19476oindex:[%maildir_format%]
19477`..'=
19478%maildir_format%, Use: 'appendfile', Type: 'boolean', Default: 'false'
19479===
19480
19481cindex:[maildir format,specifying]
19482If this option is set with the %directory% option, the delivery is into a new
19483file, in the ``maildir'' format that is used by other mail software. When the
19484transport is activated directly from a ^redirect^ router (for example, the
19485^address_file^ transport in the default configuration), setting
19486%maildir_format% causes the path received from the router to be treated as a
19487directory, whether or not it ends with `/`. This option is available only if
19488SUPPORT_MAILDIR is present in _Local/Makefile_. See section
19489<<SECTmaildirdelivery>> below for further details.
19490
19491
19492oindex:[%maildir_quota_directory_regex%]
19493`..'=
19494%maildir_quota_directory_regex%, Use: 'appendfile', Type: 'string', Default: 'See below'
19495===
19496
19497cindex:[maildir format,quota; directories included in]
19498cindex:[quota,maildir; directories included in]
19499This option is relevant only when %maildir_use_size_file% is set. It defines
19500a regular expression for specifying directories that should be included in the
19501quota calculation. The default value is
19502
19503 maildir_quota_directory_regex = ^(?:cur|new|\..*)$
19504
19505which includes the _cur_ and _new_ directories, and any maildir++ folders
19506(directories whose names begin with a dot). If you want to exclude the
19507_Trash_
19508folder from the count (as some sites do), you need to change this setting to
19509
19510 maildir_quota_directory_regex = ^(?:cur|new|\.(?!Trash).*)$
19511
19512This uses a negative lookahead in the regular expression to exclude the
19513directory whose name is _.Trash_.
19514
19515
19516oindex:[%maildir_retries%]
19517`..'=
19518%maildir_retries%, Use: 'appendfile', Type: 'integer', Default: '10'
19519===
19520
19521This option specifies the number of times to retry when writing a file in
19522``maildir'' format. See section <<SECTmaildirdelivery>> below.
19523
19524
19525oindex:[%maildir_tag%]
19526`..'=
19527%maildir_tag%, Use: 'appendfile', Type: 'string'!!, Default: 'unset'
19528===
19529
19530This option applies only to deliveries in maildir format, and is described in
19531section <<SECTmaildirdelivery>> below.
19532
19533
19534oindex:[%maildir_use_size_file%]
19535`..'=
19536%maildir_use_size_file%, Use: 'appendfile', Type: 'boolean', Default: 'false'
19537===
19538
19539cindex:[maildir format,_maildirsize_ file]
19540Setting this option true enables support for _maildirsize_ files. Exim
19541creates a _maildirsize_ file in a maildir if one does not exist, taking the
19542quota from the %quota% option of the transport. If %quota% is unset, the value
19543is zero. See section <<SECTmaildirdelivery>> below for further details.
19544
19545
19546oindex:[%mailstore_format%]
19547`..'=
19548%mailstore_format%, Use: 'appendfile', Type: 'boolean', Default: 'false'
19549===
19550
19551cindex:[mailstore format,specifying]
19552If this option is set with the %directory% option, the delivery is into two new
19553files in ``mailstore'' format. The option is available only if
19554SUPPORT_MAILSTORE is present in _Local/Makefile_. See section
19555<<SECTopdir>> below for further details.
19556
19557
19558oindex:[%mailstore_prefix%]
19559`..'=
19560%mailstore_prefix%, Use: 'appendfile', Type: 'string'!!, Default: 'unset'
19561===
19562
19563This option applies only to deliveries in mailstore format, and is described in
19564section <<SECTopdir>> below.
19565
19566
19567oindex:[%mailstore_suffix%]
19568`..'=
19569%mailstore_suffix%, Use: 'appendfile', Type: 'string'!!, Default: 'unset'
19570===
19571
19572This option applies only to deliveries in mailstore format, and is described in
19573section <<SECTopdir>> below.
19574
19575
19576oindex:[%mbx_format%]
19577`..'=
19578%mbx_format%, Use: 'appendfile', Type: 'boolean', Default: 'false'
19579===
19580
19581cindex:[locking files]
19582cindex:[file,locking]
19583cindex:[file,MBX format]
19584cindex:[MBX format, specifying]
19585This option is available only if Exim has been compiled with SUPPORT_MBX
19586set in _Local/Makefile_. If %mbx_format% is set with the %file% option,
19587the message is appended to the mailbox file in MBX format instead of
19588traditional Unix format. This format is supported by Pine4 and its associated
19589IMAP and POP daemons, by means of the 'c-client' library that they all use.
19590
19591*Note*: The %message_prefix% and %message_suffix% options are not
19592automatically changed by the use of %mbx_format%. They should normally be set
19593empty when using MBX format, so this option almost always appears in this
19594combination:
19595
19596 mbx_format = true
19597 message_prefix =
19598 message_suffix =
19599
19600
19601If none of the locking options are mentioned in the configuration,
19602%use_mbx_lock% is assumed and the other locking options default to false. It
19603is possible to specify the other kinds of locking with %mbx_format%, but
19604%use_fcntl_lock% and %use_mbx_lock% are mutually exclusive. MBX locking
19605interworks with 'c-client', providing for shared access to the mailbox. It
19606should not be used if any program that does not use this form of locking is
19607going to access the mailbox, nor should it be used if the mailbox file is NFS
19608mounted, because it works only when the mailbox is accessed from a single host.
19609
19610If you set %use_fcntl_lock% with an MBX-format mailbox, you cannot use
19611the standard version of 'c-client', because as long as it has a mailbox open
19612(this means for the whole of a Pine or IMAP session), Exim will not be able to
19613append messages to it.
19614
19615
19616oindex:[%message_prefix%]
19617`..'=
19618%message_prefix%, Use: 'appendfile', Type: 'string'!!, Default: 'see below'
19619===
19620
19621cindex:[``From'' line]
19622The string specified here is expanded and output at the start of every message.
19623The default is unset unless %file% is specified and %use_bsmtp% is not set, in
19624which case it is:
19625
19626....
19627message_prefix = "From ${if def:return_path{$return_path}\
19628 {MAILER-DAEMON}} $tod_bsdinbox\n"
19629....
19630
19631
19632
19633oindex:[%message_suffix%]
19634`..'=
19635%message_suffix%, Use: 'appendfile', Type: 'string'!!, Default: 'see below'
19636===
19637
19638The string specified here is expanded and output at the end of every message.
19639The default is unset unless %file% is specified and %use_bsmtp% is not set, in
19640which case it is a single newline character. The suffix can be suppressed by
19641setting
19642
19643 message_suffix =
19644
19645
19646
19647oindex:[%mode%]
19648`..'=
19649%mode%, Use: 'appendfile', Type: 'octal integer', Default: '0600'
19650===
19651
19652If the output file is created, it is given this mode. If it already exists and
19653has wider permissions, they are reduced to this mode. If it has narrower
19654permissions, an error occurs unless %mode_fail_narrower% is false. However,
19655if the delivery is the result of a %save% command in a filter file specifing a
19656particular mode, the mode of the output file is always forced to take that
19657value, and this option is ignored.
19658
19659
19660oindex:[%mode_fail_narrower%]
19661`..'=
19662%mode_fail_narrower%, Use: 'appendfile', Type: 'boolean', Default: 'true'
19663===
19664
19665This option applies in the case when an existing mailbox file has a narrower
19666mode than that specified by the %mode% option. If %mode_fail_narrower% is
19667true, the delivery is deferred (``mailbox has the wrong mode''); otherwise Exim
19668continues with the delivery attempt, using the existing mode of the file.
19669
19670
19671oindex:[%notify_comsat%]
19672`..'=
19673%notify_comsat%, Use: 'appendfile', Type: 'boolean', Default: 'false'
19674===
19675
19676If this option is true, the 'comsat' daemon is notified after every successful
19677delivery to a user mailbox. This is the daemon that notifies logged on users
19678about incoming mail.
19679
19680
19681oindex:[%quota%]
19682`..'=
19683%quota%, Use: 'appendfile', Type: 'string'!!, Default: 'unset'
19684===
19685
19686cindex:[quota,imposed by Exim]
19687This option imposes a limit on the size of the file to which Exim is appending,
19688or to the total space used in the directory tree when the %directory% option is
19689set. In the latter case, computation of the space used is expensive, because
19690all the files in the directory (and any sub-directories) have to be
19691individually inspected and their sizes summed.
19692(See %quota_size_regex% and %maildir_use_size_file% for ways to avoid this
19693in environments where users have no shell access to their mailboxes).
19694
19695As there is no interlock against two simultaneous deliveries into a
19696multi-file mailbox, it is possible for the quota to be overrun in this case.
19697For single-file mailboxes, of course, an interlock is a necessity.
19698
19699A file's size is taken as its 'used' value. Because of blocking effects, this
19700may be a lot less than the actual amount of disk space allocated to the file.
19701If the sizes of a number of files are being added up, the rounding effect can
19702become quite noticeable, especially on systems that have large block sizes.
19703Nevertheless, it seems best to stick to the 'used' figure, because this is
19704the obvious value which users understand most easily.
19705
19706The value of the option is expanded, and must then be a numerical value
19707(decimal point allowed), optionally followed by one of the letters K or M. The
19708expansion happens while Exim is running as root, before it changes uid for the
19709delivery. This means that files which are inaccessible to the end user can be
19710used to hold quota values that are looked up in the expansion. When delivery
19711fails because this quota is exceeded, the handling of the error is as for
19712system quota failures.
19713
19714*Note*: A value of zero is interpreted as ``no quota''.
19715
19716By default, Exim's quota checking mimics system quotas, and restricts the
19717mailbox to the specified maximum size, though the value is not accurate to the
19718last byte, owing to separator lines and additional headers that may get added
19719during message delivery. When a mailbox is nearly full, large messages may get
19720refused even though small ones are accepted, because the size of the current
19721message is added to the quota when the check is made. This behaviour can be
19722changed by setting %quota_is_inclusive% false. When this is done, the check
19723for exceeding the quota does not include the current message. Thus, deliveries
19724continue until the quota has been exceeded; thereafter, no further messages are
19725delivered. See also %quota_warn_threshold%.
19726
19727
19728oindex:[%quota_directory%]
19729`..'=
19730%quota_directory%, Use: 'appendfile', Type: 'string'!!, Default: 'unset'
19731===
19732
19733This option defines the directory to check for quota purposes when delivering
19734into individual files. The default is the delivery directory, or, if a file
19735called _maildirfolder_ exists in a maildir directory, the parent of the
19736delivery directory.
19737
19738
19739oindex:[%quota_filecount%]
19740`..'=
19741%quota_filecount%, Use: 'appendfile', Type: 'string'!!, Default: '0'
19742===
19743
19744This option applies when the %directory% option is set. It limits the total
19745number of files in the directory (compare the inode limit in system quotas). It
19746can only be used if %quota% is also set. The value is expanded; an expansion
19747failure causes delivery to be deferred.
19748
19749
19750oindex:[%quota_is_inclusive%]
19751`..'=
19752%quota_is_inclusive%, Use: 'appendfile', Type: 'boolean', Default: 'true'
19753===
19754
19755See %quota% above.
19756
19757
19758oindex:[%quota_size_regex%]
19759`..'=
19760%quota_size_regex%, Use: 'appendfile', Type: 'string', Default: 'unset'
19761===
19762
19763This option applies when one of the delivery modes that writes a separate file
19764for each message is being used. When Exim wants to find the size of one of
19765these files in order to test the quota, it first checks %quota_size_regex%.
19766If this is set to a regular expression that matches the file name, and it
19767captures one string, that string is interpreted as a representation of the
19768file's size. The value of %quota_size_regex% is not expanded.
19769
19770This feature is useful only when users have no shell access to their mailboxes
19771-- otherwise they could defeat the quota simply by renaming the files. This
19772facility can be used with maildir deliveries, by setting %maildir_tag% to add
19773the file length to the file name. For example:
19774
19775 maildir_tag = ,S=$message_size
19776 quota_size_regex = ,S=(\d+)
19777
19778The regular expression should not assume that the length is at the end of the
19779file name (even though %maildir_tag% puts it there) because maildir MUAs
19780sometimes add other information onto the ends of message file names.
19781
19782
19783oindex:[%quota_warn_message%]
19784`..'=
19785%quota_warn_message%, Use: 'appendfile', Type: 'string'!!, Default: 'see below'
19786===
19787
19788See below for the use of this option. If it is not set when
19789%quota_warn_threshold% is set, it defaults to
19790
19791....
19792quota_warn_message = "\
19793 To: $local_part@$domain\n\
19794 Subject: Your mailbox\n\n\
19795 This message is automatically created \
19796 by mail delivery software.\n\n\
19797 The size of your mailbox has exceeded \
19798 a warning threshold that is\n\
19799 set by the system administrator.\n"
19800....
19801
19802
19803
19804oindex:[%quota_warn_threshold%]
19805`..'=
19806%quota_warn_threshold%, Use: 'appendfile', Type: 'string'!!, Default: '0'
19807===
19808
19809cindex:[quota,warning threshold]
19810cindex:[mailbox,size warning]
19811cindex:[size,of mailbox]
19812This option is expanded in the same way as %quota% (see above). If the
19813resulting value is greater than zero, and delivery of the message causes the
19814size of the file or total space in the directory tree to cross the given
19815threshold, a warning message is sent. If %quota% is also set, the threshold may
19816be specified as a percentage of it by following the value with a percent sign.
19817For example:
19818
19819 quota = 10M
19820 quota_warn_threshold = 75%
19821
19822If %quota% is not set, a setting of %quota_warn_threshold% that ends with a
19823percent sign is ignored.
19824
19825The warning message itself is specified by the %quota_warn_message% option,
19826and it must start with a 'To:' header line containing the recipient(s). A
19827'Subject:' line should also normally be supplied. The %quota% option does not
19828have to be set in order to use this option; they are independent of one
19829another except when the threshold is specified as a percentage.
19830
19831
19832oindex:[%use_bsmtp%]
19833`..'=
19834%use_bsmtp%, Use: 'appendfile', Type: 'boolean', Default: 'false'
19835===
19836
19837cindex:[envelope sender]
19838If this option is set true, ^appendfile^ writes messages in ``batch SMTP''
19839format, with the envelope sender and recipient(s) included as SMTP commands. If
19840you want to include a leading HELO command with such messages, you can do
19841so by setting the %message_prefix% option. See section <<SECTbatchSMTP>> for
19842details of batch SMTP.
19843
19844
19845oindex:[%use_crlf%]
19846`..'=
19847%use_crlf%, Use: 'appendfile', Type: 'boolean', Default: 'false'
19848===
19849
19850cindex:[carriage return]
19851cindex:[linefeed]
19852This option causes lines to be terminated with the two-character CRLF sequence
19853(carriage return, linefeed) instead of just a linefeed character. In the case
19854of batched SMTP, the byte sequence written to the file is then an exact image
19855of what would be sent down a real SMTP connection.
19856
19857The contents of the %message_prefix% and %message_suffix% options are written
19858verbatim, so must contain their own carriage return characters if these are
19859needed. In cases where these options have non-empty defaults, the values end
19860with a single linefeed, so they
19861must
19862be changed to end with `\r\n` if %use_crlf% is set.
19863
19864
19865oindex:[%use_fcntl_lock%]
19866`..'=
19867%use_fcntl_lock%, Use: 'appendfile', Type: 'boolean', Default: 'see below'
19868===
19869
19870This option controls the use of the 'fcntl()' function to lock a file for
19871exclusive use when a message is being appended. It is set by default unless
19872%use_flock_lock% is set. Otherwise, it should be turned off only if you know
19873that all your MUAs use lock file locking. When both %use_fcntl_lock% and
19874%use_flock_lock% are unset, %use_lockfile% must be set.
19875
19876
19877oindex:[%use_flock_lock%]
19878`..'=
19879%use_flock_lock%, Use: 'appendfile', Type: 'boolean', Default: 'false'
19880===
19881
19882This option is provided to support the use of 'flock()' for file locking, for
19883the few situations where it is needed. Most modern operating systems support
19884'fcntl()' and 'lockf()' locking, and these two functions interwork with
19885each other. Exim uses 'fcntl()' locking by default.
19886
19887This option is required only if you are using an operating system where
19888'flock()' is used by programs that access mailboxes (typically MUAs), and
19889where 'flock()' does not correctly interwork with 'fcntl()'. You can use
19890both 'fcntl()' and 'flock()' locking simultaneously if you want.
19891
19892cindex:[Solaris,'flock()' support]
19893Not all operating systems provide 'flock()'. Some versions of Solaris do not
19894have it (and some, I think, provide a not quite right version built on top of
19895'lockf()'). If the OS does not have 'flock()', Exim will be built without
19896the ability to use it, and any attempt to do so will cause a configuration
19897error.
19898
19899*Warning*: 'flock()' locks do not work on NFS files (unless 'flock()'
19900is just being mapped onto 'fcntl()' by the OS).
19901
19902
19903oindex:[%use_lockfile%]
19904`..'=
19905%use_lockfile%, Use: 'appendfile', Type: 'boolean', Default: 'see below'
19906===
19907
19908If this option is turned off, Exim does not attempt to create a lock file when
19909appending to a mailbox file. In this situation, the only locking is by
19910'fcntl()'. You should only turn %use_lockfile% off if you are absolutely
19911sure that every MUA that is ever going to look at your users' mailboxes uses
19912'fcntl()' rather than a lock file, and even then only when you are not
19913delivering over NFS from more than one host.
19914
19915cindex:[NFS,lock file]
19916In order to append to an NFS file safely from more than one host, it is
19917necessary to take out a lock 'before' opening the file, and the lock file
19918achieves this. Otherwise, even with 'fcntl()' locking, there is a risk of
19919file corruption.
19920
19921The %use_lockfile% option is set by default unless %use_mbx_lock% is set. It
19922is not possible to turn both %use_lockfile% and %use_fcntl_lock% off, except
19923when %mbx_format% is set.
19924
19925
19926oindex:[%use_mbx_lock%]
19927`..'=
19928%use_mbx_lock%, Use: 'appendfile', Type: 'boolean', Default: 'see below'
19929===
19930
19931This option is available only if Exim has been compiled with SUPPORT_MBX
19932set in _Local/Makefile_. Setting the option specifies that special MBX
19933locking rules be used. It is set by default if %mbx_format% is set and none of
19934the locking options are mentioned in the configuration. The locking rules are
19935the same as are used by the 'c-client' library that underlies Pine and the
19936IMAP4 and POP daemons that come with it (see the discussion below). The rules
19937allow for shared access to the mailbox. However, this kind of locking does not
19938work when the mailbox is NFS mounted.
19939
19940You can set %use_mbx_lock% with either (or both) of %use_fcntl_lock% and
19941%use_flock_lock% to control what kind of locking is used in implementing the
19942MBX locking rules. The default is to use 'fcntl()' if %use_mbx_lock% is set
19943without %use_fcntl_lock% or %use_flock_lock%.
19944
19945
19946
19947
19948[[SECTopappend]]
19949Operational details for appending
19950~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19951cindex:[appending to a file]
19952cindex:[file,appending]
19953Before appending to a file, the following preparations are made:
19954
19955- If the name of the file is _/dev/null_, no action is taken, and a success
19956return is given.
19957
19958- cindex:[directory creation]
19959If any directories on the file's path are missing, Exim creates them if the
19960%create_directory% option is set. A created directory's mode is given by the
19961%directory_mode% option.
19962
19963- If %file_format% is set, the format of an existing file is checked. If this
19964indicates that a different transport should be used, control is passed to that
19965transport.
19966
19967- cindex:[file,locking]
19968cindex:[locking files]
19969cindex:[NFS,lock file]
19970If %use_lockfile% is set, a lock file is built in a way that will work
19971reliably over NFS, as follows:
19972+
19973--
19974. Create a ``hitching post'' file whose name is that of the lock file with the
19975current time, primary host name, and process id added, by opening for writing
19976as a new file. If this fails with an access error, delivery is deferred.
19977
19978. Close the hitching post file, and hard link it to the lock file name.
19979
19980. If the call to 'link()' succeeds, creation of the lock file has succeeded.
19981Unlink the hitching post name.
19982
19983. Otherwise, use 'stat()' to get information about the hitching post file, and
19984then unlink hitching post name. If the number of links is exactly two, creation
19985of the lock file succeeded but something (for example, an NFS server crash and
19986restart) caused this fact not to be communicated to the 'link()' call.
19987
19988. If creation of the lock file failed, wait for %lock_interval% and try again,
19989up to %lock_retries% times. However, since any program that writes to a
19990mailbox should complete its task very quickly, it is reasonable to time out old
19991lock files that are normally the result of user agent and system crashes. If an
19992existing lock file is older than %lockfile_timeout% Exim attempts to unlink it
19993before trying again.
19994--
19995+
19996- A call is made to 'lstat()' to discover whether the main file exists, and if
19997so, what its characteristics are. If 'lstat()' fails for any reason other
19998than non-existence, delivery is deferred.
19999
20000- cindex:[symbolic link,to mailbox]
20001cindex:[mailbox,symbolic link]
20002If the file does exist and is a symbolic link, delivery is deferred, unless the
20003%allow_symlink% option is set, in which case the ownership of the link is
20004checked, and then 'stat()' is called to find out about the real file, which
20005is then subjected to the checks below. The check on the top-level link
20006ownership prevents one user creating a link for another's mailbox in a sticky
20007directory, though allowing symbolic links in this case is definitely not a good
20008idea. If there is a chain of symbolic links, the intermediate ones are not
20009checked.
20010
20011- If the file already exists but is not a regular file, or if the file's owner
20012and group (if the group is being checked -- see %check_group% above) are
20013different from the user and group under which the delivery is running,
20014delivery is deferred.
20015
20016- If the file's permissions are more generous than specified, they are reduced.
20017If they are insufficient, delivery is deferred, unless %mode_fail_narrower%
20018is set false, in which case the delivery is tried using the existing
20019permissions.
20020
20021- The file's inode number is saved, and the file is then opened for appending.
20022If this fails because the file has vanished, ^appendfile^ behaves as if it
20023hadn't existed (see below). For any other failures, delivery is deferred.
20024
20025- If the file is opened successfully, check that the inode number hasn't
20026changed, that it is still a regular file, and that the owner and permissions
20027have not changed. If anything is wrong, defer delivery and freeze the message.
20028
20029- If the file did not exist originally, defer delivery if the %file_must_exist%
20030option is set. Otherwise, check that the file is being created in a permitted
20031directory if the %create_file% option is set (deferring on failure), and then
20032open for writing as a new file, with the O_EXCL and O_CREAT options,
20033except when dealing with a symbolic link (the %allow_symlink% option must be
20034set). In this case, which can happen if the link points to a non-existent file,
20035the file is opened for writing using O_CREAT but not O_EXCL, because
20036that prevents link following.
20037
20038- cindex:[loop,while file testing]
20039If opening fails because the file exists, obey the tests given above for
20040existing files. However, to avoid looping in a situation where the file is
20041being continuously created and destroyed, the exists/not-exists loop is broken
20042after 10 repetitions, and the message is then frozen.
20043
20044- If opening fails with any other error, defer delivery.
20045
20046- cindex:[file,locking]
20047cindex:[locking files]
20048Once the file is open, unless both %use_fcntl_lock% and %use_flock_lock%
20049are false, it is locked using 'fcntl()' or 'flock()' or both. If
20050%use_mbx_lock% is false, an exclusive lock is requested in each case.
20051However, if %use_mbx_lock% is true,
20052Exim takes out a shared lock on the open file,
20053and an exclusive lock on the file whose name is
20054
20055 /tmp/.<device-number>.<inode-number>
20056+
20057using the device and inode numbers of the open mailbox file, in accordance with
20058the MBX locking rules.
20059+
20060If Exim fails to lock the file, there are two possible courses of action,
20061depending on the value of the locking timeout. This is obtained from
20062%lock_fcntl_timeout% or %lock_flock_timeout%, as appropriate.
20063+
20064If the timeout value is zero, the file is closed, Exim waits for
20065%lock_interval%, and then goes back and re-opens the file as above and tries
20066to lock it again. This happens up to %lock_retries% times, after which the
20067delivery is deferred.
20068+
20069If the timeout has a value greater than zero, blocking calls to 'fcntl()' or
20070'flock()' are used (with the given timeout), so there has already been some
20071waiting involved by the time locking fails. Nevertheless, Exim does not give up
20072immediately. It retries up to
20073
20074 (lock_retries * lock_interval) / <timeout>
20075+
20076times (rounded up).
20077
20078
20079At the end of delivery, Exim closes the file (which releases the 'fcntl()'
20080and/or 'flock()' locks) and then deletes the lock file if one was created.
20081
20082
20083[[SECTopdir]]
20084Operational details for delivery to a new file
20085~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20086cindex:[delivery,to single file]
20087cindex:[``From'' line]
20088When the %directory% option is set instead of %file%, each message is delivered
20089into a newly-created file or set of files. When ^appendfile^ is activated
20090directly from a ^redirect^ router, neither %file% nor %directory% is normally
20091set, because the path for delivery is supplied by the router. (See for example,
20092the ^address_file^ transport in the default configuration.) In this case,
20093delivery is to a new file if either the path name ends in `/`, or the
20094%maildir_format% or %mailstore_format% option is set.
20095
20096No locking is required while writing the message to a new file, so the various
20097locking options of the transport are ignored. The ``From'' line that by default
20098separates messages in a single file is not normally needed, nor is the escaping
20099of message lines that start with ``From'', and there is no need to ensure a
20100newline at the end of each message. Consequently, the default values for
20101%check_string%, %message_prefix%, and %message_suffix% are all unset when
20102any of %directory%, %maildir_format%, or %mailstore_format% is set.
20103
20104If Exim is required to check a %quota% setting, it adds up the sizes of all the
20105files in the delivery directory by default. However, you can specify a
20106different directory by setting %quota_directory%. Also, for maildir deliveries
20107(see below) the _maildirfolder_ convention is honoured.
20108
20109
20110cindex:[maildir format]
20111cindex:[mailstore format]
20112There are three different ways in which delivery to individual files can be
20113done, controlled by the settings of the %maildir_format% and
20114%mailstore_format% options. Note that code to support maildir or mailstore
20115formats is not included in the binary unless SUPPORT_MAILDIR or
20116SUPPORT_MAILSTORE, respectively, is set in _Local/Makefile_.
20117
20118cindex:[directory creation]
20119In all three cases an attempt is made to create the directory and any necessary
20120sub-directories if they do not exist, provided that the %create_directory%
20121option is set (the default). The location of a created directory can be
20122constrained by setting %create_file%. A created directory's mode is given by
20123the %directory_mode% option. If creation fails, or if the %create_directory%
20124option is not set when creation is required, delivery is deferred.
20125
20126
20127
20128[[SECTmaildirdelivery]]
20129Maildir delivery
20130~~~~~~~~~~~~~~~~
20131cindex:[maildir format,description of]
20132If the %maildir_format% option is true, Exim delivers each message by writing
20133it to a file whose name is _tmp/<stime>.H<mtime>P<pid>.<host>_ in the
20134given directory. If the delivery is successful, the file is renamed into the
20135_new_ subdirectory.
20136
20137In the file name, <'stime'> is the current time of day in seconds, and
20138<'mtime'> is the microsecond fraction of the time. After a maildir delivery,
20139Exim checks that the time-of-day clock has moved on by at least one microsecond
20140before terminating the delivery process. This guarantees uniqueness for the
20141file name. However, as a precaution, Exim calls 'stat()' for the file before
20142opening it. If any response other than ENOENT (does not exist) is given,
20143Exim waits 2 seconds and tries again, up to %maildir_retries% times.
20144
20145cindex:[quota,in maildir delivery]
20146cindex:[maildir++]
20147If Exim is required to check a %quota% setting before a maildir delivery, and
20148%quota_directory% is not set, it looks for a file called _maildirfolder_ in
20149the maildir directory (alongside _new_, _cur_, _tmp_). If this exists,
20150Exim assumes the directory is a maildir++ folder directory, which is one level
20151down from the user's top level mailbox directory. This causes it to start at
20152the parent directory instead of the current directory when calculating the
20153amount of space used.
20154
20155One problem with delivering into a multi-file mailbox is that it is
20156computationally expensive to compute the size of the mailbox for quota
20157checking. Various approaches have been taken to reduce the amount of work
20158needed. The next two sections describe two of them. A third alternative is to
20159use some external process for maintaining the size data, and use the expansion
20160of the %mailbox_size% option as a way of importing it into Exim.
20161
20162
20163
20164
20165Using tags to record message sizes
20166~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20167If %maildir_tag% is set, the string is expanded for each delivery.
20168When the maildir file is renamed into the _new_ sub-directory, the
20169tag is added to its name. However, if adding the tag takes the length of the
20170name to the point where the test 'stat()' call fails with ENAMETOOLONG,
20171the tag is dropped and the maildir file is created with no tag.
20172
20173Tags can be used to encode the size of files in their names; see
20174%quota_size_regex% above for an example. The expansion of %maildir_tag%
20175happens after the message has been written. The value of the $message_size$
20176variable is set to the number of bytes actually written. If the expansion is
20177forced to fail, the tag is ignored, but a non-forced failure causes delivery to
20178be deferred. The expanded tag may contain any printing characters except ``/''.
20179Non-printing characters in the string are ignored; if the resulting string is
20180empty, it is ignored. If it starts with an alphanumeric character, a leading
20181colon is inserted.
20182
20183
20184
20185Using a maildirsize file
20186~~~~~~~~~~~~~~~~~~~~~~~~
20187cindex:[quota,in maildir delivery]
20188cindex:[maildir format,_maildirsize_ file]
20189If %maildir_use_size_file% is true, Exim implements the maildir++ rules for
20190storing quota and message size information in a file called _maildirsize_
20191within the maildir directory. If this file does not exist, Exim creates it,
20192setting the quota from the %quota% option of the transport. If the maildir
20193directory itself does not exist, it is created before any attempt to write a
20194_maildirsize_ file.
20195
20196The _maildirsize_ file is used to hold information about the sizes of
20197messages in the maildir, thus speeding up quota calculations. The quota value
20198in the file is just a cache; if the quota is changed in the transport, the new
20199value overrides the cached value when the next message is delivered. The cache
20200is maintained for the benefit of other programs that access the maildir and
20201need to know the quota.
20202
20203If the %quota% option in the transport is unset or zero, the _maildirsize_
20204file is maintained (with a zero quota setting), but no quota is imposed.
20205
20206A regular expression is available for controlling which directories in the
20207maildir participate in quota calculations. See the description of the
20208%maildir_quota_directory_regex% option above for details.
20209
20210
20211
20212Mailstore delivery
20213~~~~~~~~~~~~~~~~~~
20214cindex:[mailstore format,description of]
20215If the %mailstore_format% option is true, each message is written as two files
20216in the given directory. A unique base name is constructed from the message id
20217and the current delivery process, and the files that are written use this base
20218name plus the suffixes _.env_ and _.msg_. The _.env_ file contains the
20219message's envelope, and the _.msg_ file contains the message itself.
20220
20221During delivery, the envelope is first written to a file with the suffix
20222_.tmp_. The _.msg_ file is then written, and when it is complete, the
20223_.tmp_ file is renamed as the _.env_ file. Programs that access messages in
20224mailstore format should wait for the presence of both a _.msg_ and a _.env_
20225file before accessing either of them. An alternative approach is to wait for
20226the absence of a _.tmp_ file.
20227
20228The envelope file starts with any text defined by the %mailstore_prefix%
20229option, expanded and terminated by a newline if there isn't one. Then follows
20230the sender address on one line, then all the recipient addresses, one per line.
20231There can be more than one recipient only if the %batch_max% option is set
20232greater than one. Finally, %mailstore_suffix% is expanded and the result
20233appended to the file, followed by a newline if it does not end with one.
20234
20235If expansion of %mailstore_prefix% or %mailstore_suffix% ends with a forced
20236failure, it is ignored. Other expansion errors are treated as serious
20237configuration errors, and delivery is deferred.
20238
20239
20240
20241Non-special new file delivery
20242~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20243If neither %maildir_format% nor %mailstore_format% is set, a single new file
20244is created directly in the named directory. For example, when delivering
20245messages into files in batched SMTP format for later delivery to some host (see
20246section <<SECTbatchSMTP>>), a setting such as
20247
20248 directory = /var/bsmtp/$host
20249
20250might be used. A message is written to a file with a temporary name, which is
20251then renamed when the delivery is complete. The final name is obtained by
20252expanding the contents of the %directory_file% option.
20253
20254
20255
20256
20257
20258
20259////////////////////////////////////////////////////////////////////////////
20260////////////////////////////////////////////////////////////////////////////
20261
20262The autoreply transport
20263-----------------------
20264cindex:[transports,^autoreply^]
20265cindex:[^autoreply^ transport]
20266The ^autoreply^ transport is not a true transport in that it does not cause
20267the message to be transmitted. Instead, it generates a new mail message.
20268
20269If the router that passes the message to this transport does not have the
20270%unseen% option set, the original message (for the current recipient) is not
20271delivered anywhere. However, when the %unseen% option is set on the router that
20272passes the message to this transport, routing of the address continues, so
20273another router can set up a normal message delivery.
20274
20275
20276The ^autoreply^ transport is usually run as the result of mail filtering, a
20277``vacation'' message being the standard example. However, it can also be run
20278directly from a router like any other transport. To reduce the possibility of
20279message cascades, messages created by the ^autoreply^ transport always have
20280empty envelope sender addresses, like bounce messages.
20281
20282The parameters of the message to be sent can be specified in the configuration
20283by options described below. However, these are used only when the address
20284passed to the transport does not contain its own reply information. When the
20285transport is run as a consequence of a
20286%mail%
20287or %vacation% command in a filter file, the parameters of the message are
20288supplied by the filter, and passed with the address. The transport's options
20289that define the message are then ignored (so they are not usually set in this
20290case). The message is specified entirely by the filter or by the transport; it
20291is never built from a mixture of options. However, the %file_optional%,
20292%mode%, and %return_message% options apply in all cases.
20293
20294^Autoreply^ is implemented as a local transport. When used as a result of a
20295command in a user's filter file, ^autoreply^ normally runs under the uid and
20296gid of the user, and with appropriate current and home directories (see chapter
20297<<CHAPenvironment>>).
20298
20299There is a subtle difference between routing a message to a ^pipe^ transport
20300that generates some text to be returned to the sender, and routing it to an
20301^autoreply^ transport. This difference is noticeable only if more than one
20302address from the same message is so handled. In the case of a pipe, the
20303separate outputs from the different addresses are gathered up and returned to
20304the sender in a single message, whereas if ^autoreply^ is used, a separate
20305message is generated for each address that is passed to it.
20306
20307Non-printing characters are not permitted in the header lines generated for the
20308message that ^autoreply^ creates, with the exception of newlines that are
20309immediately followed by whitespace. If any non-printing characters are found,
20310the transport defers.
20311Whether characters with the top bit set count as printing characters or not is
20312controlled by the %print_topbitchars% global option.
20313
20314If any of the generic options for manipulating headers (for example,
20315%headers_add%) are set on an ^autoreply^ transport, they apply to the copy of
20316the original message that is included in the generated message when
20317%return_message% is set. They do not apply to the generated message itself.
20318
20319If the ^autoreply^ transport receives return code 2 from Exim when it submits
20320the message, indicating that there were no recipients, it does not treat this
20321as an error. This means that autoreplies sent to $sender_address$ when this
20322is empty (because the incoming message is a bounce message) do not cause
20323problems. They are just discarded.
20324
20325
20326
20327Private options for autoreply
20328~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20329cindex:[options,^autoreply^ transport]
20330
20331oindex:[%bcc%]
20332`..'=
20333%bcc%, Use: 'autoreply', Type: 'string'!!, Default: 'unset'
20334===
20335
20336This specifies the addresses that are to receive ``blind carbon copies'' of the
20337message when the message is specified by the transport.
20338
20339
20340oindex:[%cc%]
20341`..'=
20342%cc%, Use: 'autoreply', Type: 'string'!!, Default: 'unset'
20343===
20344
20345This specifies recipients of the message and the contents of the 'Cc:' header
20346when the message is specified by the transport.
20347
20348
20349oindex:[%file%]
20350`..'=
20351%file%, Use: 'autoreply', Type: 'string'!!, Default: 'unset'
20352===
20353
20354The contents of the file are sent as the body of the message when the message
20355is specified by the transport. If both %file% and %text% are set, the text
20356string comes first.
20357
20358
20359oindex:[%file_expand%]
20360`..'=
20361%file_expand%, Use: 'autoreply', Type: 'boolean', Default: 'false'
20362===
20363
20364If this is set, the contents of the file named by the %file% option are
20365subjected to string expansion as they are added to the message.
20366
20367
20368oindex:[%file_optional%]
20369`..'=
20370%file_optional%, Use: 'autoreply', Type: 'boolean', Default: 'false'
20371===
20372
20373If this option is true, no error is generated if the file named by the %file%
20374option or passed with the address does not exist or cannot be read.
20375
20376
20377oindex:[%from%]
20378`..'=
20379%from%, Use: 'autoreply', Type: 'string'!!, Default: 'unset'
20380===
20381
20382This specifies the contents of the 'From:' header when the message is specified
20383by the transport.
20384
20385
20386oindex:[%headers%]
20387`..'=
20388%headers%, Use: 'autoreply', Type: 'string'!!, Default: 'unset'
20389===
20390
20391This specifies additional RFC 2822 headers that are to be added to the message when
20392the message is specified by the transport. Several can be given by using ``\n''
20393to separate them. There is no check on the format.
20394
20395
20396oindex:[%log%]
20397`..'=
20398%log%, Use: 'autoreply', Type: 'string'!!, Default: 'unset'
20399===
20400
20401This option names a file in which a record of every message sent is logged when
20402the message is specified by the transport.
20403
20404
20405oindex:[%mode%]
20406`..'=
20407%mode%, Use: 'autoreply', Type: 'octal integer', Default: '0600'
20408===
20409
20410If either the log file or the ``once'' file has to be created, this mode is used.
20411
20412
20413oindex:[%never_mail%]
20414`..'=
20415%never_mail%, Use: 'autoreply', Type: 'address list'!!, Default: 'unset'
20416===
20417
20418If any run of the transport creates a message with a recipient that matches any
20419item in the list, that recipient is quietly discarded. If all recipients are
20420discarded, no message is created.
20421
20422
20423
20424oindex:[%once%]
20425`..'=
20426%once%, Use: 'autoreply', Type: 'string'!!, Default: 'unset'
20427===
20428
20429This option names a file or DBM database in which a record of each
20430'To:' recipient is kept when the message is specified by the transport.
20431*Note*: This does not apply to 'Cc:' or 'Bcc:' recipients.
20432If %once_file_size% is not set, a DBM database is used, and it is allowed to
20433grow as large as necessary. If a potential recipient is already in the
20434database, no message is sent by default. However, if %once_repeat% specifies a
20435time greater than zero, the message is sent if that much time has elapsed since
20436a message was last sent to this recipient. If %once% is unset, the message is
20437always sent.
20438
20439If %once_file_size% is set greater than zero, it changes the way Exim
20440implements the %once% option. Instead of using a DBM file to record every
20441recipient it sends to, it uses a regular file, whose size will never get larger
20442than the given value. In the file, it keeps a linear list of recipient
20443addresses and times at which they were sent messages. If the file is full when
20444a new address needs to be added, the oldest address is dropped. If
20445%once_repeat% is not set, this means that a given recipient may receive
20446multiple messages, but at unpredictable intervals that depend on the rate of
20447turnover of addresses in the file. If %once_repeat% is set, it specifies a
20448maximum time between repeats.
20449
20450
20451oindex:[%once_file_size%]
20452`..'=
20453%once_file_size%, Use: 'autoreply', Type: 'integer', Default: '0'
20454===
20455
20456See %once% above.
20457
20458
20459oindex:[%once_repeat%]
20460`..'=
20461%once_repeat%, Use: 'autoreply', Type: 'time'!!, Default: '0s'
20462===
20463
20464See %once% above.
20465After expansion, the value of this option must be a valid time value.
20466
20467
20468oindex:[%reply_to%]
20469`..'=
20470%reply_to%, Use: 'autoreply', Type: 'string'!!, Default: 'unset'
20471===
20472
20473This specifies the contents of the 'Reply-To:' header when the message is
20474specified by the transport.
20475
20476
20477oindex:[%return_message%]
20478`..'=
20479%return_message%, Use: 'autoreply', Type: 'boolean', Default: 'false'
20480===
20481
20482If this is set, a copy of the original message is returned with the new
20483message, subject to the maximum size set in the %return_size_limit% global
20484configuration option.
20485
20486
20487oindex:[%subject%]
20488`..'=
20489%subject%, Use: 'autoreply', Type: 'string'!!, Default: 'unset'
20490===
20491
20492This specifies the contents of the 'Subject:' header when the message is
20493specified by the transport.
20494
20495It is tempting to quote the original subject in automatic responses. For
20496example:
20497
20498 subject = Re: $h_subject:
20499
20500There is a danger in doing this, however. It may allow a third party to
20501subscribe your users to an opt-in mailing list, provided that the list accepts
20502bounce messages as subscription confirmations. Well-managed lists require a
20503non-bounce message to confirm a subscription, so the danger is relatively
20504small.
20505
20506
20507
20508oindex:[%text%]
20509`..'=
20510%text%, Use: 'autoreply', Type: 'string'!!, Default: 'unset'
20511===
20512
20513This specifies a single string to be used as the body of the message when the
20514message is specified by the transport. If both %text% and %file% are set, the
20515text comes first.
20516
20517
20518oindex:[%to%]
20519`..'=
20520%to%, Use: 'autoreply', Type: 'string'!!, Default: 'unset'
20521===
20522
20523This specifies recipients of the message and the contents of the 'To:' header
20524when the message is specified by the transport.
20525
20526
20527
20528
20529////////////////////////////////////////////////////////////////////////////
20530////////////////////////////////////////////////////////////////////////////
20531
20532[[CHAPLMTP]]
20533The lmtp transport
20534------------------
20535cindex:[transports,^lmtp^]
20536cindex:[^lmtp^ transport]
20537cindex:[LMTP,over a pipe]
20538cindex:[LMTP,over a socket]
20539The ^lmtp^ transport runs the LMTP protocol (RFC 2033) over a pipe to a
20540specified command
20541or by interacting with a Unix domain socket.
20542This transport is something of a cross between the ^pipe^ and ^smtp^
20543transports. Exim also has support for using LMTP over TCP/IP; this is
20544implemented as an option for the ^smtp^ transport. Because LMTP is expected
20545to be of minority interest, the default build-time configure in _src/EDITME_
20546has it commented out. You need to ensure that
20547
20548 TRANSPORT_LMTP=yes
20549
20550is present in your _Local/Makefile_ in order to have the ^lmtp^ transport
20551included in the Exim binary.
20552
20553cindex:[options,^lmtp^ transport]
20554The private options of the ^lmtp^ transport are as follows:
20555
20556oindex:[%batch_id%]
20557`..'=
20558%batch_id%, Use: 'lmtp', Type: 'string'!!, Default: 'unset'
20559===
20560
20561See the description of local delivery batching in chapter <<CHAPbatching>>.
20562
20563
20564oindex:[%batch_max%]
20565`..'=
20566%batch_max%, Use: 'lmtp', Type: 'integer', Default: '1'
20567===
20568
20569This limits the number of addresses that can be handled in a single delivery.
20570Most LMTP servers can handle several addresses at once, so it is normally a
20571good idea to increase this value. See the description of local delivery
20572batching in chapter <<CHAPbatching>>.
20573
20574
20575oindex:[%command%]
20576`..'=
20577%command%, Use: 'lmtp', Type: 'string'!!, Default: 'unset'
20578===
20579
20580This option must be set if %socket% is not set.
20581The string is a command which is run in a separate process. It is split up into
20582a command name and list of arguments, each of which is separately expanded (so
20583expansion cannot change the number of arguments). The command is run directly,
20584not via a shell. The message is passed to the new process using the standard
20585input and output to operate the LMTP protocol.
20586
20587
20588oindex:[%socket%]
20589`..'=
20590%socket%, Use: 'lmtp', Type: 'string'!!, Default: 'unset'
20591===
20592
20593This option must be set if %command% is not set. The result of expansion must
20594be the name of a Unix domain socket. The transport connects to the socket and
20595delivers the message to it using the LMTP protocol.
20596
20597
20598oindex:[%timeout%]
20599`..'=
20600%timeout%, Use: 'lmtp', Type: 'time', Default: '5m'
20601===
20602
20603The transport is aborted if the created process
20604or Unix domain socket
20605does not respond to LMTP commands or message input within this timeout.
20606
20607
20608Here is an example of a typical LMTP transport:
20609
20610 lmtp:
20611 driver = lmtp
20612 command = /some/local/lmtp/delivery/program
20613 batch_max = 20
20614 user = exim
20615
20616This delivers up to 20 addresses at a time, in a mixture of domains if
20617necessary, running as the user 'exim'.
20618
20619
20620
20621////////////////////////////////////////////////////////////////////////////
20622////////////////////////////////////////////////////////////////////////////
20623
20624[[CHAPpipetransport]]
20625The pipe transport
20626------------------
20627cindex:[transports,^pipe^]
20628cindex:[^pipe^ transport]
20629The ^pipe^ transport is used to deliver messages via a pipe to a command
20630running in another process.
20631
20632One example is the
20633use of ^pipe^ as a pseudo-remote transport for passing messages to some other
20634delivery mechanism (such as UUCP). Another is the use by individual users to
20635automatically process their incoming messages. The ^pipe^ transport can be
20636used in one of the following ways:
20637
20638- A router routes one address to a transport in the normal way, and the transport
20639is configured as a ^pipe^ transport. In this case, $local_part$ contains
20640the local part of the address (as usual), and the command that is run is
20641specified by the %command% option on the transport.
20642
20643- If the %batch_max% option is set greater than 1 (the default), the transport
20644can be called upon to handle more than one address in a single run. In this
20645case, $local_part$ is not set (because it is not unique). However, the
20646pseudo-variable $pipe_addresses$ (described in section <<SECThowcommandrun>>
20647below) contains all the addresses that are being handled.
20648
20649- A router redirects an address directly to a pipe command (for example, from an
20650alias or forward file). In this case, $local_part$ contains the local part
20651that was redirected, and $address_pipe$ contains the text of the pipe
20652command itself. The %command% option on the transport is ignored.
20653
20654
20655The ^pipe^ transport is a non-interactive delivery method. Exim can also
20656deliver messages over pipes using the LMTP interactive protocol. This is
20657implemented by the ^lmtp^ transport.
20658
20659In the case when ^pipe^ is run as a consequence of an entry in a local user's
20660_.forward_ file, the command runs under the uid and gid of that user. In
20661other cases, the uid and gid have to be specified explicitly, either on the
20662transport or on the router that handles the address. Current and ``home''
20663directories are also controllable. See chapter <<CHAPenvironment>> for details of
20664the local delivery environment.
20665
20666
20667
20668Concurrent delivery
20669~~~~~~~~~~~~~~~~~~~
20670If two messages arrive at almost the same time, and both are routed to a pipe
20671delivery, the two pipe transports may be run concurrently. You must ensure that
20672any pipe commands you set up are robust against this happening. If the commands
20673write to a file, the %exim_lock% utility might be of use.
20674
20675
20676
20677
20678Returned status and data
20679~~~~~~~~~~~~~~~~~~~~~~~~
20680cindex:[^pipe^ transport,returned data]
20681If the command exits with a non-zero return code, the delivery is deemed to
20682have failed, unless either the %ignore_status% option is set (in which case
20683the return code is treated as zero), or the return code is one of those listed
20684in the %temp_errors% option, which are interpreted as meaning ``try again
20685later''. In this case, delivery is deferred. Details of a permanent failure are
20686logged, but are not included in the bounce message, which merely contains
20687``local delivery failed''.
20688
20689If the return code is greater than 128 and the command being run is a shell
20690script, it normally means that the script was terminated by a signal whose
20691value is the return code minus 128.
20692
20693If Exim is unable to run the command (that is, if 'execve()' fails), the
20694return code is set to 127. This is the value that a shell returns if it is
20695asked to run a non-existent command. The wording for the log line suggests that
20696a non-existent command may be the problem.
20697
20698The %return_output% option can affect the result of a pipe delivery. If it is
20699set and the command produces any output on its standard output or standard
20700error streams, the command is considered to have failed, even if it gave a zero
20701return code or if %ignore_status% is set. The output from the command is
20702included as part of the bounce message. The %return_fail_output% option is
20703similar, except that output is returned only when the command exits with a
20704failure return code, that is, a value other than zero or a code that matches
20705%temp_errors%.
20706
20707
20708
20709[[SECThowcommandrun]]
20710How the command is run
20711~~~~~~~~~~~~~~~~~~~~~~
20712cindex:[^pipe^ transport,path for command]
20713The command line is (by default) broken down into a command name and arguments
20714by the ^pipe^ transport itself. The %allow_commands% and %restrict_to_path%
20715options can be used to restrict the commands that may be run.
20716
20717cindex:[quoting,in pipe command]
20718Unquoted arguments are delimited by white space. If an argument appears in
20719double quotes, backslash is interpreted as an escape character in the usual
20720way. If an argument appears in single quotes, no escaping is done.
20721
20722String expansion is applied to the command line except when it comes from a
20723traditional _.forward_ file (commands from a filter file are expanded). The
20724expansion is applied to each argument in turn rather than to the whole line.
20725For this reason, any string expansion item that contains white space must be
20726quoted so as to be contained within a single argument. A setting such as
20727
20728 command = /some/path ${if eq{$local_part}{postmaster}{xxx}{yyy}}
20729
20730will not work, because the expansion item gets split between several
20731arguments. You have to write
20732
20733 command = /some/path "${if eq{$local_part}{postmaster}{xxx}{yyy}}"
20734
20735to ensure that it is all in one argument. The expansion is done in this way,
20736argument by argument, so that the number of arguments cannot be changed as a
20737result of expansion, and quotes or backslashes in inserted variables do not
20738interact with external quoting.
20739
20740cindex:[transport,filter]
20741cindex:[filter,transport filter]
20742Special handling takes place when an argument consists of precisely the text
20743`\$pipe_addresses\}`. This is not a general expansion variable; the only
20744place this string is recognized is when it appears as an argument for a pipe or
20745transport filter command. It causes each address that is being handled to be
20746inserted in the argument list at that point 'as a separate argument'. This
20747avoids any problems with spaces or shell metacharacters, and is of use when a
20748^pipe^ transport is handling groups of addresses in a batch.
20749
20750After splitting up into arguments and expansion, the resulting command is run
20751in a subprocess directly from the transport, 'not' under a shell. The
20752message that is being delivered is supplied on the standard input, and the
20753standard output and standard error are both connected to a single pipe that is
20754read by Exim. The %max_output% option controls how much output the command may
20755produce, and the %return_output% and %return_fail_output% options control
20756what is done with it.
20757
20758Not running the command under a shell (by default) lessens the security risks
20759in cases when a command from a user's filter file is built out of data that was
20760taken from an incoming message. If a shell is required, it can of course be
20761explicitly specified as the command to be run. However, there are circumstances
20762where existing commands (for example, in _.forward_ files) expect to be run
20763under a shell and cannot easily be modified. To allow for these cases, there is
20764an option called %use_shell%, which changes the way the ^pipe^ transport
20765works. Instead of breaking up the command line as just described, it expands it
20766as a single string and passes the result to _/bin/sh_. The
20767%restrict_to_path% option and the $pipe_addresses$ facility cannot be used
20768with %use_shell%, and the whole mechanism is inherently less secure.
20769
20770
20771
20772[[SECTpipeenv]]
20773Environment variables
20774~~~~~~~~~~~~~~~~~~~~~
20775cindex:[^pipe^ transport,environment for command]
20776cindex:[environment for pipe transport]
20777The environment variables listed below are set up when the command is invoked.
20778This list is a compromise for maximum compatibility with other MTAs. Note that
20779the %environment% option can be used to add additional variables to this
20780environment.
20781
20782&&&
20783`DOMAIN ` the domain of the address
20784`HOME ` the home directory, if set
20785`HOST ` the host name when called from a router (see below)
20786`LOCAL_PART ` see below
20787`LOCAL_PART_PREFIX ` see below
20788`LOCAL_PART_SUFFIX ` see below
20789`LOGNAME ` see below
20790`MESSAGE_ID ` the message's id
20791`PATH ` as specified by the %path% option below
20792`QUALIFY_DOMAIN ` the sender qualification domain
20793`RECIPIENT ` the complete recipient address
20794`SENDER ` the sender of the message (empty if a bounce)
20795`SHELL ` `/bin/sh`
20796`TZ ` the value of the %timezone% option, if set
20797`USER ` see below
20798&&&
20799
20800When a ^pipe^ transport is called directly from (for example) an ^accept^
20801router, LOCAL_PART is set to the local part of the address. When it is
20802called as a result of a forward or alias expansion, LOCAL_PART is set to
20803the local part of the address that was expanded. In both cases, any affixes are
20804removed from the local part, and made available in LOCAL_PART_PREFIX and
20805LOCAL_PART_SUFFIX, respectively. LOGNAME and USER are set to the
20806same value as LOCAL_PART for compatibility with other MTAs.
20807
20808cindex:[HOST]
20809HOST is set only when a ^pipe^ transport is called from a router that
20810associates hosts with an address, typically when using ^pipe^ as a
20811pseudo-remote transport. HOST is set to the first host name specified by
20812the router.
20813
20814cindex:[HOME]
20815If the transport's generic %home_directory% option is set, its value is used
20816for the HOME environment variable. Otherwise, a home directory may be set
20817by the router's %transport_home_directory% option, which defaults to the
20818user's home directory if %check_local_user% is set.
20819
20820
20821Private options for pipe
20822~~~~~~~~~~~~~~~~~~~~~~~~
20823cindex:[options,^pipe^ transport]
20824
20825
20826
20827oindex:[%allow_commands%]
20828`..'=
20829%allow_commands%, Use: 'pipe', Type: 'string list'!!, Default: 'unset'
20830===
20831
20832cindex:[^pipe^ transport,permitted commands]
20833The string is expanded, and is then interpreted as a colon-separated list of
20834permitted commands. If %restrict_to_path% is not set, the only commands
20835permitted are those in the %allow_commands% list. They need not be absolute
20836paths; the %path% option is still used for relative paths. If
20837%restrict_to_path% is set with %allow_commands%, the command must either be
20838in the %allow_commands% list, or a name without any slashes that is found on
20839the path. In other words, if neither %allow_commands% nor %restrict_to_path%
20840is set, there is no restriction on the command, but otherwise only commands
20841that are permitted by one or the other are allowed. For example, if
20842
20843 allow_commands = /usr/bin/vacation
20844
20845and %restrict_to_path% is not set, the only permitted command is
20846_/usr/bin/vacation_. The %allow_commands% option may not be set if
20847%use_shell% is set.
20848
20849
20850oindex:[%batch_id%]
20851`..'=
20852%batch_id%, Use: 'pipe', Type: 'string'!!, Default: 'unset'
20853===
20854
20855See the description of local delivery batching in chapter <<CHAPbatching>>.
20856
20857
20858oindex:[%batch_max%]
20859`..'=
20860%batch_max%, Use: 'pipe', Type: 'integer', Default: '1'
20861===
20862
20863This limits the number of addresses that can be handled in a single delivery.
20864See the description of local delivery batching in chapter <<CHAPbatching>>.
20865
20866
20867oindex:[%check_string%]
20868`..'=
20869%check_string%, Use: 'pipe', Type: 'string', Default: 'unset'
20870===
20871
20872As ^pipe^ writes the message, the start of each line is tested for matching
20873%check_string%, and if it does, the initial matching characters are replaced
20874by the contents of %escape_string%, provided both are set. The value of
20875%check_string% is a literal string, not a regular expression, and the case of
20876any letters it contains is significant. When %use_bsmtp% is set, the contents
20877of %check_string% and %escape_string% are forced to values that implement the
20878SMTP escaping protocol. Any settings made in the configuration file are
20879ignored.
20880
20881
20882oindex:[%command%]
20883`..'=
20884%command%, Use: 'pipe', Type: 'string'!!, Default: 'unset'
20885===
20886
20887This option need not be set when ^pipe^ is being used to deliver to pipes
20888obtained directly from address redirections. In other cases, the option must be
20889set, to provide a command to be run. It need not yield an absolute path (see
20890the %path% option below). The command is split up into separate arguments by
20891Exim, and each argument is separately expanded, as described in section
20892<<SECThowcommandrun>> above.
20893
20894
20895oindex:[%environment%]
20896`..'=
20897%environment%, Use: 'pipe', Type: 'string'!!, Default: 'unset'
20898===
20899
20900cindex:[^pipe^ transport,environment for command]
20901cindex:[environment for ^pipe^ transport]
20902This option is used to add additional variables to the environment in which the
20903command runs (see section <<SECTpipeenv>> for the default list). Its value is a
20904string which is expanded, and then interpreted as a colon-separated list of
20905environment settings of the form ``<''name'>=<'value'>'.
20906
20907
20908oindex:[%escape_string%]
20909`..'=
20910%escape_string%, Use: 'pipe', Type: 'string', Default: 'unset'
20911===
20912
20913See %check_string% above.
20914
20915
20916oindex:[%freeze_exec_fail%]
20917`..'=
20918%freeze_exec_fail%, Use: 'pipe', Type: 'boolean', Default: 'false'
20919===
20920
20921cindex:[exec failure]
20922cindex:[failure of exec]
20923cindex:[^pipe^ transport,failure of exec]
20924Failure to exec the command in a pipe transport is by default treated like
20925any other failure while running the command. However, if %freeze_exec_fail%
20926is set, failure to exec is treated specially, and causes the message to be
20927frozen, whatever the setting of %ignore_status%.
20928
20929
20930oindex:[%ignore_status%]
20931`..'=
20932%ignore_status%, Use: 'pipe', Type: 'boolean', Default: 'false'
20933===
20934
20935If this option is true, the status returned by the subprocess that is set up to
20936run the command is ignored, and Exim behaves as if zero had been returned.
20937Otherwise, a non-zero status
20938or termination by signal
20939causes an error return from the transport unless the status value is one of
20940those listed in %temp_errors%; these cause the delivery to be deferred and
20941tried again later.
20942
20943
20944oindex:[%log_defer_output%]
20945`..'=
20946%log_defer_output%, Use: 'pipe', Type: 'boolean', Default: 'false'
20947===
20948
20949cindex:[^pipe^ transport,logging output]
20950If this option is set, and the status returned by the command is
20951one of the codes listed in %temp_errors% (that is, delivery was deferred),
20952and any output was produced, the first line of it is written to the main log.
20953
20954
20955oindex:[%log_fail_output%]
20956`..'=
20957%log_fail_output%, Use: 'pipe', Type: 'boolean', Default: 'false'
20958===
20959
20960If this option is set, and the command returns any output, and also ends with a
20961return code that is neither zero nor one of the return codes listed in
20962%temp_errors% (that is, the delivery failed), the first line of output is
20963written to the main log.
20964
20965This option and %log_output% are mutually exclusive. Only one of them may be
20966set.
20967
20968
20969
20970oindex:[%log_output%]
20971`..'=
20972%log_output%, Use: 'pipe', Type: 'boolean', Default: 'false'
20973===
20974
20975If this option is set and the command returns any output, the first line of
20976output is written to the main log, whatever the return code.
20977
20978This option and %log_fail_output% are mutually exclusive. Only one of them
20979may be set.
20980
20981
20982
20983oindex:[%max_output%]
20984`..'=
20985%max_output%, Use: 'pipe', Type: 'integer', Default: '20K'
20986===
20987
20988This specifies the maximum amount of output that the command may produce on its
20989standard output and standard error file combined. If the limit is exceeded, the
20990process running the command is killed. This is intended as a safety measure to
20991catch runaway processes. The limit is applied independently of the settings of
20992the options that control what is done with such output (for example,
20993%return_output%). Because of buffering effects, the amount of output may
20994exceed the limit by a small amount before Exim notices.
20995
20996
20997oindex:[%message_prefix%]
20998`..'=
20999%message_prefix%, Use: 'pipe', Type: 'string'!!, Default: 'see below'
21000===
21001
21002The string specified here is expanded and output at the start of every message.
21003The default is unset if %use_bsmtp% is set. Otherwise it is
21004
21005....
21006message_prefix = \
21007 From ${if def:return_path{$return_path}{MAILER-DAEMON}}\
21008 ${tod_bsdinbox}\n
21009....
21010
21011cindex:[Cyrus]
21012cindex:[%tmail%]
21013cindex:[``From'' line]
21014This is required by the commonly used _/usr/bin/vacation_ program.
21015However, it must 'not' be present if delivery is to the Cyrus IMAP server,
21016or to the %tmail% local delivery agent. The prefix can be suppressed by setting
21017
21018 message_prefix =
21019
21020
21021
21022oindex:[%message_suffix%]
21023`..'=
21024%message_suffix%, Use: 'pipe', Type: 'string'!!, Default: 'see below'
21025===
21026
21027The string specified here is expanded and output at the end of every message.
21028The default is unset if %use_bsmtp% is set. Otherwise it is a single newline.
21029The suffix can be suppressed by setting
21030
21031 message_suffix =
21032
21033
21034
21035oindex:[%path%]
21036`..'=
21037%path%, Use: 'pipe', Type: 'string', Default: `/usr/bin`
21038===
21039
21040This option specifies the string that is set up in the PATH environment
21041variable of the subprocess. If the %command% option does not yield an absolute
21042path name, the command is sought in the PATH directories, in the usual way.
21043*Warning*: This does not apply to a command specified as a transport
21044filter.
21045
21046
21047oindex:[%pipe_as_creator%]
21048`..'=
21049%pipe_as_creator%, Use: 'pipe', Type: 'boolean', Default: 'false'
21050===
21051
21052cindex:[uid (user id),local delivery]
21053If the generic %user% option is not set and this option is true, the delivery
21054process is run under the uid that was in force when Exim was originally called
21055to accept the message. If the group id is not otherwise set (via the generic
21056%group% option), the gid that was in force when Exim was originally called to
21057accept the message is used.
21058
21059
21060oindex:[%restrict_to_path%]
21061`..'=
21062%restrict_to_path%, Use: 'pipe', Type: 'boolean', Default: 'false'
21063===
21064
21065When this option is set, any command name not listed in %allow_commands% must
21066contain no slashes. The command is searched for only in the directories listed
21067in the %path% option. This option is intended for use in the case when a pipe
21068command has been generated from a user's _.forward_ file. This is usually
21069handled by a ^pipe^ transport called %address_pipe%.
21070
21071
21072oindex:[%return_fail_output%]
21073`..'=
21074%return_fail_output%, Use: 'pipe', Type: 'boolean', Default: 'false'
21075===
21076
21077If this option is true, and the command produced any output and ended with a
21078return code other than zero or one of the codes listed in %temp_errors% (that
21079is, the delivery failed), the output is returned in the bounce message.
21080However, if the message has a null sender (that is, it is itself a bounce
21081message), output from the command is discarded.
21082
21083This option and %return_output% are mutually exclusive. Only one of them may
21084be set.
21085
21086
21087
21088oindex:[%return_output%]
21089`..'=
21090%return_output%, Use: 'pipe', Type: 'boolean', Default: 'false'
21091===
21092
21093If this option is true, and the command produced any output, the delivery is
21094deemed to have failed whatever the return code from the command, and the output
21095is returned in the bounce message. Otherwise, the output is just discarded.
21096However, if the message has a null sender (that is, it is a bounce message),
21097output from the command is always discarded, whatever the setting of this
21098option.
21099
21100This option and %return_fail_output% are mutually exclusive. Only one of them
21101may be set.
21102
21103
21104
21105oindex:[%temp_errors%]
21106`..'=
21107%temp_errors%, Use: 'pipe', Type: 'string list', Default: 'see below'
21108===
21109
21110cindex:[^pipe^ transport,temporary failure]
21111This option contains either a colon-separated list of numbers, or a single
21112asterisk. If %ignore_status% is false
21113and %return_output% is not set,
21114and the command exits with a non-zero return code, the failure is treated as
21115temporary and the delivery is deferred if the return code matches one of the
21116numbers, or if the setting is a single asterisk. Otherwise, non-zero return
21117codes are treated as permanent errors. The default setting contains the codes
21118defined by EX_TEMPFAIL and EX_CANTCREAT in _sysexits.h_. If Exim is
21119compiled on a system that does not define these macros, it assumes values of 75
21120and 73, respectively.
21121
21122
21123oindex:[%timeout%]
21124`..'=
21125%timeout%, Use: 'pipe', Type: 'time', Default: '1h'
21126===
21127
21128If the command fails to complete within this time, it is killed. This normally
21129causes the delivery to fail. A zero time interval specifies no timeout. In
21130order to ensure that any subprocesses created by the command are also killed,
21131Exim makes the initial process a process group leader, and kills the whole
21132process group on a timeout. However, this can be defeated if one of the
21133processes starts a new process group.
21134
21135
21136oindex:[%umask%]
21137`..'=
21138%umask%, Use: 'pipe', Type: 'octal integer', Default: '022'
21139===
21140
21141This specifies the umask setting for the subprocess that runs the command.
21142
21143
21144oindex:[%use_bsmtp%]
21145`..'=
21146%use_bsmtp%, Use: 'pipe', Type: 'boolean', Default: 'false'
21147===
21148
21149cindex:[envelope sender]
21150If this option is set true, the ^pipe^ transport writes messages in ``batch
21151SMTP'' format, with the envelope sender and recipient(s) included as SMTP
21152commands. If you want to include a leading HELO command with such messages,
21153you can do so by setting the %message_prefix% option. See section
21154<<SECTbatchSMTP>> for details of batch SMTP.
21155
21156
21157oindex:[%use_crlf%]
21158`..'=
21159%use_crlf%, Use: 'pipe', Type: 'boolean', Default: 'false'
21160===
21161
21162cindex:[carriage return]
21163cindex:[linefeed]
21164This option causes lines to be terminated with the two-character CRLF sequence
21165(carriage return, linefeed) instead of just a linefeed character. In the case
21166of batched SMTP, the byte sequence written to the pipe is then an exact image
21167of what would be sent down a real SMTP connection.
21168
21169The contents of the %message_prefix% and %message_suffix% options are written
21170verbatim, so must contain their own carriage return characters if these are
21171needed. Since the default values for both %message_prefix% and
21172%message_suffix% end with a single linefeed, their values
21173must
21174be changed to end with `\r\n` if %use_crlf% is set.
21175
21176
21177oindex:[%use_shell%]
21178`..'=
21179%use_shell%, Use: 'pipe', Type: 'boolean', Default: 'false'
21180===
21181
21182If this option is set, it causes the command to be passed to _/bin/sh_
21183instead of being run directly from the transport, as described in section
21184<<SECThowcommandrun>>. This is less secure, but is needed in some situations
21185where the command is expected to be run under a shell and cannot easily be
21186modified. The %allow_commands% and %restrict_to_path% options, and the
21187`\$pipe_addresses` facility are incompatible with %use_shell%. The
21188command is expanded as a single string, and handed to _/bin/sh_ as data for
21189its %-c% option.
21190
21191
21192
21193Using an external local delivery agent
21194~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21195cindex:[local delivery,using an external agent]
21196cindex:['procmail']
21197cindex:[external local delivery]
21198cindex:[delivery,'procmail']
21199cindex:[delivery,by external agent]
21200The ^pipe^ transport can be used to pass all messages that require local
21201delivery to a separate local delivery agent such as %procmail%. When doing
21202this, care must be taken to ensure that the pipe is run under an appropriate
21203uid and gid. In some configurations one wants this to be a uid that is trusted
21204by the delivery agent to supply the correct sender of the message. It may be
21205necessary to recompile or reconfigure the delivery agent so that it trusts an
21206appropriate user. The following is an example transport and router
21207configuration for %procmail%:
21208
21209 # transport
21210 procmail_pipe:
21211 driver = pipe
21212 command = /usr/local/bin/procmail -d $local_part
21213 return_path_add
21214 delivery_date_add
21215 envelope_to_add
21216 check_string = "From "
21217 escape_string = ">From "
21218 user = $local_part
21219 group = mail
21220
21221 # router
21222 procmail:
21223 driver = accept
21224 check_local_user
21225 transport = procmail_pipe
21226
21227
21228In this example, the pipe is run as the local user, but with the group set to
21229'mail'. An alternative is to run the pipe as a specific user such as 'mail'
21230or 'exim', but in this case you must arrange for %procmail% to trust that
21231user to supply a correct sender address. If you do not specify either a %group%
21232or a %user% option, the pipe command is run as the local user. The home
21233directory is the user's home directory by default.
21234
21235Note that the command that the pipe transport runs does 'not' begin with
21236
21237 IFS=" "
21238
21239as shown in the %procmail% documentation, because Exim does not by default use
21240a shell to run pipe commands.
21241
21242cindex:[Cyrus]
21243The next example shows a transport and a router for a system where local
21244deliveries are handled by the Cyrus IMAP server.
21245
21246....
21247# transport
21248local_delivery_cyrus:
21249 driver = pipe
21250 command = /usr/cyrus/bin/deliver \
21251 -m ${substr_1:$local_part_suffix} -- $local_part
21252 user = cyrus
21253 group = mail
21254 return_output
21255 log_output
21256 message_prefix =
21257 message_suffix =
21258
21259# router
21260local_user_cyrus:
21261 driver = accept
21262 check_local_user
21263 local_part_suffix = .*
21264 transport = local_delivery_cyrus
21265....
21266
21267Note the unsetting of %message_prefix% and %message_suffix%, and the use of
21268%return_output% to cause any text written by Cyrus to be returned to the
21269sender.
21270
21271
21272////////////////////////////////////////////////////////////////////////////
21273////////////////////////////////////////////////////////////////////////////
21274
21275[[CHAPsmtptrans]]
21276The smtp transport
21277------------------
21278cindex:[transports,^smtp^]
21279cindex:[^smtp^ transport]
21280The ^smtp^ transport delivers messages over TCP/IP connections using the SMTP
21281or LMTP protocol. The list of hosts to try can either be taken from the address
21282that is being processed (having been set up by the router), or specified
21283explicitly for the transport. Timeout and retry processing (see chapter
21284<<CHAPretry>>) is applied to each IP address independently.
21285
21286
21287Multiple messages on a single connection
21288~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21289The sending of multiple messages over a single TCP/IP connection can arise in
21290two ways:
21291
21292- If a message contains more than %max_rcpt% (see below) addresses that are
21293routed to the same host, more than one copy of the message has to be sent to
21294that host. In this situation, multiple copies may be sent in a single run of
21295the ^smtp^ transport over a single TCP/IP connection. (What Exim actually does
21296when it has too many addresses to send in one message also depends on the value
21297of the global %remote_max_parallel% option. Details are given in section
21298<<SECToutSMTPTCP>>.)
21299
21300- cindex:[hints database,remembering routing]
21301When a message has been successfully delivered over a TCP/IP connection, Exim
21302looks in its hints database to see if there are any other messages awaiting a
21303connection to the same host. If there are, a new delivery process is started
21304for one of them, and the current TCP/IP connection is passed on to it. The new
21305process may in turn send multiple copies and possibly create yet another
21306process.
21307
21308
21309For each copy sent over the same TCP/IP connection, a sequence counter is
21310incremented, and if it ever gets to the value of %connection_max_messages%,
21311no further messages are sent over that connection.
21312
21313
21314
21315Use of the \$host variable
21316~~~~~~~~~~~~~~~~~~~~~~~~~~
21317cindex:[$host$]
21318cindex:[$host_address$]
21319At the start of a run of the ^smtp^ transport, the values of $host$ and
21320$host_address$ are the name and IP address of the first host on the host list
21321passed by the router. However, when the transport is about to connect to a
21322specific host, and while it is connected to that host, $host$ and
21323$host_address$ are set to the values for that host. These are the values
21324that are in force when the %helo_data%, %hosts_try_auth%, %interface%,
21325%serialize_hosts%, and the various TLS options are expanded.
21326
21327
21328
21329Private options for smtp
21330~~~~~~~~~~~~~~~~~~~~~~~~
21331cindex:[options,^smtp^ transport]
21332The private options of the ^smtp^ transport are as follows:
21333
21334
21335oindex:[%allow_localhost%]
21336`..'=
21337%allow_localhost%, Use: 'smtp', Type: 'boolean', Default: 'false'
21338===
21339
21340cindex:[local host,sending to]
21341cindex:[fallback,hosts specified on transport]
21342When a host specified in %hosts% or %fallback_hosts% (see below) turns out to
21343be the local host, or is listed in %hosts_treat_as_local%, delivery is
21344deferred by default. However, if %allow_localhost% is set, Exim goes on to do
21345the delivery anyway. This should be used only in special cases when the
21346configuration ensures that no looping will result (for example, a differently
21347configured Exim is listening on the port to which the message is sent).
21348
21349
21350oindex:[%authenticated_sender%]
21351`..'=
21352%authenticated_sender%, Use: 'smtp', Type: 'string'!!, Default: 'unset'
21353===
21354
21355cindex:[Cyrus]
21356When Exim has authenticated as a client, this option sets a value for the
21357AUTH= item on outgoing MAIL commands, overriding any existing
21358authenticated sender value. If the string expansion is forced to fail, the
21359option is ignored. Other expansion failures cause delivery to be deferred. If
21360the result of expansion is an empty string, that is also ignored.
21361
21362If the SMTP session is not authenticated, the expansion of
21363%authenticated_sender% still happens (and can cause the delivery to be
21364deferred if it fails), but no AUTH= item is added to MAIL commands.
21365
21366This option allows you to use the ^smtp^ transport in LMTP mode to
21367deliver mail to Cyrus IMAP and provide the proper local part as the
21368``authenticated sender'', via a setting such as:
21369
21370 authenticated_sender = $local_part
21371
21372This removes the need for IMAP subfolders to be assigned special ACLs to
21373allow direct delivery to those subfolders.
21374
21375Because of expected uses such as that just described for Cyrus (when no
21376domain is involved), there is no checking on the syntax of the provided
21377value.
21378
21379
21380oindex:[%command_timeout%]
21381`..'=
21382%command_timeout%, Use: 'smtp', Type: 'time', Default: '5m'
21383===
21384
21385This sets a timeout for receiving a response to an SMTP command that has been
21386sent out. It is also used when waiting for the initial banner line from the
21387remote host. Its value must not be zero.
21388
21389
21390oindex:[%connect_timeout%]
21391`..'=
21392%connect_timeout%, Use: 'smtp', Type: 'time', Default: '5m'
21393===
21394
21395This sets a timeout for the 'connect()' function, which sets up a TCP/IP call
21396to a remote host. A setting of zero allows the system timeout (typically
21397several minutes) to act. To have any effect, the value of this option must be
21398less than the system timeout. However, it has been observed that on some
21399systems there is no system timeout, which is why the default value for this
21400option is 5 minutes, a value recommended by RFC 1123.
21401
21402
21403oindex:[%connection_max_messages%]
21404`..'=
21405%connection_max_messages%, Use: 'smtp', Type: 'integer', Default: '500'
21406===
21407
21408cindex:[SMTP,passed connection]
21409cindex:[SMTP,multiple deliveries]
21410cindex:[multiple SMTP deliveries]
21411This controls the maximum number of separate message deliveries that are sent
21412over a single TCP/IP connection. If the value is zero, there is no limit.
21413For testing purposes, this value can be overridden by the %-oB% command line
21414option.
21415
21416
21417oindex:[%data_timeout%]
21418`..'=
21419%data_timeout%, Use: 'smtp', Type: 'time', Default: '5m'
21420===
21421
21422This sets a timeout for the transmission of each block in the data portion of
21423the message. As a result, the overall timeout for a message depends on the size
21424of the message. Its value must not be zero. See also %final_timeout%.
21425
21426
21427oindex:[%delay_after_cutoff%]
21428`..'=
21429%delay_after_cutoff%, Use: 'smtp', Type: 'boolean', Default: 'true'
21430===
21431
21432This option controls what happens when all remote IP addresses for a given
21433domain have been inaccessible for so long that they have passed their retry
21434cutoff times.
21435
21436In the default state, if the next retry time has not been reached for any of
21437them, the address is bounced without trying any deliveries. In other words,
21438Exim delays retrying an IP address after the final cutoff time until a new
21439retry time is reached, and can therefore bounce an address without ever trying
21440a delivery, when machines have been down for a long time. Some people are
21441unhappy at this prospect, so...
21442
21443If %delay_after_cutoff% is set false, Exim behaves differently. If all IP
21444addresses are past their final cutoff time, Exim tries to deliver to those
21445IP addresses that have not been tried since the message arrived. If there are
21446none, of if they all fail, the address is bounced. In other words, it does not
21447delay when a new message arrives, but immediately tries those expired IP
21448addresses that haven't been tried since the message arrived. If there is a
21449continuous stream of messages for the dead hosts, unsetting
21450%delay_after_cutoff% means that there will be many more attempts to deliver
21451to them.
21452
21453
21454oindex:[%dns_qualify_single%]
21455`..'=
21456%dns_qualify_single%, Use: 'smtp', Type: 'boolean', Default: 'true'
21457===
21458
21459If the %hosts% or %fallback_hosts% option is being used,
21460and the %gethostbyname% option is false,
21461the RES_DEFNAMES resolver option is set. See the %qualify_single% option
21462in chapter <<CHAPdnslookup>> for more details.
21463
21464
21465oindex:[%dns_search_parents%]
21466`..'=
21467%dns_search_parents%, Use: 'smtp', Type: 'boolean', Default: 'false'
21468===
21469
21470cindex:[%search_parents%]
21471If the %hosts% or %fallback_hosts% option is being used, and the
21472%gethostbyname% option is false, the RES_DNSRCH resolver option is set.
21473See the %search_parents% option in chapter <<CHAPdnslookup>> for more details.
21474
21475
21476
21477oindex:[%fallback_hosts%]
21478`..'=
21479%fallback_hosts%, Use: 'smtp', Type: 'string list', Default: 'unset'
21480===
21481
21482cindex:[fallback,hosts specified on transport]
21483String expansion is not applied to this option. The argument must be a
21484colon-separated list of host names or IP addresses. Fallback hosts can also be
21485specified on routers, which associate them with the addresses they process. As
21486for the %hosts% option without %hosts_override%, %fallback_hosts% specified
21487on the transport is used only if the address does not have its own associated
21488fallback host list. Unlike %hosts%, a setting of %fallback_hosts% on an
21489address is not overridden by %hosts_override%. However, %hosts_randomize%
21490does apply to fallback host lists.
21491
21492If Exim is unable to deliver to any of the hosts for a particular address, and
21493the errors are not permanent rejections, the address is put on a separate
21494transport queue with its host list replaced by the fallback hosts, unless the
21495address was routed via MX records and the current host was in the original MX
21496list. In that situation, the fallback host list is not used.
21497
21498Once normal deliveries are complete, the fallback queue is delivered by
21499re-running the same transports with the new host lists. If several failing
21500addresses have the same fallback hosts (and %max_rcpt% permits it), a single
21501copy of the message is sent.
21502
21503The resolution of the host names on the fallback list is controlled by the
21504%gethostbyname% option, as for the %hosts% option. Fallback hosts apply
21505both to cases when the host list comes with the address and when it is taken
21506from %hosts%. This option provides a ``use a smart host only if delivery fails''
21507facility.
21508
21509
21510oindex:[%final_timeout%]
21511`..'=
21512%final_timeout%, Use: 'smtp', Type: 'time', Default: '10m'
21513===
21514
21515This is the timeout that applies while waiting for the response to the final
21516line containing just ``.'' that terminates a message. Its value must not be zero.
21517
21518
21519oindex:[%gethostbyname%]
21520`..'=
21521%gethostbyname%, Use: 'smtp', Type: 'boolean', Default: 'false'
21522===
21523
21524If this option is true when the %hosts% and/or %fallback_hosts% options are
21525being used, names are looked up using 'gethostbyname()'
21526(or 'getipnodebyname()' when available)
21527instead of using the DNS. Of course, that function may in fact use the DNS, but
21528it may also consult other sources of information such as _/etc/hosts_.
21529
21530oindex:[%helo_data%]
21531`..'=
21532%helo_data%, Use: 'smtp', Type: 'string'!!, Default: `\$primary_hostname`
21533===
21534
21535cindex:[HELO argument, setting]
21536cindex:[EHLO argument, setting]
21537The value of this option is expanded, and used as the argument for the EHLO
21538or HELO command that starts the outgoing SMTP session.
21539
21540
21541oindex:[%hosts%]
21542`..'=
21543%hosts%, Use: 'smtp', Type: 'string list'!!, Default: 'unset'
21544===
21545
21546Hosts are associated with an address by a router such as ^dnslookup^, which
21547finds the hosts by looking up the address domain in the DNS. However, addresses
21548can be passed to the ^smtp^ transport by any router, and not all of them can
21549provide an associated host list. The %hosts% option specifies a list of hosts
21550which are used if the address being processed does not have any hosts
21551associated with it. The hosts specified by %hosts% are also used, whether or
21552not the address has its own hosts, if %hosts_override% is set.
21553
21554The string is first expanded, before being interpreted as a colon-separated
21555list of host names or IP addresses. If the expansion fails, delivery is
21556deferred. Unless the failure was caused by the inability to complete a lookup,
21557the error is logged to the panic log as well as the main log. Host names are
21558looked up either by searching directly for address records in the DNS or by
21559calling 'gethostbyname()'
21560(or 'getipnodebyname()' when available),
21561depending on the setting of the %gethostbyname% option. When Exim is compiled
21562with IPv6 support, if a host that is looked up in the DNS has both IPv4 and
21563IPv6 addresses, both types of address are used.
21564
21565During delivery, the hosts are tried in order, subject to their retry status,
21566unless %hosts_randomize% is set.
21567
21568
21569oindex:[%hosts_avoid_esmtp%]
21570`..'=
21571%hosts_avoid_esmtp%, Use: 'smtp', Type: 'host list'!!, Default: 'unset'
21572===
21573
21574cindex:[ESMTP, avoiding use of]
21575cindex:[HELO,forcing use of]
21576cindex:[EHLO,avoiding use of]
21577cindex:[PIPELINING,avoiding the use of]
21578This option is for use with broken hosts that announce ESMTP facilities (for
21579example, PIPELINING) and then fail to implement them properly. When a host
21580matches %hosts_avoid_esmtp%, Exim sends HELO rather than EHLO at the
21581start of the SMTP session. This means that it cannot use any of the ESMTP
21582facilities such as AUTH, PIPELINING, SIZE, and STARTTLS.
21583
21584
21585oindex:[%hosts_avoid_tls%]
21586`..'=
21587%hosts_avoid_tls%, Use: 'smtp', Type: 'host list'!!, Default: 'unset'
21588===
21589
21590cindex:[TLS,avoiding for certain hosts]
21591Exim will not try to start a TLS session when delivering to any host that
21592matches this list. See chapter <<CHAPTLS>> for details of TLS.
21593
21594
21595oindex:[%hosts_max_try%]
21596`..'=
21597%hosts_max_try%, Use: 'smtp', Type: 'integer', Default: '5'
21598===
21599
21600cindex:[host,maximum number to try]
21601cindex:[limit,number of hosts tried]
21602cindex:[limit,number of MX tried]
21603cindex:[MX record,maximum tried]
21604This option limits the number of IP addresses that are tried for any one
21605delivery in cases where there are temporary delivery errors. Section
21606<<SECTvalhosmax>> describes in detail how the value of this option is used.
21607
21608
21609oindex:[%hosts_max_try_hardlimit%]
21610`..'=
21611%hosts_max_try_hardlimit%, Use: 'smtp', Type: 'integer', Default: '50'
21612===
21613
21614This is an additional check on the maximum number of IP addresses that Exim
21615tries for any one delivery. Section <<SECTvalhosmax>> describes its use and why
21616it exists.
21617
21618
21619
21620oindex:[%hosts_nopass_tls%]
21621`..'=
21622%hosts_nopass_tls%, Use: 'smtp', Type: 'host list'!!, Default: 'unset'
21623===
21624
21625cindex:[TLS,passing connection]
21626cindex:[multiple SMTP deliveries]
21627cindex:[TLS,multiple message deliveries]
21628For any host that matches this list, a connection on which a TLS session has
21629been started will not be passed to a new delivery process for sending another
21630message on the same connection. See section <<SECTmulmessam>> for an explanation
21631of when this might be needed.
21632
21633
21634oindex:[%hosts_override%]
21635`..'=
21636%hosts_override%, Use: 'smtp', Type: 'boolean', Default: 'false'
21637===
21638
21639If this option is set and the %hosts% option is also set, any hosts that are
21640attached to the address are ignored, and instead the hosts specified by the
21641%hosts% option are always used. This option does not apply to
21642%fallback_hosts%.
21643
21644
21645oindex:[%hosts_randomize%]
21646`..'=
21647%hosts_randomize%, Use: 'smtp', Type: 'boolean', Default: 'false'
21648===
21649
21650cindex:[randomized host list]
21651cindex:[host,list of; randomized]
21652cindex:[fallback,randomized hosts]
21653If this option is set, and either the list of hosts is taken from the
21654%hosts% or the %fallback_hosts% option, or the hosts supplied by the router
21655were not obtained from MX records (this includes fallback hosts from the
21656router), and were not randomizied by the router, the order of trying the hosts
21657is randomized each time the transport runs. Randomizing the order of a host
21658list can be used to do crude load sharing.
21659
21660When %hosts_randomize% is true, a host list may be split into groups whose
21661order is separately randomized. This makes it possible to set up MX-like
21662behaviour. The boundaries between groups are indicated by an item that is just
21663`+` in the host list. For example:
21664
21665 hosts = host1:host2:host3:+:host4:host5
21666
21667The order of the first three hosts and the order of the last two hosts is
21668randomized for each use, but the first three always end up before the last two.
21669If %hosts_randomize% is not set, a `+` item in the list is ignored.
21670
21671oindex:[%hosts_require_auth%]
21672`..'=
21673%hosts_require_auth%, Use: 'smtp', Type: 'host list'!!, Default: 'unset'
21674===
21675
21676cindex:[authentication,required by client]
21677This option provides a list of servers for which authentication must succeed
21678before Exim will try to transfer a message. If authentication fails for
21679servers which are not in this list, Exim tries to send unauthenticated. If
21680authentication fails for one of these servers, delivery is deferred. This
21681temporary error is detectable in the retry rules, so it can be turned into a
21682hard failure if required. See also %hosts_try_auth%, and chapter
21683<<CHAPSMTPAUTH>> for details of authentication.
21684
21685
21686oindex:[%hosts_require_tls%]
21687`..'=
21688%hosts_require_tls%, Use: 'smtp', Type: 'host list'!!, Default: 'unset'
21689===
21690
21691cindex:[TLS,requiring for certain servers]
21692Exim will insist on using a TLS session when delivering to any host that
21693matches this list. See chapter <<CHAPTLS>> for details of TLS.
21694*Note*: This option affects outgoing mail only. To insist on TLS for
21695incoming messages, use an appropriate ACL.
21696
21697oindex:[%hosts_try_auth%]
21698`..'=
21699%hosts_try_auth%, Use: 'smtp', Type: 'host list'!!, Default: 'unset'
21700===
21701
21702cindex:[authentication,optional in client]
21703This option provides a list of servers to which, provided they announce
21704authentication support, Exim will attempt to authenticate as a client when it
21705connects. If authentication fails, Exim will try to transfer the message
21706unauthenticated. See also %hosts_require_auth%, and chapter <<CHAPSMTPAUTH>>
21707for details of authentication.
21708
21709oindex:[%interface%]
21710`..'=
21711%interface%, Use: 'smtp', Type: 'string list'!!, Default: 'unset'
21712===
21713
21714cindex:[bind IP address]
21715cindex:[IP address,binding]
21716This option specifies which interface to bind to when making an outgoing SMTP
21717call. The variables $host$ and $host_address$ refer to the host to which a
21718connection is about to be made during the expansion of the string. Forced
21719expansion failure, or an empty string result causes the option to be ignored.
21720Otherwise, after expansion,
21721the string must be a list of IP addresses, colon-separated by default, but the
21722separator can be changed in the usual way.
21723For example:
21724
21725 interface = <; 192.168.123.123 ; 3ffe:ffff:836f::fe86:a061
21726
21727The first interface of the correct type (IPv4 or IPv6) is used for the outgoing
21728connection. If none of them are the correct type, the option is ignored. If
21729%interface% is not set, or is ignored, the system's IP functions choose which
21730interface to use if the host has more than one.
21731
21732
21733oindex:[%keepalive%]
21734`..'=
21735%keepalive%, Use: 'smtp', Type: 'boolean', Default: 'true'
21736===
21737
21738cindex:[keepalive,on outgoing connection]
21739This option controls the setting of SO_KEEPALIVE on outgoing TCP/IP socket
21740connections. When set, it causes the kernel to probe idle connections
21741periodically, by sending packets with ``old'' sequence numbers. The other end of
21742the connection should send a acknowledgement if the connection is still okay or
21743a reset if the connection has been aborted. The reason for doing this is that
21744it has the beneficial effect of freeing up certain types of connection that can
21745get stuck when the remote host is disconnected without tidying up the TCP/IP
21746call properly. The keepalive mechanism takes several hours to detect
21747unreachable hosts.
21748
21749
21750oindex:[%max_rcpt%]
21751`..'=
21752%max_rcpt%, Use: 'smtp', Type: 'integer', Default: '100'
21753===
21754
21755cindex:[RCPT,maximum number of outgoing]
21756This option limits the number of RCPT commands that are sent in a single
21757SMTP message transaction. Each set of addresses is treated independently, and
21758so can cause parallel connections to the same host if %remote_max_parallel%
21759permits this.
21760
21761
21762oindex:[%multi_domain%]
21763`..'=
21764%multi_domain%, Use: 'smtp', Type: 'boolean', Default: 'true'
21765===
21766
21767When this option is set, the ^smtp^ transport can handle a number of addresses
21768containing a mixture of different domains provided they all resolve to the same
21769list of hosts. Turning the option off restricts the transport to handling only
21770one domain at a time. This is useful if you want to use $domain$ in an
21771expansion for the transport, because it is set only when there is a single
21772domain involved in a remote delivery.
21773
21774
21775oindex:[%port%]
21776`..'=
21777%port%, Use: 'smtp', Type: 'string'!!, Default: 'see below'
21778===
21779
21780cindex:[port,sending TCP/IP]
21781cindex:[TCP/IP,setting outgoing port]
21782This option specifies the TCP/IP port on the server to which Exim connects. If
21783it begins with a digit it is taken as a port number; otherwise it is looked up
21784using 'getservbyname()'. The default value is normally ``smtp'', but if
21785%protocol% is set to ``lmtp'', the default is ``lmtp''.
21786If the expansion fails, or if a port number cannot be found, delivery is
21787deferred.
21788
21789
21790
21791oindex:[%protocol%]
21792`..'=
21793%protocol%, Use: 'smtp', Type: 'string', Default: 'smtp'
21794===
21795
21796cindex:[LMTP,over TCP/IP]
21797If this option is set to ``lmtp'' instead of ``smtp'', the default value for the
21798%port% option changes to ``lmtp'', and the transport operates the LMTP protocol
21799(RFC 2033) instead of SMTP. This protocol is sometimes used for local
21800deliveries into closed message stores. Exim also has support for running LMTP
21801over a pipe to a local process -- see chapter <<CHAPLMTP>>.
21802
21803
21804oindex:[%retry_include_ip_address%]
21805`..'=
21806%retry_include_ip_address%, Use: 'smtp', Type: 'boolean', Default: 'true'
21807===
21808
21809Exim normally includes both the host name and the IP address in the key it
21810constructs for indexing retry data after a temporary delivery failure. This
21811means that when one of several IP addresses for a host is failing, it gets
21812tried periodically (controlled by the retry rules), but use of the other IP
21813addresses is not affected.
21814
21815However, in some dialup environments hosts are assigned a different IP address
21816each time they connect. In this situation the use of the IP address as part of
21817the retry key leads to undesirable behaviour. Setting this option false causes
21818Exim to use only the host name. This should normally be done on a separate
21819instance of the ^smtp^ transport, set up specially to handle the dialup hosts.
21820
21821
21822oindex:[%serialize_hosts%]
21823`..'=
21824%serialize_hosts%, Use: 'smtp', Type: 'host list'!!, Default: 'unset'
21825===
21826
21827cindex:[serializing connections]
21828cindex:[host,serializing connections]
21829Because Exim operates in a distributed manner, if several messages for the same
21830host arrive at around the same time, more than one simultaneous connection to
21831the remote host can occur. This is not usually a problem except when there is a
21832slow link between the hosts. In that situation it may be helpful to restrict
21833Exim to one connection at a time. This can be done by setting
21834%serialize_hosts% to match the relevant hosts.
21835
21836cindex:[hints database,serializing deliveries to a host]
21837Exim implements serialization by means of a hints database in which a record is
21838written whenever a process connects to one of the restricted hosts. The record
21839is deleted when the connection is completed. Obviously there is scope for
21840records to get left lying around if there is a system or program crash. To
21841guard against this, Exim ignores any records that are more than six hours old.
21842
21843If you set up this kind of serialization, you should also arrange to delete the
21844relevant hints database whenever your system reboots. The names of the files
21845start with _misc_ and they are kept in the _spool/db_ directory. There
21846may be one or two files, depending on the type of DBM in use. The same files
21847are used for ETRN serialization.
21848
21849
21850oindex:[%size_addition%]
21851`..'=
21852%size_addition%, Use: 'smtp', Type: 'integer', Default: '1024'
21853===
21854
21855cindex:[SMTP,SIZE]
21856cindex:[message,size issue for transport filter]
21857cindex:[size,of message]
21858cindex:[transport,filter]
21859cindex:[filter,transport filter]
21860If a remote SMTP server indicates that it supports the SIZE option of the
21861MAIL command, Exim uses this to pass over the message size at the start of
21862an SMTP transaction. It adds the value of %size_addition% to the value it
21863sends, to allow for headers and other text that may be added during delivery by
21864configuration options or in a transport filter. It may be necessary to increase
21865this if a lot of text is added to messages.
21866
21867Alternatively, if the value of %size_addition% is set negative, it disables
21868the use of the SIZE option altogether.
21869
21870
21871oindex:[%tls_certificate%]
21872`..'=
21873%tls_certificate%, Use: 'smtp', Type: 'string'!!, Default: 'unset'
21874===
21875
21876cindex:[TLS client certificate, location of]
21877cindex:[certificate for client, location of]
21878The value of this option must be the absolute path to a file which contains the
21879client's certificate, for use when sending a message over an encrypted
21880connection. The values of $host$ and $host_address$ are set to the name
21881and address of the server during the expansion. See chapter <<CHAPTLS>> for
21882details of TLS.
21883
21884*Note*: This option must be set if you want Exim to use TLS when sending
21885messages as a client. The global option of the same name specifies the
21886certificate for Exim as a server; it is not automatically assumed that the same
21887certificate should be used when Exim is operating as a client.
21888
21889
21890oindex:[%tls_crl%]
21891`..'=
21892%tls_crl%, Use: 'smtp', Type: 'string'!!, Default: 'unset'
21893===
21894
21895cindex:[TLS,client certificate revocation list]
21896cindex:[certificate,revocation list for client]
21897This option specifies a certificate revocation list. The expanded value must
21898be the name of a file that contains a CRL in PEM format.
21899
21900
21901oindex:[%tls_privatekey%]
21902`..'=
21903%tls_privatekey%, Use: 'smtp', Type: 'string'!!, Default: 'unset'
21904===
21905
21906cindex:[TLS client private key, location of]
21907The value of this option must be the absolute path to a file which contains the
21908client's private key, for use when sending a message over an encrypted
21909connection. The values of $host$ and $host_address$ are set to the name
21910and address of the server during the expansion.
21911If this option is unset, the private key is assumed to be in the same file as
21912the certificate.
21913See chapter <<CHAPTLS>> for details of TLS.
21914
21915
21916oindex:[%tls_require_ciphers%]
21917`..'=
21918%tls_require_ciphers%, Use: 'smtp', Type: 'string'!!, Default: 'unset'
21919===
21920
21921cindex:[TLS,requiring specific ciphers]
21922cindex:[cipher,requiring specific]
21923The value of this option must be a list of permitted cipher suites, for use
21924when setting up an outgoing encrypted connection. (There is a global option of
21925the same name for controlling incoming connections.) The values of $host$ and
21926$host_address$ are set to the name and address of the server during the
21927expansion. See chapter <<CHAPTLS>> for details of TLS; note that this option is
21928used in different ways by OpenSSL and GnuTLS (see sections <<SECTreqciphssl>>
21929and <<SECTreqciphgnu>>). For GnuTLS, the order of the ciphers is a preference
21930order.
21931
21932
21933
21934oindex:[%tls_tempfail_tryclear%]
21935`..'=
21936%tls_tempfail_tryclear%, Use: 'smtp', Type: 'boolean', Default: 'true'
21937===
21938
21939When the server host is not in %hosts_require_tls%, and there is a problem in
21940setting up a TLS session, this option determines whether or not Exim should try
21941to deliver the message unencrypted. If it is set false, delivery to the
21942current host is deferred; if there are other hosts, they are tried. If this
21943option is set true, Exim attempts to deliver unencrypted after a 4##'xx'
21944response to STARTTLS. Also, if STARTTLS is accepted, but the subsequent
21945TLS negotiation fails, Exim closes the current connection (because it is in an
21946unknown state), opens a new one to the same host, and then tries the delivery
21947in clear.
21948
21949
21950oindex:[%tls_verify_certificates%]
21951`..'=
21952%tls_verify_certificates%, Use: 'smtp', Type: 'string'!!, Default: 'unset'
21953===
21954
21955cindex:[TLS,server certificate verification]
21956cindex:[certificate,verification of server]
21957The value of this option must be the absolute path to a file containing
21958permitted server certificates, for use when setting up an encrypted connection.
21959Alternatively, if you are using OpenSSL, you can set
21960%tls_verify_certificates% to the name of a directory containing certificate
21961files. This does not work with GnuTLS; the option must be set to the name of a
21962single file if you are using GnuTLS. The values of $host$ and
21963$host_address$ are set to the name and address of the server during the
21964expansion of this option. See chapter <<CHAPTLS>> for details of TLS.
21965
21966
21967
21968
21969[[SECTvalhosmax]]
21970How the limits for the number of hosts to try are used
21971~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21972cindex:[host,maximum number to try]
21973cindex:[limit,hosts; maximum number tried]
21974There are two options that are concerned with the number of hosts that are
21975tried when an SMTP delivery takes place. They are %hosts_max_try% and
21976%hosts_max_try_hardlimit%.
21977
21978
21979The %hosts_max_try% option limits the number of hosts that are tried
21980for a single delivery. However, despite the term ``host'' in its name, the option
21981actually applies to each IP address independently. In other words, a multihomed
21982host is treated as several independent hosts, just as it is for retrying.
21983
21984Many of the larger ISPs have multiple MX records which often point to
21985multihomed hosts. As a result, a list of a dozen or more IP addresses may be
21986created as a result of routing one of these domains.
21987
21988Trying every single IP address on such a long list does not seem sensible; if
21989several at the top of the list fail, it is reasonable to assume there is some
21990problem that is likely to affect all of them. Roughly speaking, the value of
21991%hosts_max_try% is the maximum number that are tried before deferring the
21992delivery. However, the logic cannot be quite that simple.
21993
21994Firstly, IP addresses that are skipped because their retry times have not
21995arrived do not count, and in addition, addresses that are past their retry
21996limits are also not counted, even when they are tried. This means that when
21997some IP addresses are past their retry limits, more than the value of
21998%hosts_max_retry% may be tried. The reason for this behaviour is to ensure
21999that all IP addresses are considered before timing out an email address (but
22000see below for an exception).
22001
22002Secondly, when the %hosts_max_try% limit is reached, Exim looks down the host
22003list to see if there is a subsequent host with a different (higher valued) MX.
22004If there is, that host is considered next, and the current IP address is used
22005but not counted. This behaviour helps in the case of a domain with a retry rule
22006that hardly ever delays any hosts, as is now explained:
22007
22008Consider the case of a long list of hosts with one MX value, and a few with a
22009higher MX value. If %hosts_max_try% is small (the default is 5) only a few
22010hosts at the top of the list are tried at first. With the default retry rule,
22011which specifies increasing retry times, the higher MX hosts are eventually
22012tried when those at the top of the list are skipped because they have not
22013reached their retry times.
22014
22015However, it is common practice to put a fixed short retry time on domains for
22016large ISPs, on the grounds that their servers are rarely down for very long.
22017Unfortunately, these are exactly the domains that tend to resolve to long lists
22018of hosts. The short retry time means that the lowest MX hosts are tried every
22019time. The attempts may be in a different order because of random sorting, but
22020without the special MX check, the higher MX hosts would never be tried
22021
22022until all the lower MX hosts had timed out (which might be several days),
22023because there are always some lower MX hosts that have reached their retry
22024times. With the special check, Exim considers at least one IP address from each
22025MX value at every delivery attempt, even if the %hosts_max_try% limit has
22026already been reached.
22027
22028The above logic means that %hosts_max_try% is not a hard limit, and in
22029particular, Exim normally eventually tries all the IP addresses before timing
22030out an email address. When %hosts_max_try% was implemented, this seemed a
22031reasonable thing to do. Recently, however, some lunatic DNS configurations have
22032been set up with hundreds of IP addresses for some domains. It can
22033take a very long time indeed for an address to time out in these cases.
22034
22035The %hosts_max_try_hardlimit% option was added to help with this problem.
22036Exim never tries more than this number of IP addresses; if it hits this limit
22037and they are all timed out, the email address is bounced, even though not all
22038possible IP addresses have been tried.
22039
22040
22041
22042
22043
22044////////////////////////////////////////////////////////////////////////////
22045////////////////////////////////////////////////////////////////////////////
22046
22047[[CHAPrewrite]]
22048Address rewriting
22049-----------------
22050cindex:[rewriting,addresses]
22051There are some circumstances in which Exim automatically rewrites domains in
22052addresses. The two most common are when an address is given without a domain
22053(referred to as an ``unqualified address'') or when an address contains an
22054abbreviated domain that is expanded by DNS lookup.
22055
22056Unqualified envelope addresses are accepted only for locally submitted
22057messages, or messages from hosts that match %sender_unqualified_hosts% or
22058%recipient_unqualified_hosts%, respectively. Unqualified addresses in header
22059lines are qualified if they are in locally submitted messages, or messages from
22060hosts that are permitted to send unqualified envelope addresses. Otherwise,
22061unqualified addresses in header lines are neither qualified nor rewritten.
22062
22063One situation in which Exim does 'not' automatically rewrite a domain is
22064when it is the name of a CNAME record in the DNS. The older RFCs suggest that
22065such a domain should be rewritten using the ``canonical'' name, and some MTAs do
22066this. The new RFCs do not contain this suggestion.
22067
22068
22069Explicitly configured address rewriting
22070~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22071This chapter describes the rewriting rules that can be used in the
22072main rewrite section of the configuration file, and also in the generic
22073%headers_rewrite% option that can be set on any transport.
22074
22075Some people believe that configured address rewriting is a Mortal Sin.
22076Others believe that life is not possible without it. Exim provides the
22077facility; you do not have to use it.
22078
22079The main rewriting rules that appear in the ``rewrite'' section of the
22080configuration file are applied to addresses in incoming messages, both envelope
22081addresses and addresses in header lines. Each rule specifies the types of
22082address to which it applies.
22083
22084Rewriting of addresses in header lines applies only to those headers that
22085were received with the message, and, in the case of transport rewriting, those
22086that were added by a system filter. That is, it applies only to those headers
22087that are common to all copies of the message. Header lines that are added by
22088individual routers or transports (and which are therefore specific to
22089individual recipient addresses) are not rewritten.
22090
22091In general, rewriting addresses from your own system or domain has some
22092legitimacy. Rewriting other addresses should be done only with great care and
22093in special circumstances. The author of Exim believes that rewriting should be
22094used sparingly, and mainly for ``regularizing'' addresses in your own domains.
22095Although it can sometimes be used as a routing tool, this is very strongly
22096discouraged.
22097
22098There are two commonly encountered circumstances where rewriting is used, as
22099illustrated by these examples:
22100
22101- The company whose domain is 'hitch.fict.example' has a number of hosts that
22102exchange mail with each other behind a firewall, but there is only a single
22103gateway to the outer world. The gateway rewrites '*.hitch.fict.example' as
22104'hitch.fict.example' when sending mail off-site.
22105
22106- A host rewrites the local parts of its own users so that, for example,
22107'fp42@hitch.fict.example' becomes 'Ford.Prefect@hitch.fict.example'.
22108
22109
22110
22111When does rewriting happen?
22112~~~~~~~~~~~~~~~~~~~~~~~~~~~
22113cindex:[rewriting,timing of]
22114cindex:[{ACL},rewriting addresses in]
22115Configured address rewriting can take place at several different stages of a
22116message's processing.
22117
22118At the start of an ACL for MAIL, the sender address may have been rewritten
22119by a special SMTP-time rewrite rule (see section <<SECTrewriteS>>), but no
22120ordinary rewrite rules have yet been applied. If, however, the sender address
22121is verified in the ACL, it is rewritten before verification, and remains
22122rewritten thereafter. The subsequent value of $sender_address$ is the
22123rewritten address. This also applies if sender verification happens in a
22124RCPT ACL. Otherwise, when the sender address is not verified, it is
22125rewritten as soon as a message's header lines have been received.
22126
22127Similarly, at the start of an ACL for RCPT, the current recipient's address
22128may have been rewritten by a special SMTP-time rewrite rule, but no ordinary
22129rewrite rules have yet been applied to it. However, the behaviour is different
22130from the sender address when a recipient is verified. The address is rewritten
22131for the verification, but the rewriting is not remembered at this stage. The
22132value of $local_part$ and $domain$ after verification are always the same
22133as they were before (that is, they contain the unrewritten -- except for
22134SMTP-time rewriting -- address).
22135
22136Once a message's header lines have been received, all the envelope recipient
22137addresses are permanently rewritten, and rewriting is also applied to the
22138addresses in the header lines (if configured).
22139cindex:['local_scan()' function,address rewriting; timing of]
22140Thus, all the rewriting is completed before the DATA ACL and
22141'local_scan()' functions are run.
22142
22143When an address is being routed, either for delivery or for verification,
22144rewriting is applied immediately to child addresses that are generated by
22145redirection, unless %no_rewrite% is set on the router.
22146
22147cindex:[envelope sender, rewriting]
22148cindex:[rewriting,at transport time]
22149At transport time, additional rewriting of addresses in header lines can be
22150specified by setting the generic %headers_rewrite% option on a transport. This
22151option contains rules that are identical in form to those in the rewrite
22152section of the configuration file. In addition, the outgoing envelope sender
22153can be rewritten by means of the %return_path% transport option. However, it
22154is not possible to rewrite envelope recipients at transport time.
22155
22156
22157
22158
22159Testing the rewriting rules that apply on input
22160~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22161cindex:[rewriting,testing]
22162cindex:[testing,rewriting]
22163Exim's input rewriting configuration appears in a part of the run time
22164configuration file headed by ``begin rewrite''. It can be tested by the %-brw%
22165command line option. This takes an address (which can be a full RFC 2822
22166address) as its argument. The output is a list of how the address would be
22167transformed by the rewriting rules for each of the different places it might
22168appear in an incoming message, that is, for each different header and for the
22169envelope sender and recipient fields. For example,
22170
22171 exim -brw ph10@exim.workshop.example
22172
22173might produce the output
22174
22175 sender: Philip.Hazel@exim.workshop.example
22176 from: Philip.Hazel@exim.workshop.example
22177 to: ph10@exim.workshop.example
22178 cc: ph10@exim.workshop.example
22179 bcc: ph10@exim.workshop.example
22180 reply-to: Philip.Hazel@exim.workshop.example
22181 env-from: Philip.Hazel@exim.workshop.example
22182 env-to: ph10@exim.workshop.example
22183
22184which shows that rewriting has been set up for that address when used in any of
22185the source fields, but not when it appears as a recipient address. At the
22186present time, there is no equivalent way of testing rewriting rules that are
22187set for a particular transport.
22188
22189
22190Rewriting rules
22191~~~~~~~~~~~~~~~
22192cindex:[rewriting,rules]
22193The rewrite section of the configuration file consists of lines of rewriting
22194rules in the form
22195
22196 <source pattern> <replacement> <flags>
22197
22198Rewriting rules that are specified for the %headers_rewrite% generic transport
22199option are given as a colon-separated list. Each item in the list takes the
22200same form as a line in the main rewriting configuration
22201(except that any colons must be doubled, of course).
22202
22203The formats of source patterns and replacement strings are described below.
22204Each is terminated by white space, unless enclosed in double quotes, in which
22205case normal quoting conventions apply inside the quotes. The flags are single
22206characters which may appear in any order. Spaces and tabs between them are
22207ignored.
22208
22209For each address that could potentially be rewritten, the rules are scanned in
22210order, and replacements for the address from earlier rules can themselves be
22211replaced by later rules (but see the ``q'' and ``R'' flags).
22212
22213The order in which addresses are rewritten is undefined, may change between
22214releases, and must not be relied on, with one exception: when a message is
22215received, the envelope sender is always rewritten first, before any header
22216lines are rewritten. For example, the replacement string for a rewrite of an
22217address in 'To:' must not assume that the message's address in 'From:' has (or
22218has not) already been rewritten. However, a rewrite of 'From:' may assume that
22219the envelope sender has already been rewritten.
22220
22221The variables $local_part$ and $domain$ can be used in the replacement
22222string to refer to the address that is being rewritten. Note that lookup-driven
22223rewriting can be done by a rule of the form
22224
22225 *@* ${lookup ...
22226
22227where the lookup key uses $1$ and $2$ or $local_part$ and $domain$ to
22228refer to the address that is being rewritten.
22229
22230
22231Rewriting patterns
22232~~~~~~~~~~~~~~~~~~
22233cindex:[rewriting,patterns]
22234cindex:[address list,in a rewriting pattern]
22235The source pattern in a rewriting rule is any item which may appear in an
22236address list (see section <<SECTaddresslist>>). It is in fact processed as a
22237single-item address list, which means that it is expanded before being tested
22238against the address.
22239
22240Domains in patterns should be given in lower case. Local parts in patterns are
22241case-sensitive. If you want to do case-insensitive matching of local parts, you
22242can use a regular expression that starts with `^(?i)`.
22243
22244cindex:[numerical variables ($1$ $2$ etc),in rewriting rules]
22245After matching, the numerical variables $1$, $2$, etc. may be set,
22246depending on the type of match which occurred. These can be used in the
22247replacement string to insert portions of the incoming address. $0$ always
22248refers to the complete incoming address. When a regular expression is used, the
22249numerical variables are set from its capturing subexpressions. For other types
22250of pattern they are set as follows:
22251
22252- If a local part or domain starts with an asterisk, the numerical variables
22253refer to the character strings matched by asterisks, with $1$ associated with
22254the first asterisk, and $2$ with the second, if present. For example, if the
22255pattern
22256
22257 *queen@*.fict.example
22258+
22259is matched against the address 'hearts-queen@wonderland.fict.example' then
22260
22261 $0 = hearts-queen@wonderland.fict.example
22262 $1 = hearts-
22263 $2 = wonderland
22264+
22265Note that if the local part does not start with an asterisk, but the domain
22266does, it is $1$ that contains the wild part of the domain.
22267
22268- If the domain part of the pattern is a partial lookup, the wild and fixed parts
22269of the domain are placed in the next available numerical variables. Suppose,
22270for example, that the address 'foo@bar.baz.example' is processed by a
22271rewriting rule of the form
22272
22273 *@partial-dbm;/some/dbm/file <replacement string>
22274+
22275and the key in the file that matches the domain is `*.baz.example`. Then
22276
22277 $1 = foo
22278 $2 = bar
22279 $3 = baz.example
22280+
22281If the address 'foo@baz.example' is looked up, this matches the same
22282wildcard file entry, and in this case $2$ is set to the empty string, but
22283$3$ is still set to 'baz.example'. If a non-wild key is matched in a
22284partial lookup, $2$ is again set to the empty string and $3$ is set to the
22285whole domain. For non-partial domain lookups, no numerical variables are set.
22286
22287
22288
22289Rewriting replacements
22290~~~~~~~~~~~~~~~~~~~~~~
22291cindex:[rewriting,replacements]
22292If the replacement string for a rule is a single asterisk, addresses that
22293match the pattern and the flags are 'not' rewritten, and no subsequent
22294rewriting rules are scanned. For example,
22295
22296 hatta@lookingglass.fict.example * f
22297
22298specifies that 'hatta@lookingglass.fict.example' is never to be rewritten in
22299'From:' headers.
22300
22301If the replacement string is not a single asterisk, it is expanded, and must
22302yield a fully qualified address. Within the expansion, the variables
22303$local_part$ and $domain$ refer to the address that is being rewritten.
22304Any letters they contain retain their original case -- they are not lower
22305cased. The numerical variables are set up according to the type of pattern that
22306matched the address, as described above. If the expansion is forced to fail by
22307the presence of ``fail'' in a conditional or lookup item, rewriting by the
22308current rule is abandoned, but subsequent rules may take effect. Any other
22309expansion failure causes the entire rewriting operation to be abandoned, and an
22310entry written to the panic log.
22311
22312
22313
22314Rewriting flags
22315~~~~~~~~~~~~~~~
22316There are three different kinds of flag that may appear on rewriting rules:
22317
22318- Flags that specify which headers and envelope addresses to rewrite: E, F, T, b,
22319c, f, h, r, s, t.
22320
22321- A flag that specifies rewriting at SMTP time: S.
22322
22323- Flags that control the rewriting process: Q, q, R, w.
22324
22325For rules that are part of the %headers_rewrite% generic transport option,
22326E, F, T, and S are not permitted.
22327
22328
22329
22330Flags specifying which headers and envelope addresses to rewrite
22331~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22332cindex:[rewriting,flags]
22333If none of the following flag letters, nor the ``S'' flag (see section
22334<<SECTrewriteS>>) are present, a main rewriting rule applies to all headers and
22335to both the sender and recipient fields of the envelope, whereas a
22336transport-time rewriting rule just applies to all headers. Otherwise, the
22337rewriting rule is skipped unless the relevant addresses are being processed.
22338
22339&&&
22340`E` rewrite all envelope fields
22341`F` rewrite the envelope From field
22342`T` rewrite the envelope To field
22343`b` rewrite the 'Bcc:' header
22344`c` rewrite the 'Cc:' header
22345`f` rewrite the 'From:' header
22346`h` rewrite all headers
22347`r` rewrite the 'Reply-To:' header
22348`s` rewrite the 'Sender:' header
22349`t` rewrite the 'To:' header
22350&&&
22351
22352You should be particularly careful about rewriting 'Sender:' headers, and
22353restrict this to special known cases in your own domains.
22354
22355
22356[[SECTrewriteS]]
22357The SMTP-time rewriting flag
22358~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22359cindex:[SMTP,rewriting malformed addresses]
22360cindex:[RCPT,rewriting argument of]
22361cindex:[MAIL,rewriting argument of]
22362The rewrite flag ``S'' specifies a rewrite of incoming envelope addresses at SMTP
22363time, as soon as an address is received in a MAIL or RCPT command, and
22364before any other processing; even before syntax checking. The pattern is
22365required to be a regular expression, and it is matched against the whole of the
22366data for the command, including any surrounding angle brackets.
22367
22368This form of rewrite rule allows for the handling of addresses that are not
22369compliant with RFCs 2821 and 2822 (for example, ``bang paths'' in batched SMTP
22370input). Because the input is not required to be a syntactically valid address,
22371the variables $local_part$ and $domain$ are not available during the
22372expansion of the replacement string. The result of rewriting replaces the
22373original address in the MAIL or RCPT command.
22374
22375
22376Flags controlling the rewriting process
22377~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22378There are four flags which control the way the rewriting process works. These
22379take effect only when a rule is invoked, that is, when the address is of the
22380correct type (matches the flags) and matches the pattern:
22381
22382- If the ``Q'' flag is set on a rule, the rewritten address is permitted to be an
22383unqualified local part. It is qualified with %qualify_recipient%. In the
22384absence of ``Q'' the rewritten address must always include a domain.
22385
22386- If the ``q'' flag is set on a rule, no further rewriting rules are considered,
22387even if no rewriting actually takes place because of a ``fail'' in the expansion.
22388The ``q'' flag is not effective if the address is of the wrong type (does not
22389match the flags) or does not match the pattern.
22390
22391- The ``R'' flag causes a successful rewriting rule to be re-applied to the new
22392address, up to ten times. It can be combined with the ``q'' flag, to stop
22393rewriting once it fails to match (after at least one successful rewrite).
22394
22395- cindex:[rewriting,whole addresses]
22396When an address in a header is rewritten, the rewriting normally applies only
22397to the working part of the address, with any comments and RFC 2822 ``phrase''
22398left unchanged. For example, rewriting might change
22399
22400 From: Ford Prefect <fp42@restaurant.hitch.fict.example>
22401+
22402into
22403
22404 From: Ford Prefect <prefectf@hitch.fict.example>
22405+
22406Sometimes there is a need to replace the whole address item, and this can be
22407done by adding the flag letter ``w'' to a rule. If this is set on a rule that
22408causes an address in a header line to be rewritten, the entire address is
22409replaced, not just the working part. The replacement must be a complete RFC
224102822 address, including the angle brackets if necessary. If text outside angle
22411brackets contains a character whose value is greater than 126 or less than 32
22412(except for tab), the text is encoded according to RFC 2047.
22413The character set is taken from %headers_charset%, which defaults to
22414ISO-8859-1.
22415+
22416When the ``w'' flag is set on a rule that causes an envelope address to be
22417rewritten, all but the working part of the replacement address is discarded.
22418
22419
22420
22421Rewriting examples
22422~~~~~~~~~~~~~~~~~~
22423Here is an example of the two common rewriting paradigms:
22424
22425....
22426*@*.hitch.fict.example $1@hitch.fict.example
22427*@hitch.fict.example ${lookup{$1}dbm{/etc/realnames}\
22428 {$value}fail}@hitch.fict.example bctfrF
22429....
22430
22431Note the use of ``fail'' in the lookup expansion in the second rule, forcing
22432the string expansion to fail if the lookup does not succeed. In this context it
22433has the effect of leaving the original address unchanged, but Exim goes on to
22434consider subsequent rewriting rules, if any, because the ``q'' flag is not
22435present in that rule. An alternative to ``fail'' would be to supply $1$
22436explicitly, which would cause the rewritten address to be the same as before,
22437at the cost of a small bit of processing. Not supplying either of these is an
22438error, since the rewritten address would then contain no local part.
22439
22440The first example above replaces the domain with a superior, more general
22441domain. This may not be desirable for certain local parts. If the rule
22442
22443 root@*.hitch.fict.example *
22444
22445were inserted before the first rule, rewriting would be suppressed for the
22446local part 'root' at any domain ending in 'hitch.fict.example'.
22447
22448Rewriting can be made conditional on a number of tests, by making use of
22449$\{if$ in the expansion item. For example, to apply a rewriting rule only to
22450messages that originate outside the local host:
22451
22452....
22453*@*.hitch.fict.example "${if !eq {$sender_host_address}{}\
22454 {$1@hitch.fict.example}fail}"
22455....
22456
22457The replacement string is quoted in this example because it contains white
22458space.
22459
22460cindex:[rewriting,bang paths]
22461cindex:[bang paths,rewriting]
22462Exim does not handle addresses in the form of ``bang paths''. If it sees such an
22463address it treats it as an unqualified local part which it qualifies with the
22464local qualification domain (if the source of the message is local or if the
22465remote host is permitted to send unqualified addresses). Rewriting can
22466sometimes be used to handle simple bang paths with a fixed number of
22467components. For example, the rule
22468
22469 \N^([^!]+)!(.*)@your.domain.example$\N $2@$1
22470
22471rewrites a two-component bang path 'host.name!user' as the domain address
22472'user@host.name'. However, there is a security implication in using this as
22473a global rewriting rule for envelope addresses. It can provide a backdoor
22474method for using your system as a relay, because the incoming addresses appear
22475to be local. If the bang path addresses are received via SMTP, it is safer to
22476use the ``S'' flag to rewrite them as they are received, so that relay checking
22477can be done on the rewritten addresses.
22478
22479
22480
22481
22482
22483////////////////////////////////////////////////////////////////////////////
22484////////////////////////////////////////////////////////////////////////////
22485
22486[[CHAPretry]]
22487Retry configuration
22488-------------------
22489cindex:[retry configuration, description of]
22490cindex:[configuration file,retry section]
22491The ``retry'' section of the run time configuration file contains a list of retry
22492rules which control how often Exim tries to deliver messages that cannot be
22493delivered at the first attempt. If there are no retry rules, temporary errors
22494are treated as permanent. The %-brt% command line option can be used to test
22495which retry rule will be used for a given address or domain.
22496
22497The most common cause of retries is temporary failure to deliver to a remote
22498host because the host is down, or inaccessible because of a network problem.
22499Exim's retry processing in this case is applied on a per-host (strictly, per IP
22500address) basis, not on a per-message basis. Thus, if one message has recently
22501been delayed, delivery of a new message to the same host is not immediately
22502tried, but waits for the host's retry time to arrive. If the %retry_defer% log
22503selector is set, the message
22504cindex:[retry,time not reached]
22505``retry time not reached'' is written to the main log whenever a delivery is
22506skipped for this reason. Section <<SECToutSMTPerr>> contains more details of the
22507handling of errors during remote deliveries.
22508
22509Retry processing applies to routing as well as to delivering, except as covered
22510in the next paragraph. The retry rules do not distinguish between these
22511actions. It is not possible, for example, to specify different behaviour for
22512failures to route the domain 'snark.fict.example' and failures to deliver to
22513the host 'snark.fict.example'. I didn't think anyone would ever need this
22514added complication, so did not implement it. However, although they share the
22515same retry rule, the actual retry times for routing and transporting a given
22516domain are maintained independently.
22517
22518When a delivery is not part of a queue run (typically an immediate delivery on
22519receipt of a message), the routers are always run, and local deliveries are
22520always attempted, even if retry times are set for them. This makes for better
22521behaviour if one particular message is causing problems (for example, causing
22522quota overflow, or provoking an error in a filter file). If such a delivery
22523suffers a temporary failure, the retry data is updated as normal, and
22524subsequent delivery attempts from queue runs occur only when the retry time for
22525the local address is reached.
22526
22527
22528
22529Retry rules
22530~~~~~~~~~~~
22531cindex:[retry,rules]
22532Each retry rule occupies one line and consists of three or four parts,
22533separated by white space: a pattern, an error name, an optional list of sender
22534addresses, and a list of retry parameters. The pattern and sender lists must be
22535enclosed in double quotes if they contain white space. The rules are searched in
22536order until one is found where the pattern, error name, and sender list (if
22537present) match the failing host or address, the error that occurred, and the
22538message's sender, respectively.
22539
22540
22541The pattern is any single item that may appear in an address list (see section
22542<<SECTaddresslist>>). It is in fact processed as a one-item address list, which
22543means that it is expanded before being tested against the address that has
22544been delayed. Address list processing treats a plain domain name as if it were
22545preceded by ``\*@'', which makes it possible for many retry rules to start with
22546just a domain. For example,
22547
22548 lookingglass.fict.example * F,24h,30m;
22549
22550provides a rule for any address in the 'lookingglass.fict.example' domain,
22551whereas
22552
22553 alice@lookingglass.fict.example * F,24h,30m;
22554
22555applies only to temporary failures involving the local part %alice%.
22556In practice, almost all rules start with a domain name pattern without a local
22557part.
22558
22559cindex:[regular expressions,in retry rules]
22560*Warning*: If you use a regular expression in a routing rule pattern, it
22561must match a complete address, not just a domain, because that is how regular
22562expressions work in address lists.
22563
22564&&&
22565`\^\Nxyz\d+\.abc\.example\\$\N \* G,1h,10m,2` %Wrong%
22566`\^\N[^@]+@xyz\d+\.abc\.example\\$\N \* G,1h,10m,2` %Right%
22567&&&
22568
22569
22570
22571Choosing which retry rule to use
22572~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22573When Exim is looking for a retry rule after a routing attempt has failed (for
22574example, after a DNS timeout), each line in the retry configuration is tested
22575against the complete address only if %retry_use_local_part% is set for the
22576router. Otherwise, only the domain is used, except when matching against a
22577regular expression, when the local part of the address is replaced with ``\*''.
22578A domain on its own can match a domain pattern, or a pattern that starts with
22579``\*@''. By default, %retry_use_local_part% is true for routers where
22580%check_local_user% is true, and false for other routers.
22581
22582Similarly, when Exim is looking for a retry rule after a local delivery has
22583failed (for example, after a mailbox full error), each line in the retry
22584configuration is tested against the complete address only if
22585%retry_use_local_part% is set for the transport (it defaults true for all
22586local transports).
22587
22588When Exim is looking for a retry rule after a remote delivery attempt has
22589failed, what happens depends on the type of failure. After a 4##'xx' SMTP
22590response for a recipient address, the whole address is used when searching the
22591retry rules. The rule that is found is used to create a retry time for the
22592failing address.
22593
22594For a temporary error that is not related to an individual address,
22595(for example, a connection timeout), each line in the retry configuration is
22596checked twice. First, the name of the remote host is used as a domain name
22597(preceded by ``\*@'' when matching a regular expression). If this does not match
22598the line, the domain from the email address is tried in a similar fashion. For
22599example, suppose the MX records for 'a.b.c.example' are
22600
22601 a.b.c.example MX 5 x.y.z.example
22602 MX 6 p.q.r.example
22603 MX 7 m.n.o.example
22604
22605and the retry rules are
22606
22607 p.q.r.example * F,24h,30m;
22608 a.b.c.example * F,4d,45m;
22609
22610and a delivery to the host 'x.y.z.example' fails. The first rule matches
22611neither the host nor the domain, so Exim looks at the second rule. This does
22612not match the host, but it does match the domain, so it is used to calculate
22613the retry time for the host 'x.y.z.example'. Meanwhile, Exim tries to deliver
22614to 'p.q.r.example'. If this fails, the first retry rule is used, because it
22615matches the host.
22616
22617In other words, failures to deliver to host 'p.q.r.example' use the first
22618rule to determine retry times, but for all the other hosts for the domain
22619'a.b.c.example', the second rule is used. The second rule is also used if
22620routing to 'a.b.c.example' suffers a temporary failure.
22621
22622
22623Retry rules for specific errors
22624~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22625cindex:[retry,specific errors; specifying]
22626The second field in a retry rule is the name of a particular error, or an
22627asterisk, which matches any error. The errors that can be tested for are:
22628
22629%auth_failed%::
22630Authentication failed when trying to send to a host in the %hosts_require_auth%
22631list in an ^smtp^ transport.
22632
22633%rcpt_4xx%::
22634A 4##'xx' error was received for an outgoing RCPT command. Either the first or
22635both of the x's can be given as specific digits, for example: `rcpt_45x` or
22636`rcpt_436`. For example, to recognize 452 errors given to RCPT commands by a
22637particular host, and have retries every ten minutes and a one-hour timeout, you
22638could set up a retry rule of this form:
22639
22640 the.host.name rcpt_452 F,1h,10m
22641+
22642These errors apply to both outgoing SMTP (the ^smtp^ transport) and outgoing
22643LMTP (either the ^lmtp^ transport, or the ^smtp^ transport in LMTP mode).
22644Note, however, that they apply only to responses to RCPT commands.
22645
22646%refused_MX%::
22647A connection to a host obtained from an MX record was refused.
22648
22649%refused_A%::
22650A connection to a host not obtained from an MX record was refused.
22651
22652%refused%::
22653A connection was refused.
22654
22655%timeout_connect_MX%::
22656A connection attempt to a host obtained from an MX record timed out.
22657
22658%timeout_connect_A%::
22659A connection attempt to a host not obtained from an MX record timed out.
22660
22661%timeout_connect%::
22662A connection attempt timed out.
22663
22664%timeout_MX%::
22665There was a timeout while connecting or during an SMTP session with a host
22666obtained from an MX record.
22667
22668%timeout_A%::
22669There was a timeout while connecting or during an SMTP session with a host not
22670obtained from an MX record.
22671
22672%timeout%::
22673There was a timeout while connecting or during an SMTP session.
22674
22675%quota%::
22676A mailbox quota was exceeded in a local delivery by the ^appendfile^ transport.
22677
22678%quota_%<'time'>::
22679cindex:[quota,error testing in retry rule]
22680cindex:[retry,quota error testing]
22681A mailbox quota was exceeded in a local delivery by the ^appendfile^ transport,
22682and the mailbox has not been accessed for <'time'>. For example, 'quota_4d'
22683applies to a quota error when the mailbox has not been accessed for four days.
22684
22685///
22686End of list
22687///
22688
22689cindex:[mailbox,time of last read]
22690The idea of %quota_%<'time'> is to make it possible to have shorter timeouts
22691when the mailbox is full and is not being read by its owner. Ideally, it should
22692be based on the last time that the user accessed the mailbox. However, it is
22693not always possible to determine this. Exim uses the following heuristic rules:
22694
22695- If the mailbox is a single file, the time of last access (the ``atime'') is used.
22696As no new messages are being delivered (because the mailbox is over quota),
22697Exim does not access the file, so this is the time of last user access.
22698
22699- cindex:[maildir format,time of last read]
22700For a maildir delivery, the time of last modification of the _new_
22701subdirectory is used. As the mailbox is over quota, no new files are created in
22702the _new_ subdirectory, because no new messages are being delivered. Any
22703change to the _new_ subdirectory is therefore assumed to be the result of an
22704MUA moving a new message to the _cur_ directory when it is first read. The
22705time that is used is therefore the last time that the user read a new message.
22706
22707- For other kinds of multi-file mailbox, the time of last access cannot be
22708obtained, so a retry rule that uses this type of error field is never matched.
22709
22710The quota errors apply both to system-enforced quotas and to Exim's own quota
22711mechanism in the ^appendfile^ transport. The 'quota' error also applies
22712when a local delivery is deferred because a partition is full (the ENOSPC
22713error).
22714
22715
22716
22717Retry rules for specified senders
22718~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22719cindex:[retry,rules; sender-specific]
22720You can specify retry rules that apply only when the failing message has a
22721specific sender. In particular, this can be used to define retry rules that
22722apply only to bounce messages. The third item in a retry rule can be of this
22723form:
22724
22725 senders=<address list>
22726
22727The retry timings themselves are then the fourth item. For example:
22728
22729....
22730* * senders=: F,1h,30m
22731....
22732
22733matches all temporary errors for bounce messages sent to any host. If the
22734address list contains white space, it must be enclosed in quotes. For example:
22735
22736 a.domain timeout senders="xb.dom : yc.dom" G,8h,10m,1.5
22737
22738When testing retry rules using %-brt%, you can supply a sender using the %-f%
22739command line option, like this:
22740
22741 exim -f "" -brt user@dom.ain
22742
22743If you do not set %-f% with %-brt%, a retry rule that contains a senders list
22744is never matched.
22745
22746
22747
22748
22749
22750Retry parameters
22751~~~~~~~~~~~~~~~~
22752cindex:[retry,parameters in rules]
22753The third (or fourth, if a senders list is present) field in a retry rule is a
22754sequence of retry parameter sets, separated by semicolons. Each set consists of
22755
22756 <letter>,<cutoff time>,<arguments>
22757
22758The letter identifies the algorithm for computing a new retry time; the cutoff
22759time is the time beyond which this algorithm no longer applies, and the
22760arguments vary the algorithm's action. The cutoff time is measured from the
22761time that the first failure for the domain (combined with the local part if
22762relevant) was detected, not from the time the message was received.
22763
22764cindex:[retry,algorithms]
22765The available algorithms are:
22766
22767- 'F': retry at fixed intervals. There is a single time parameter specifying
22768the interval.
22769
22770- 'G': retry at geometrically increasing intervals. The first argument
22771specifies a starting value for the interval, and the second a multiplier, which
22772is used to increase the size of the interval at each retry.
22773
22774When computing the next retry time, the algorithm definitions are scanned in
22775order until one whose cutoff time has not yet passed is reached. This is then
22776used to compute a new retry time that is later than the current time. In the
22777case of fixed interval retries, this simply means adding the interval to the
22778current time. For geometrically increasing intervals, retry intervals are
22779computed from the rule's parameters until one that is greater than the previous
22780interval is found. The main configuration variable
22781cindex:[limit,retry interval]
22782cindex:[retry interval, maximum]
22783cindex:[%retry_interval_max%]
22784%retry_interval_max% limits the maximum interval between retries.
22785
22786A single remote domain may have a number of hosts associated with it, and each
22787host may have more than one IP address. Retry algorithms are selected on the
22788basis of the domain name, but are applied to each IP address independently. If,
22789for example, a host has two IP addresses and one is unusable, Exim will
22790generate retry times for it and will not try to use it until its next retry
22791time comes. Thus the good IP address is likely to be tried first most of the
22792time.
22793
22794cindex:[hints database,use for retrying]
22795Retry times are hints rather than promises. Exim does not make any attempt to
22796run deliveries exactly at the computed times. Instead, a queue runner process
22797starts delivery processes for delayed messages periodically, and these attempt
22798new deliveries only for those addresses that have passed their next retry time.
22799If a new message arrives for a deferred address, an immediate delivery attempt
22800occurs only if the address has passed its retry time. In the absence of new
22801messages, the minimum time between retries is the interval between queue runner
22802processes. There is not much point in setting retry times of five minutes if
22803your queue runners happen only once an hour, unless there are a significant
22804number of incoming messages (which might be the case on a system that is
22805sending everything to a smart host, for example).
22806
22807The data in the retry hints database can be inspected by using the
22808'exim_dumpdb' or 'exim_fixdb' utility programs (see chapter <<CHAPutils>>). The
22809latter utility can also be used to change the data. The 'exinext' utility
22810script can be used to find out what the next retry times are for the hosts
22811associated with a particular mail domain, and also for local deliveries that
22812have been deferred.
22813
22814
22815Retry rule examples
22816~~~~~~~~~~~~~~~~~~~
22817Here are some example retry rules:
22818
22819 alice@wonderland.fict.example quota_5d F,7d,3h
22820 wonderland.fict.example quota_5d
22821 wonderland.fict.example * F,1h,15m; G,2d,1h,2;
22822 lookingglass.fict.example * F,24h,30m;
22823 * refused_A F,2h,20m;
22824 * * F,2h,15m; G,16h,1h,1.5; F,5d,8h
22825
22826The first rule sets up special handling for mail to
22827'alice@wonderland.fict.example' when there is an over-quota error and the
22828mailbox has not been read for at least 5 days. Retries continue every three
22829hours for 7 days. The second rule handles over-quota errors for all other local
22830parts at 'wonderland.fict.example'; the absence of a local part has the same
22831effect as supplying ``\*@''. As no retry algorithms are supplied, messages that
22832fail are bounced immediately if the mailbox has not been read for at least 5
22833days.
22834
22835The third rule handles all other errors at 'wonderland.fict.example'; retries
22836happen every 15 minutes for an hour, then with geometrically increasing
22837intervals until two days have passed since a delivery first failed. After the
22838first hour there is a delay of one hour, then two hours, then four hours, and
22839so on (this is a rather extreme example).
22840
22841The fourth rule controls retries for the domain 'lookingglass.fict.example'.
22842They happen every 30 minutes for 24 hours only. The remaining two rules handle
22843all other domains, with special action for connection refusal from hosts that
22844were not obtained from an MX record.
22845
22846The final rule in a retry configuration should always have asterisks in the
22847first two fields so as to provide a general catch-all for any addresses that do
22848not have their own special handling. This example tries every 15 minutes for 2
22849hours, then with intervals starting at one hour and increasing by a factor of
228501.5 up to 16 hours, then every 8 hours up to 5 days.
22851
22852
22853
22854Timeout of retry data
22855~~~~~~~~~~~~~~~~~~~~~
22856cindex:[timeout,of retry data]
22857cindex:[%retry_data_expire%]
22858cindex:[hints database,data expiry]
22859cindex:[retry,timeout of data]
22860Exim timestamps the data that it writes to its retry hints database. When it
22861consults the data during a delivery it ignores any that is older than the value
22862set in %retry_data_expire% (default 7 days). If, for example, a host hasn't
22863been tried for 7 days, Exim will try to deliver to it immediately a message
22864arrives, and if that fails, it will calculate a retry time as if it were
22865failing for the first time.
22866
22867This improves the behaviour for messages routed to rarely-used hosts such as MX
22868backups. If such a host was down at one time, and happens to be down again when
22869Exim tries a month later, using the old retry data would imply that it had been
22870down all the time, which is not a justified assumption.
22871
22872If a host really is permanently dead, this behaviour causes a burst of retries
22873every now and again, but only if messages routed to it are rare. It there is a
22874message at least once every 7 days the retry data never expires.
22875
22876
22877
22878
22879Long-term failures
22880~~~~~~~~~~~~~~~~~~
22881cindex:[delivery failure, long-term]
22882cindex:[retry,after long-term failure]
22883Special processing happens when an email address has been failing for so long
22884that the cutoff time for the last algorithm is reached. For example, using the
22885default retry rule:
22886
22887....
22888* * F,2h,15m; G,16h,1h,1.5; F,4d,6h
22889....
22890
22891the cutoff time is four days. Reaching the retry cutoff is independent of how
22892long any specific message has been failing; it is the length of continuous
22893failure for the recipient address that counts.
22894
22895When the cutoff time is reached for a local delivery, or for all the IP
22896addresses associated with a remote delivery, a subsequent delivery failure
22897causes Exim to give up on the address, and a bounce message is generated.
22898In order to cater for new messages that use the failing address, a next retry
22899time is still computed from the final algorithm, and is used as follows:
22900
22901For local deliveries, one delivery attempt is always made for any subsequent
22902messages. If this delivery fails, the address fails immediately. The
22903post-cutoff retry time is not used.
22904
22905If the delivery is remote, there are two possibilities, controlled by the
22906cindex:[%delay_after_cutoff%]
22907%delay_after_cutoff% option of the ^smtp^ transport. The option is true by
22908default. Until the post-cutoff retry time for one of the IP addresses is
22909reached, the failing email address is bounced immediately, without a delivery
22910attempt taking place. After that time, one new delivery attempt is made to
22911those IP addresses that are past their retry times, and if that still fails,
22912the address is bounced and new retry times are computed.
22913
22914In other words, when all the hosts for a given email address have been failing
22915for a long time, Exim bounces rather then defers until one of the hosts' retry
22916times is reached. Then it tries once, and bounces if that attempt fails. This
22917behaviour ensures that few resources are wasted in repeatedly trying to deliver
22918to a broken destination, but if the host does recover, Exim will eventually
22919notice.
22920
22921If %delay_after_cutoff% is set false, Exim behaves differently. If all IP
22922addresses are past their final cutoff time, Exim tries to deliver to those IP
22923addresses that have not been tried since the message arrived. If there are
22924no suitable IP addresses, or if they all fail, the address is bounced. In other
22925words, it does not delay when a new message arrives, but tries the expired
22926addresses immediately, unless they have been tried since the message arrived.
22927If there is a continuous stream of messages for the failing domains, setting
22928%delay_after_cutoff% false means that there will be many more attempts to
22929deliver to permanently failing IP addresses than when %delay_after_cutoff% is
22930true.
22931
22932
22933Ultimate address timeout
22934~~~~~~~~~~~~~~~~~~~~~~~~
22935cindex:[retry,ultimate address timeout]
22936An additional rule is needed to cope with cases where a host is intermittently
22937available, or when a message has some attribute that prevents its delivery when
22938others to the same address get through. In this situation, because some
22939messages are successfully delivered, the ``retry clock'' for the address keeps
22940getting restarted, and so a message could remain on the queue for ever. To
22941prevent this, if a message has been on the queue for longer than the cutoff
22942time of any applicable retry rule for a given address, a delivery is attempted
22943for that address, even if it is not yet time, and if this delivery fails, the
22944address is timed out. A new retry time is not computed in this case, so that
22945other messages for the same address are considered immediately.
22946
22947
22948
22949
22950
22951////////////////////////////////////////////////////////////////////////////
22952////////////////////////////////////////////////////////////////////////////
22953
22954[[CHAPSMTPAUTH]]
22955SMTP authentication
22956-------------------
22957cindex:[SMTP,authentication configuration]
22958cindex:[authentication]
22959The ``authenticators'' section of Exim's run time configuration is concerned with
22960SMTP authentication. This facility is an extension to the SMTP protocol,
22961described in RFC 2554, which allows a client SMTP host to authenticate itself
22962to a server. This is a common way for a server to recognize clients that
22963are permitted to use it as a relay. SMTP authentication is not of relevance to
22964the transfer of mail between servers that have no managerial connection with
22965each other.
22966
22967cindex:[AUTH,description of]
22968Very briefly, the way SMTP authentication works is as follows:
22969
22970- The server advertises a number of authentication 'mechanisms' in response to
22971the client's EHLO command.
22972
22973- The client issues an AUTH command, naming a specific mechanism. The command
22974may, optionally, contain some authentication data.
22975
22976- The server may issue one or more 'challenges', to which the client must send
22977appropriate responses. In simple authentication mechanisms, the challenges are
22978just prompts for user names and passwords. The server does not have to issue
22979any challenges -- in some mechanisms the relevant data may all be transmitted
22980with the AUTH command.
22981
22982- The server either accepts or denies authentication.
22983
22984- If authentication succeeds, the client may optionally make use of the AUTH
22985option on the MAIL command to pass an authenticated sender in subsequent
22986mail transactions. Authentication lasts for the remainder of the SMTP
22987connection.
22988
22989- If authentication fails, the client may give up, or it may try a different
22990authentication mechanism, or it may try transferring mail over the
22991unauthenticated connection.
22992
22993If you are setting up a client, and want to know which authentication
22994mechanisms the server supports, you can use Telnet to connect to port 25 (the
22995SMTP port) on the server, and issue an EHLO command. The response to this
22996includes the list of supported mechanisms. For example:
22997
22998&&&
22999`\$ `##*`telnet server.example 25`*
23000`Trying 192.168.34.25...`
23001`Connected to server.example.`
23002`Escape character is \'^]\'.`
23003`220 server.example ESMTP Exim 4.20 ...`
23004*`ehlo client.example`*
23005`250-server.example Hello client.example [10.8.4.5]`
23006`250-SIZE 52428800`
23007`250-PIPELINING`
23008`250-AUTH PLAIN`
23009`250 HELP`
23010&&&
23011
23012The second-last line of this example output shows that the server supports
23013authentication using the PLAIN mechanism. In Exim, the different authentication
23014mechanisms are configured by specifying 'authenticator' drivers. Like the
23015routers and transports, which authenticators are included in the binary is
23016controlled by build-time definitions. The following are currently available,
23017included by setting
23018
23019 AUTH_CRAM_MD5=yes
23020 AUTH_PLAINTEXT=yes
23021 AUTH_SPA=yes
23022
23023in _Local/Makefile_, respectively. The first of these supports the CRAM-MD5
23024authentication mechanism (RFC 2195), and the second can be configured to
23025support the PLAIN authentication mechanism (RFC 2595) or the LOGIN mechanism,
23026which is not formally documented, but used by several MUAs. The third
23027authenticator supports Microsoft's 'Secure Password Authentication'
23028mechanism.
23029
23030The authenticators are configured using the same syntax as other drivers (see
23031section <<SECTfordricon>>). If no authenticators are required, no authentication
23032section need be present in the configuration file. Each authenticator can in
23033principle have both server and client functions. When Exim is receiving SMTP
23034mail, it is acting as a server; when it is sending out messages over SMTP, it
23035is acting as a client. Authenticator configuration options are provided for use
23036in both these circumstances.
23037
23038To make it clear which options apply to which situation, the prefixes
23039%server_% and %client_% are used on option names that are specific to either
23040the server or the client function, respectively. Server and client functions
23041are disabled if none of their options are set. If an authenticator is to be
23042used for both server and client functions, a single definition, using both sets
23043of options, is required. For example:
23044
23045 cram:
23046 driver = cram_md5
23047 public_name = CRAM-MD5
23048 server_secret = ${if eq{$1}{ph10}{secret1}fail}
23049 client_name = ph10
23050 client_secret = secret2
23051
23052The %server_% option is used when Exim is acting as a server, and the
23053%client_% options when it is acting as a client.
23054
23055Descriptions of the individual authenticators are given in subsequent chapters.
23056The remainder of this chapter covers the generic options for the
23057authenticators, followed by general discussion of the way authentication works
23058in Exim.
23059
23060
23061
23062Generic options for authenticators
23063~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23064cindex:[authentication,generic options]
23065cindex:[options,generic; for authenticators]
23066
23067
23068oindex:[%driver%]
23069`..'=
23070%driver%, Use: 'authenticators', Type: 'string', Default: 'unset'
23071===
23072
23073This option must always be set. It specifies which of the available
23074authenticators is to be used.
23075
23076
23077oindex:[%public_name%]
23078`..'=
23079%public_name%, Use: 'authenticators', Type: 'string', Default: 'unset'
23080===
23081
23082This option specifies the name of the authentication mechanism that the driver
23083implements, and by which it is known to the outside world. These names should
23084contain only upper case letters, digits, underscores, and hyphens (RFC 2222),
23085but Exim in fact matches them caselessly. If %public_name% is not set, it
23086defaults to the driver's instance name.
23087
23088
23089oindex:[%server_advertise_condition%]
23090`..'=
23091%server_advertise_condition%, Use: 'authenticators', Type: 'string'!!, Default: 'unset'
23092===
23093
23094When a server is about to advertise an authentication mechanism, the condition
23095is expanded. If it yields the empty string, ``0'', ``no'', or ``false'', the
23096mechanism is not advertised.
23097If the expansion fails, the mechanism is not advertised. If the failure was not
23098forced, and was not caused by a lookup defer, the incident is logged.
23099See section <<SECTauthexiser>> below for further discussion.
23100
23101
23102oindex:[%server_debug_print%]
23103`..'=
23104%server_debug_print%, Use: 'authenticators', Type: 'string'!!, Default: 'unset'
23105===
23106
23107If this option is set and authentication debugging is enabled (see the %-d%
23108command line option), the string is expanded and included in the debugging
23109output when the authenticator is run as a server. This can help with checking
23110out the values of variables.
23111If expansion of the string fails, the error message is written to the debugging
23112output, and Exim carries on processing.
23113
23114
23115oindex:[%server_set_id%]
23116`..'=
23117%server_set_id%, Use: 'authenticators', Type: 'string'!!, Default: 'unset'
23118===
23119
23120When an Exim server successfully authenticates a client, this string is
23121expanded using data from the authentication, and preserved for any incoming
23122messages in the variable $authenticated_id$. It is also included in the log
23123lines for incoming messages. For example, a user/password authenticator
23124configuration might preserve the user name that was used to authenticate, and
23125refer to it subsequently during delivery of the message.
23126If expansion fails, the option is ignored.
23127
23128
23129oindex:[%server_mail_auth_condition%]
23130`..'=
23131%server_mail_auth_condition%, Use: 'authenticators', Type: 'string'!!, Default: 'unset'
23132===
23133
23134This option allows a server to discard authenticated sender addresses supplied
23135as part of MAIL commands in SMTP connections that are authenticated by the
23136driver on which %server_mail_auth_condition% is set. The option is not used
23137as part of the authentication process; instead its (unexpanded) value is
23138remembered for later use.
23139How it is used is described in the following section.
23140
23141
23142
23143
23144
23145[[SECTauthparamail]]
23146The AUTH parameter on MAIL commands
23147~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23148cindex:[authentication,sender; authenticated]
23149cindex:[AUTH,on MAIL command]
23150When a client supplied an AUTH= item on a MAIL command, Exim applies
23151the following checks before accepting it as the authenticated sender of the
23152message:
23153
23154- If the connection is not using extended SMTP (that is, HELO was used rather
23155than EHLO), the use of AUTH= is a syntax error.
23156
23157- If the value of the AUTH= parameter is ``<>'', it is ignored.
23158
23159- If %acl_smtp_mailauth% is defined, the ACL it specifies is run. While it is
23160running, the value of $authenticated_sender$ is set to the value obtained
23161from the AUTH= parameter. If the ACL does not yield ``accept'', the value of
23162$authenticated_sender$ is deleted. The %acl_smtp_mailauth% ACL may not
23163return ``drop'' or ``discard''. If it defers, a temporary error code (451) is given
23164for the MAIL command.
23165
23166- If %acl_smtp_mailauth% is not defined, the value of the AUTH= parameter
23167is accepted and placed in $authenticated_sender$ only if the client has
23168authenticated.
23169
23170- If the AUTH= value was accepted by either of the two previous rules, and
23171the client has authenticated, and the authenticator has a setting for the
23172%server_mail_auth_condition%, the condition is checked at this point. The
23173valued that was saved from the authenticator is expanded. If the expansion
23174fails, or yields an empty string, ``0'', ``no'', or ``false'', the value of
23175$authenticated_sender$ is deleted. If the expansion yields any other value,
23176the value of $authenticated_sender$ is retained and passed on with the
23177message.
23178
23179
23180When $authenticated_sender$ is set for a message, it is passed on to other
23181hosts to which Exim authenticates as a client. Do not confuse this value with
23182$authenticated_id$, which is a string obtained from the authentication
23183process, and which is not usually a complete email address.
23184
23185Whenever an AUTH= value is ignored, the incident is logged. The ACL for
23186MAIL, if defined, is run after AUTH= is accepted or ignored. It can
23187therefore make use of $authenticated_sender$. The converse is not true: the
23188value of $sender_address$ is not yet set up when the %acl_smtp_mailauth%
23189ACL is run.
23190
23191
23192
23193[[SECTauthexiser]]
23194Authentication on an Exim server
23195~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23196cindex:[authentication,on an Exim server]
23197When Exim receives an EHLO command, it advertises the public names of those
23198authenticators that are configured as servers, subject to the following
23199conditions:
23200
23201- The client host must match %auth_advertise_hosts% (default \*).
23202
23203- It the %server_advertise_condition% option is set, its expansion must not
23204yield the empty string, ``0'', ``no'', or ``false''.
23205
23206The order in which the authenticators are defined controls the order in which
23207the mechanisms are advertised.
23208
23209Some mail clients (for example, some versions of Netscape) require the user to
23210provide a name and password for authentication whenever AUTH is advertised,
23211even though authentication may not in fact be needed (for example, Exim may be
23212set up to allow unconditional relaying from the client by an IP address check).
23213You can make such clients more friendly by not advertising AUTH to them.
23214For example, if clients on the 10.9.8.0/24 network are permitted (by the ACL
23215that runs for RCPT) to relay without authentication, you should set
23216
23217 auth_advertise_hosts = ! 10.9.8.0/24
23218
23219so that no authentication mechanisms are advertised to them.
23220
23221The %server_advertise_condition% controls the advertisement of individual
23222authentication mechanisms. For example, it can be used to restrict the
23223advertisement of a patricular mechanism to encrypted connections, by a setting
23224such as:
23225
23226 server_advertise_condition = ${if eq{$tls_cipher}{}{no}{yes}}
23227
23228If the session is encrypted, $tls_cipher$ is not empty, and so the expansion
23229yields ``yes'', which allows the advertisement to happen.
23230
23231When an Exim server receives an AUTH command from a client, it rejects it
23232immediately if AUTH was not advertised in response to an earlier EHLO
23233command. This is the case if
23234
23235- The client host does not match %auth_advertise_hosts%; or
23236
23237- No authenticators are configured with server options; or
23238
23239- Expansion of %server_advertise_condition% blocked the advertising of all the
23240server authenticators.
23241
23242
23243Otherwise, Exim runs the ACL specified by %acl_smtp_auth% in order
23244to decide whether to accept the command. If %acl_smtp_auth% is not set,
23245AUTH is accepted from any client host.
23246
23247If AUTH is not rejected by the ACL, Exim searches its configuration for a
23248server authentication mechanism that was advertised in response to EHLO and
23249that matches the one named in the AUTH command. If it finds one, it runs
23250the appropriate authentication protocol, and authentication either succeeds or
23251fails. If there is no matching advertised mechanism, the AUTH command is
23252rejected with a 504 error.
23253
23254When a message is received from an authenticated host, the value of
23255$received_protocol$ is set to ``esmtpa'' instead of ``esmtp'', and
23256$sender_host_authenticated$ contains the name (not the public name) of the
23257authenticator driver that successfully authenticated the client from which the
23258message was received. This variable is empty if there was no successful
23259authentication.
23260
23261
23262
23263
23264Testing server authentication
23265~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23266cindex:[authentication,testing a server]
23267cindex:[AUTH,testing a server]
23268cindex:[base64 encoding,creating authentication test data]
23269Exim's %-bh% option can be useful for testing server authentication
23270configurations. The data for the AUTH command has to be sent using base64
23271encoding. A quick way to produce such data for testing is the following Perl
23272script:
23273
23274 use MIME::Base64;
23275 printf ("%s", encode_base64(eval "\"$ARGV[0]\""));
23276
23277cindex:[binary zero,in authentication data]
23278This interprets its argument as a Perl string, and then encodes it. The
23279interpretation as a Perl string allows binary zeros, which are required for
23280some kinds of authentication, to be included in the data. For example, a
23281command line to run this script on such data might be
23282
23283 encode '\0user\0password'
23284
23285Note the use of single quotes to prevent the shell interpreting the
23286backslashes, so that they can be interpreted by Perl to specify characters
23287whose code value is zero.
23288
23289*Warning 1*: If either of the user or password strings starts with an octal
23290digit, you must use three zeros instead of one after the leading backslash. If
23291you do not, the octal digit that starts your string will be incorrectly
23292interpreted as part of the code for the first character.
23293
23294*Warning 2*: If there are characters in the strings that Perl interprets
23295specially, you must use a Perl escape to prevent them being misinterpreted. For
23296example, a command such as
23297
23298 encode '\0user@domain.com\0pas$$word'
23299
23300gives an incorrect answer because of the unescaped ``@'' and ``\$'' characters.
23301
23302If you have the %mimencode% command installed, another way to do produce
23303base64-encoded strings is to run the command
23304
23305 echo -e -n `\0user\0password' | mimencode
23306
23307The %-e% option of %echo% enables the interpretation of backslash escapes in
23308the argument, and the %-n% option specifies no newline at the end of its
23309output. However, not all versions of %echo% recognize these options, so you
23310should check your version before relying on this suggestion.
23311
23312
23313
23314Authentication by an Exim client
23315~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23316cindex:[authentication,on an Exim client]
23317The ^smtp^ transport has two options called %hosts_require_auth% and
23318%hosts_try_auth%. When the ^smtp^ transport connects to a server that
23319announces support for authentication, and the host matches an entry in either
23320of these options, Exim (as a client) tries to authenticate as follows:
23321
23322- For each authenticator that is configured as a client, it searches the
23323authentication mechanisms announced by the server for one whose name
23324matches the public name of the authenticator.
23325
23326- When it finds one that matches, it runs the authenticator's client code.
23327The variables $host$ and $host_address$ are available for any string
23328expansions that the client might do. They are set to the server's name and
23329IP address. If any expansion is forced to fail, the authentication attempt
23330is abandoned,
23331and Exim moves on to the next authenticator.
23332Otherwise an expansion failure causes delivery to be
23333deferred.
23334
23335- If the result of the authentication attempt is a temporary error or a timeout,
23336Exim abandons trying to send the message to the host for the moment. It will
23337try again later. If there are any backup hosts available, they are tried in the
23338usual way.
23339
23340- If the response to authentication is a permanent error (5xx code), Exim carries
23341on searching the list of authenticators and tries another one if possible. If
23342all authentication attempts give permanent errors, or if there are no attempts
23343because no mechanisms match
23344(or option expansions force failure),
23345what happens depends on whether the host matches %hosts_require_auth% or
23346%hosts_try_auth%. In the first case, a temporary error is generated, and
23347delivery is deferred. The error can be detected in the retry rules, and thereby
23348turned into a permanent error if you wish. In the second case, Exim tries to
23349deliver the message unauthenticated.
23350
23351cindex:[AUTH,on MAIL command]
23352When Exim has authenticated itself to a remote server, it adds the AUTH
23353parameter to the MAIL commands it sends, if it has an authenticated sender
23354for the message.
23355If the message came from a remote host, the authenticated sender is the one
23356that was receiving on an incoming MAIL command, provided that the incoming
23357connection was authenticated and the %server_mail_auth% condition allowed the
23358authenticated sender to be retained. If a local process calls Exim to send a
23359message, the sender address that is built from the login name and
23360%qualify_domain% is treated as authenticated. However, if the
23361%authenticated_sender% option is set on the ^smtp^ transport, it overrides
23362the authenticated sender that was received with the message.
23363
23364
23365
23366
23367
23368
23369////////////////////////////////////////////////////////////////////////////
23370////////////////////////////////////////////////////////////////////////////
23371
23372[[CHAPplaintext]]
23373The plaintext authenticator
23374---------------------------
23375cindex:[^plaintext^ authenticator]
23376cindex:[authenticators,^plaintext^]
23377The ^plaintext^ authenticator can be configured to support the PLAIN and
23378LOGIN authentication mechanisms, both of which transfer authentication data as
23379plain (unencrypted) text (though base64 encoded). The use of plain text is a
23380security risk. If you use one of these mechanisms without also making use of
23381SMTP encryption (see chapter <<CHAPTLS>>) you should not use the same passwords
23382for SMTP connections as you do for login accounts.
23383
23384
23385Using plaintext in a server
23386~~~~~~~~~~~~~~~~~~~~~~~~~~~
23387cindex:[options,^plaintext^ authenticator (server)]
23388When running as a server, ^plaintext^ performs the authentication test by
23389expanding a string. It has the following options:
23390
23391oindex:[%server_prompts%]
23392`..'=
23393%server_prompts%, Use: 'plaintext', Type: 'string'!!, Default: 'unset'
23394===
23395
23396The contents of this option, after expansion, must be a colon-separated list of
23397prompt strings. If expansion fails, a temporary authentication rejection is
23398given.
23399
23400oindex:[%server_condition%]
23401`..'=
23402%server_condition%, Use: 'plaintext', Type: 'string'!!, Default: 'unset'
23403===
23404
23405This option must be set in order to configure the driver as a server. Its use
23406is described below.
23407
23408cindex:[AUTH,in ^plaintext^ authenticator]
23409cindex:[binary zero,in ^plaintext^ authenticator]
23410cindex:[numerical variables ($1$ $2$ etc),in ^plaintext^ authenticator]
23411cindex:[base64 encoding,in ^plaintext^ authenticator]
23412The data sent by the client with the AUTH command, or in response to
23413subsequent prompts, is base64 encoded, and so may contain any byte values
23414when decoded. If any data is supplied with the command, it is treated as a
23415list of strings, separated by NULs (binary zeros), which are placed in the
23416expansion variables $1$, $2$, etc. If there are more strings in
23417%server_prompts% than the number of strings supplied with the AUTH
23418command, the remaining prompts are used to obtain more data. Each response from
23419the client may be a list of NUL-separated strings.
23420
23421Once a sufficient number of data strings have been received,
23422%server_condition% is expanded.
23423If the expansion is forced to fail, authentication fails. Any other expansion
23424failure causes a temporary error code to be returned.
23425If the result of a successful expansion is an empty string, ``0'', ``no'', or
23426``false'', authentication fails. If the result of the expansion is ``1'', ``yes'', or
23427``true'', authentication succeeds and the generic %server_set_id% option is
23428expanded and saved in $authenticated_id$. For any other result, a temporary
23429error code is returned, with the expanded string as the error text.
23430
23431*Warning*: If you use a lookup in the expansion to find the user's
23432password, be sure to make the authentication fail if the user is unknown.
23433There are good and bad examples at the end of the next section.
23434
23435
23436
23437The PLAIN authentication mechanism
23438~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23439cindex:[PLAIN authentication mechanism]
23440cindex:[authentication,PLAIN mechanism]
23441cindex:[binary zero,in ^plaintext^ authenticator]
23442The PLAIN authentication mechanism (RFC 2595) specifies that three strings be
23443sent as one item of data (that is, one combined string containing two NUL
23444separators). The data is sent either as part of the AUTH command, or
23445subsequently in response to an empty prompt from the server.
23446
23447The second and third strings are a user name and a corresponding password.
23448Using a single fixed user name and password as an example, this could be
23449configured as follows:
23450
23451....
23452fixed_plain:
23453 driver = plaintext
23454 public_name = PLAIN
23455 server_prompts = :
23456 server_condition = \
23457 ${if and {{eq{$2}{username}}{eq{$3}{mysecret}}}{yes}{no}}
23458 server_set_id = $2
23459....
23460
23461The %server_prompts% setting specifies a single, empty prompt (empty items at
23462the end of a string list are ignored). If all the data comes as part of the
23463AUTH command, as is commonly the case, the prompt is not used. This
23464authenticator is advertised in the response to EHLO as
23465
23466 250-AUTH PLAIN
23467
23468and a client host can authenticate itself by sending the command
23469
23470 AUTH PLAIN AHVzZXJuYW1lAG15c2VjcmV0
23471
23472As this contains three strings (more than the number of prompts), no further
23473data is required from the client. Alternatively, the client may just send
23474
23475 AUTH PLAIN
23476
23477to initiate authentication, in which case the server replies with an empty
23478prompt. The client must respond with the combined data string.
23479
23480The data string is base64 encoded, as required by the RFC. This example,
23481when decoded, is <'NUL'>`username`<'NUL'>`mysecret`, where <'NUL'> represents a
23482zero byte. This is split up into three strings, the first of which is empty.
23483The %server_condition% option in the authenticator checks that the second two
23484are `username` and `mysecret` respectively.
23485
23486Having just one fixed user name and password, as in this example, is not very
23487realistic, though for a small organization with only a handful of
23488authenticating clients it could make sense.
23489
23490A more sophisticated instance of this authenticator could use the user name in
23491$2$ to look up a password in a file or database, and maybe do an encrypted
23492comparison (see %crypteq% in chapter <<CHAPexpand>>). Here is a example of this
23493approach, where the passwords are looked up in a DBM file. *Warning*: This
23494is an incorrect example:
23495
23496....
23497server_condition = \
23498 ${if eq{$3}{${lookup{$2}dbm{/etc/authpwd}}}{yes}{no}}
23499....
23500
23501The expansion uses the user name ($2$) as the key to look up a password,
23502which it then compares to the supplied password ($3$). Why is this example
23503incorrect? It works fine for existing users, but consider what happens if a
23504non-existent user name is given. The lookup fails, but as no success/failure
23505strings are given for the lookup, it yields an empty string. Thus, to defeat
23506the authentication, all a client has to do is to supply a non-existent user
23507name and an empty password. The correct way of writing this test is:
23508
23509....
23510server_condition = ${lookup{$2}dbm{/etc/authpwd}\
23511 {${if eq{$value}{$3}{yes}{no}}}{no}}
23512....
23513
23514In this case, if the lookup succeeds, the result is checked; if the lookup
23515fails, authentication fails. If %crypteq% is being used instead of %eq%, the
23516first example is in fact safe, because %crypteq% always fails if its second
23517argument is empty. However, the second way of writing the test makes the logic
23518clearer.
23519
23520
23521
23522The LOGIN authentication mechanism
23523~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23524cindex:[LOGIN authentication mechanism]
23525cindex:[authentication,LOGIN mechanism]
23526The LOGIN authentication mechanism is not documented in any RFC, but is in use
23527in a number of programs. No data is sent with the AUTH command. Instead, a
23528user name and password are supplied separately, in response to prompts. The
23529plaintext authenticator can be configured to support this as in this example:
23530
23531....
23532fixed_login:
23533 driver = plaintext
23534 public_name = LOGIN
23535 server_prompts = User Name : Password
23536 server_condition = \
23537 ${if and {{eq{$1}{username}}{eq{$2}{mysecret}}}{yes}{no}}
23538 server_set_id = $1
23539....
23540
23541Because of the way plaintext operates, this authenticator accepts data supplied
23542with the AUTH command (in contravention of the specification of LOGIN), but
23543if the client does not supply it (as is the case for LOGIN clients), the prompt
23544strings are used to obtain two data items.
23545
23546Some clients are very particular about the precise text of the prompts. For
23547example, Outlook Express is reported to recognize only ``Username:'' and
23548``Password:''. Here is an example of a LOGIN authenticator which uses those
23549strings, and which uses the %ldapauth% expansion condition to check the user
23550name and password by binding to an LDAP server:
23551
23552....
23553login:
23554 driver = plaintext
23555 public_name = LOGIN
23556 server_prompts = Username:: : Password::
23557 server_condition = ${if ldapauth \
23558 {user="cn=${quote_ldap_dn:$1},ou=people,o=example.org" \
23559 pass=${quote:$2} \
23560 ldap://ldap.example.org/}{yes}{no}}
23561 server_set_id = uid=$1,ou=people,o=example.org
23562....
23563
23564Note the use of the %quote_ldap_dn% operator to correctly quote the DN for
23565authentication. However, the basic %quote% operator, rather than any of the
23566LDAP quoting operators, is the correct one to use for the password, because
23567quoting is needed only to make the password conform to the Exim syntax. At the
23568LDAP level, the password is an uninterpreted string.
23569
23570
23571
23572Support for different kinds of authentication
23573~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23574A number of string expansion features are provided for the purpose of
23575interfacing to different ways of user authentication. These include checking
23576traditionally encrypted passwords from _/etc/passwd_ (or equivalent), PAM,
23577Radius, %ldapauth%, and 'pwcheck'. For details see section <<SECTexpcond>>.
23578
23579
23580
23581
23582Using plaintext in a client
23583~~~~~~~~~~~~~~~~~~~~~~~~~~~
23584cindex:[options,^plaintext^ authenticator (client)]
23585The ^plaintext^ authenticator has just one client option:
23586
23587
23588
23589oindex:[%client_send%]
23590`..'=
23591%client_send%, Use: 'plaintext', Type: 'string'!!, Default: 'unset'
23592===
23593
23594The string is a colon-separated list of authentication data strings. Each
23595string is independently expanded before being sent to the server. The first
23596string is sent with the AUTH command; any more strings are sent in response
23597to prompts from the server.
23598
23599*Note*: you cannot use expansion to create multiple strings, because
23600splitting takes priority and happens first.
23601
23602Because the PLAIN authentication mechanism requires NUL (binary zero) bytes in
23603the data, further processing is applied to each string before it is sent. If
23604there are any single circumflex characters in the string, they are converted to
23605NULs. Should an actual circumflex be required as data, it must be doubled in
23606the string.
23607
23608This is an example of a client configuration that implements the PLAIN
23609authentication mechanism with a fixed user name and password:
23610
23611 fixed_plain:
23612 driver = plaintext
23613 public_name = PLAIN
23614 client_send = ^username^mysecret
23615
23616The lack of colons means that the entire text is sent with the AUTH
23617command, with the circumflex characters converted to NULs. A similar example
23618that uses the LOGIN mechanism is:
23619
23620 fixed_login:
23621 driver = plaintext
23622 public_name = LOGIN
23623 client_send = : username : mysecret
23624
23625The initial colon means that the first string is empty, so no data is sent with
23626the AUTH command itself. The remaining strings are sent in response to
23627prompts.
23628
23629
23630
23631
23632////////////////////////////////////////////////////////////////////////////
23633////////////////////////////////////////////////////////////////////////////
23634
23635The cram_md5 authenticator
23636--------------------------
23637cindex:[^cram_md5^ authenticator]
23638cindex:[authenticators,^cram_md5^]
23639cindex:[CRAM-MD5 authentication mechanism]
23640cindex:[authentication,CRAM-MD5 mechanism]
23641The CRAM-MD5 authentication mechanism is described in RFC 2195. The server
23642sends a challenge string to the client, and the response consists of a user
23643name and the CRAM-MD5 digest of the challenge string combined with a secret
23644string (password) which is known to both server and client. Thus, the secret
23645is not sent over the network as plain text, which makes this authenticator more
23646secure than ^plaintext^. However, the downside is that the secret has to be
23647available in plain text at either end.
23648
23649
23650Using cram_md5 as a server
23651~~~~~~~~~~~~~~~~~~~~~~~~~~
23652cindex:[options,^cram_md5^ authenticator (server)]
23653This authenticator has one server option, which must be set to configure the
23654authenticator as a server:
23655
23656oindex:[%server_secret%]
23657`..'=
23658%server_secret%, Use: 'cram_md5', Type: 'string'!!, Default: 'unset'
23659===
23660
23661cindex:[numerical variables ($1$ $2$ etc),in ^cram_md5^ authenticator]
23662When the server receives the client's response, the user name is placed in
23663the expansion variable $1$, and %server_secret% is expanded to obtain the
23664password for that user. The server then computes the CRAM-MD5 digest that the
23665client should have sent, and checks that it received the correct string. If the
23666expansion of %server_secret% is forced to fail, authentication fails. If the
23667expansion fails for some other reason, a temporary error code is returned to
23668the client.
23669
23670For example, the following authenticator checks that the user name given by the
23671client is ``ph10'', and if so, uses ``secret'' as the password. For any other user
23672name, authentication fails.
23673
23674 fixed_cram:
23675 driver = cram_md5
23676 public_name = CRAM-MD5
23677 server_secret = ${if eq{$1}{ph10}{secret}fail}
23678 server_set_id = $1
23679
23680If authentication succeeds, the setting of %server_set_id% preserves the user
23681name in $authenticated_id$.
23682A more tyical configuration might look up the secret string in a file, using
23683the user name as the key. For example:
23684
23685 lookup_cram:
23686 driver = cram_md5
23687 public_name = CRAM-MD5
23688 server_secret = ${lookup{$1}lsearch{/etc/authpwd}{$value}fail}
23689 server_set_id = $1
23690
23691Note that this expansion explicitly forces failure if the lookup fails
23692because $1$ contains an unknown user name.
23693
23694
23695Using cram_md5 as a client
23696~~~~~~~~~~~~~~~~~~~~~~~~~~
23697cindex:[options,^cram_md5^ authenticator (client)]
23698When used as a client, the ^cram_md5^ authenticator has two options:
23699
23700
23701
23702oindex:[%client_name%]
23703`..'=
23704%client_name%, Use: 'cram_md5', Type: 'string'!!, Default: 'the primary host name'
23705===
23706
23707This string is expanded, and the result used as the user name data when
23708computing the response to the server's challenge.
23709
23710
23711oindex:[%client_secret%]
23712`..'=
23713%client_secret%, Use: 'cram_md5', Type: 'string'!!, Default: 'unset'
23714===
23715
23716This option must be set for the authenticator to work as a client. Its value is
23717expanded and the result used as the secret string when computing the response.
23718
23719
23720Different user names and secrets can be used for different servers by referring
23721to $host$ or $host_address$ in the options.
23722
23723Forced failure of either expansion string is treated as an indication that this
23724authenticator is not prepared to handle this case. Exim moves on to the next
23725configured client authenticator. Any other expansion failure causes Exim to
23726give up trying to send the message to the current server.
23727
23728A simple example configuration of a ^cram_md5^ authenticator, using fixed
23729strings, is:
23730
23731 fixed_cram:
23732 driver = cram_md5
23733 public_name = CRAM-MD5
23734 client_name = ph10
23735 client_secret = secret
23736
23737
23738
23739
23740
23741////////////////////////////////////////////////////////////////////////////
23742////////////////////////////////////////////////////////////////////////////
23743
23744The cyrus_sasl authenticator
23745----------------------------
23746cindex:[^cyrus_sasl^ authenticator]
23747cindex:[authenticators,^cyrus_sasl^]
23748cindex:[Cyrus, SASL library]
23749The code for this authenticator was provided by Matthew Byng-Maddick of A L
23750Digital Ltd (*http://www.aldigital.co.uk[]*).
23751
23752The ^cyrus_sasl^ authenticator provides server support for the Cyrus SASL
23753library implementation of the RFC 2222 (``Simple Authentication and Security
23754Layer''). This library supports a number of authentication mechanisms, including
23755PLAIN and LOGIN, but also several others that Exim does not support directly.
23756In particular, there is support for Kerberos authentication.
23757
23758The ^cyrus_sasl^ authenticator provides a gatewaying mechanism directly to
23759the Cyrus interface, so if your Cyrus library can do, for example, CRAM-MD5,
23760then so can the ^cyrus_sasl^ authenticator. By default it uses the public
23761name of the driver to determine which mechanism to support.
23762
23763Where access to some kind of secret file is required, for example in GSSAPI
23764or CRAM-MD5, it is worth noting that the authenticator runs as the 'exim'
23765user, and that the Cyrus SASL library has no way of escalating privileges
23766by default. You may also find you need to set environment variables,
23767depending on the driver you are using.
23768
23769
23770Using cyrus_sasl as a server
23771~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23772The ^cyrus_sasl^ authenticator has four private options. It puts the
23773username (on a successful authentication) into $1$.
23774
23775oindex:[%server_hostname%]
23776`..'=
23777%server_hostname%, Use: 'cyrus_sasl', Type: 'string'!!, Default: `$primary_hostname`
23778===
23779
23780This option selects the hostname that is used when communicating with
23781the library. It is up to the underlying SASL plug-in what it does with
23782this data.
23783
23784
23785oindex:[%server_mech%]
23786`..'=
23787%server_mech%, Use: 'cyrus_sasl', Type: 'string', Default: `public_name`
23788===
23789
23790This option selects the authentication mechanism this driver should
23791use. It allows you to use a different underlying mechanism from the
23792advertised name. For example:
23793
23794 sasl:
23795 driver = cyrus_sasl
23796 public_name = X-ANYTHING
23797 server_mech = CRAM-MD5
23798 server_set_id = $1
23799
23800
23801
23802oindex:[%server_realm%]
23803`..'=
23804%server_realm%, Use: 'cyrus_sasl', Type: 'string', Default: 'unset'
23805===
23806
23807This specifies the SASL realm that the server claims to be in.
23808
23809
23810oindex:[%server_service%]
23811`..'=
23812%server_service%, Use: 'cyrus_sasl', Type: 'string', Default: `smtp`
23813===
23814
23815This is the SASL service that the server claims to implement.
23816
23817
23818For straightforward cases, you do not need to set any of the authenticator's
23819private options. All you need to do is to specify an appropriate mechanism as
23820the public name. Thus, if you have a SASL library that supports CRAM-MD5 and
23821PLAIN, you could have two authenticators as follows:
23822
23823 sasl_cram_md5:
23824 driver = cyrus_sasl
23825 public_name = CRAM-MD5
23826 server_set_id = $1
23827
23828 sasl_plain:
23829 driver = cyrus_sasl
23830 public_name = PLAIN
23831 server_set_id = $1
23832
23833
23834Cyrus SASL does implement the LOGIN authentication method, even though it is
23835not a standard method. It is disabled by default in the source distribution,
23836but it is present in many binary distributions.
23837
23838
23839
23840
23841////////////////////////////////////////////////////////////////////////////
23842////////////////////////////////////////////////////////////////////////////
23843
23844The spa authenticator
23845---------------------
23846cindex:[^spa^ authenticator]
23847cindex:[authenticators,^spa^]
23848cindex:[authentication,Microsoft Secure Password]
23849cindex:[authentication,NTLM]
23850cindex:[Microsoft Secure Password Authentication]
23851cindex:[NTLM authentication]
23852The ^spa^ authenticator provides client support for Microsoft's 'Secure
23853Password Authentication' mechanism,
23854which is also sometimes known as NTLM (NT LanMan). The code for client side of
23855this authenticator was contributed by Marc Prud'hommeaux, and much of it is
23856taken from the Samba project (*http://www.samba.org[]*). The code for the
23857server side was subsequently contributed by Tom Kistner. The mechanism works as
23858follows:
23859
23860- After the AUTH command has been accepted, the client sends an SPA
23861authentication request based on the user name and optional domain.
23862
23863- The server sends back a challenge.
23864
23865- The client builds a challenge response which makes use of the user's password
23866and sends it to the server, which then accepts or rejects it.
23867
23868Encryption is used to protect the password in transit.
23869
23870
23871
23872Using spa as a server
23873~~~~~~~~~~~~~~~~~~~~~
23874cindex:[options,^spa^ authenticator (server)]
23875The ^spa^ authenticator has just one server option:
23876
23877oindex:[%server_password%]
23878`..'=
23879%server_password%, Use: 'spa', Type: 'string'!!, Default: 'unset'
23880===
23881
23882cindex:[numerical variables ($1$ $2$ etc),in ^spa^ authenticator]
23883This option is expanded, and the result must be the cleartext password for the
23884authenticating user, whose name is at this point in $1$. For example:
23885
23886 spa:
23887 driver = spa
23888 public_name = NTLM
23889 server_password = ${lookup{$1}lsearch{/etc/exim/spa_clearpass}}
23890
23891If the expansion is forced to fail, authentication fails. Any other expansion
23892failure causes a temporary error code to be returned.
23893
23894
23895
23896
23897
23898Using spa as a client
23899~~~~~~~~~~~~~~~~~~~~~
23900cindex:[options,^spa^ authenticator (client)]
23901The ^spa^ authenticator has the following client options:
23902
23903
23904
23905oindex:[%client_domain%]
23906`..'=
23907%client_domain%, Use: 'spa', Type: 'string'!!, Default: 'unset'
23908===
23909
23910This option specifies an optional domain for the authentication.
23911
23912
23913oindex:[%client_password%]
23914`..'=
23915%client_password%, Use: 'spa', Type: 'string'!!, Default: 'unset'
23916===
23917
23918This option specifies the user's password, and must be set.
23919
23920
23921oindex:[%client_username%]
23922`..'=
23923%client_username%, Use: 'spa', Type: 'string'!!, Default: 'unset'
23924===
23925
23926This option specifies the user name, and must be set.
23927
23928
23929Here is an example of a configuration of this authenticator for use with the
23930mail servers at 'msn.com':
23931
23932 msn:
23933 driver = spa
23934 public_name = MSN
23935 client_username = msn/msn_username
23936 client_password = msn_plaintext_password
23937 client_domain = DOMAIN_OR_UNSET
23938
23939
23940
23941
23942
23943
23944
23945////////////////////////////////////////////////////////////////////////////
23946////////////////////////////////////////////////////////////////////////////
23947
23948[[CHAPTLS]]
23949[titleabbrev="Encrypted SMTP connections"]
23950Encrypted SMTP connections using TLS/SSL
23951----------------------------------------
23952cindex:[encryption,on SMTP connection]
23953cindex:[SMTP,encryption]
23954cindex:[TLS,on SMTP connection]
23955cindex:[OpenSSL]
23956cindex:[GnuTLS]
23957Support for TLS (Transport Layer Security), formerly known as SSL (Secure
23958Sockets Layer), is implemented by making use of the OpenSSL library or the
23959GnuTLS library (Exim requires GnuTLS release 1.0 or later). There is no
23960cryptographic code in the Exim distribution itself for implementing TLS. In
23961order to use this feature you must install OpenSSL or GnuTLS, and then build a
23962version of Exim that includes TLS support (see section <<SECTinctlsssl>>). You
23963also need to understand the basic concepts of encryption at a managerial level,
23964and in particular, the way that public keys, private keys, and certificates are
23965used.
23966
23967RFC 2487 defines how SMTP connections can make use of encryption. Once a
23968connection is established, the client issues a STARTTLS command. If the
23969server accepts this, the client and the server negotiate an encryption
23970mechanism. If the negotiation succeeds, the data that subsequently passes
23971between them is encrypted.
23972
23973Exim's ACLs can detect whether the current SMTP session is encrypted or not,
23974and if so, what cipher suite is in use, whether the client supplied a
23975certificate, and whether or not that certificate was verified. This makes it
23976possible for an Exim server to deny or accept certain commands based on the
23977encryption state.
23978
23979*Warning*: certain types of firewall and certain anti-virus products can
23980disrupt TLS connections. You need to turn off SMTP scanning for these products
23981in order to get TLS to work.
23982
23983
23984
23985Support for the legacy ``ssmtp'' (aka ``smtps'') protocol
23986~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23987cindex:[ssmtp protocol]
23988cindex:[smtps protocol]
23989cindex:[SMTP,ssmtp protocol]
23990cindex:[SMTP,smtps protocol]
23991Early implementations of encrypted SMTP used a different TCP port from normal
23992SMTP, and expected an encryption negotiation to start immediately, instead of
23993waiting for a STARTTLS command from the client using the standard SMTP
23994port. The protocol was called ``ssmtp'' or ``smtps'', and port 465 was allocated
23995for this purpose.
23996
23997This approach was abandoned when encrypted SMTP was standardised, but there are
23998still some legacy clients that use it. Exim supports these clients by means of
23999the %tls_on_connect_ports% global option. Its value must be a list of port
24000numbers; the most common use is expected to be:
24001
24002 tls_on_connect_ports = 465
24003
24004The port numbers specified by this option apply to all SMTP connections, both
24005via the daemon and via 'inetd'. You still need to specify all the ports that
24006the daemon uses (by setting %daemon_smtp_ports% or %local_interfaces% or the
24007%-oX% command line option) because %tls_on_connect_ports% does not add an
24008extra port -- rather, it specifies different behaviour on a port that is
24009defined elsewhere.
24010
24011There is also a %-tls-on-connect% command line option. This overrides
24012%tls_on_connect_ports%; it forces the legacy behaviour for all ports.
24013
24014
24015
24016
24017
24018
24019[[SECTopenvsgnu]]
24020OpenSSL vs GnuTLS
24021~~~~~~~~~~~~~~~~~
24022cindex:[TLS,OpenSSL 'vs' GnuTLS]
24023The first TLS support in Exim was implemented using OpenSSL. Support for GnuTLS
24024followed later, when the first versions of GnuTLS were released. To build Exim
24025to use GnuTLS, you need to set
24026
24027 USE_GNUTLS=yes
24028
24029in Local/Makefile, in addition to
24030
24031 SUPPORT_TLS=yes
24032
24033You must also set TLS_LIBS and TLS_INCLUDE appropriately, so that the
24034include files and libraries for GnuTLS can be found.
24035
24036There are some differences in usage when using GnuTLS instead of OpenSSL:
24037
24038- The %tls_verify_certificates% option must contain the name of a file, not the
24039name of a directory (for OpenSSL it can be either).
24040
24041- The %tls_dhparam% option is ignored, because early versions of GnuTLS had no
24042facility for varying its Diffie-Hellman parameters. I understand that this has
24043changed, but Exim has not been updated to provide this facility.
24044
24045- GnuTLS uses RSA and D-H parameters that take a substantial amount of
24046time to compute. It is unreasonable to re-compute them for every TLS
24047session. Therefore, Exim keeps this data in a file in its spool
24048directory, called _gnutls-params_. The file is owned by the Exim user and is
24049readable only by its owner. Every Exim process that start up GnuTLS reads the
24050RSA and D-H parameters from this file. If the file does not exist, the first
24051Exim process that needs it computes the data and writes it to a temporary file
24052which is renamed once it is complete. It does not matter if several Exim
24053processes do this simultaneously (apart from wasting a few resources). Once a
24054file is in place, new Exim processes immediately start using it.
24055+
24056For maximum security, the parameters that are stored in this file should be
24057recalculated periodically, the frequency depending on your paranoia level.
24058Arranging this is easy; just delete the file when you want new values to be
24059computed.
24060
24061- Distinguished Name (DN) strings reported by the OpenSSL library use a slash for
24062separating fields; GnuTLS uses commas, in accordance with RFC 2253. This
24063affects the value of the $tls_peerdn$ variable.
24064
24065- OpenSSL identifies cipher suites using hyphens as separators, for example:
24066DES-CBC3-SHA. GnuTLS uses underscores, for example: RSA_ARCFOUR_SHA. What is
24067more, OpenSSL complains if underscores are present in a cipher list. To make
24068life simpler, Exim changes underscores to hyhens for OpenSSL and hyphens to
24069underscores for GnuTLS when processing lists of cipher suites in the
24070%tls_require_ciphers% options (the global option and the ^smtp^ transport
24071option).
24072
24073- The %tls_require_ciphers% options operate differently, as described in the
24074following sections.
24075
24076
24077
24078[[SECTreqciphssl]]
24079Requiring specific ciphers in OpenSSL
24080~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24081cindex:[TLS,requiring specific ciphers (OpenSSL)]
24082cindex:[%tls_require_ciphers%,OpenSSL]
24083There is a function in the OpenSSL library that can be passed a list of cipher
24084suites before the cipher negotiation takes place. This specifies which ciphers
24085are acceptable. The list is colon separated and may contain names like
24086DES-CBC3-SHA. Exim passes the expanded value of %tls_require_ciphers%
24087directly to this function call. The following quotation from the OpenSSL
24088documentation specifies what forms of item are allowed in the cipher string:
24089
24090- It can consist of a single cipher suite such as RC4-SHA.
24091
24092- It can represent a list of cipher suites containing a certain algorithm,
24093or cipher suites of a certain type. For example SHA1 represents all
24094ciphers suites using the digest algorithm SHA1 and SSLv3 represents all
24095SSL v3 algorithms.
24096
24097- Lists of cipher suites can be combined in a single cipher string using
24098the + character. This is used as a logical and operation. For example
24099SHA1+DES represents all cipher suites containing the SHA1 and the DES
24100algorithms.
24101
24102- Each cipher string can be optionally preceded by the characters `!`, `-` or
24103`+`.
24104+
24105If `!` is used then the ciphers are permanently deleted from the list. The
24106ciphers deleted can never reappear in the list even if they are explicitly
24107stated.
24108+
24109If `-` is used then the ciphers are deleted from the list, but some or all
24110of the ciphers can be added again by later options.
24111+
24112If `+` is used then the ciphers are moved to the end of the list. This
24113option doesn't add any new ciphers it just moves matching existing ones.
24114+
24115If none of these characters is present then the string is just interpreted as
24116a list of ciphers to be appended to the current preference list. If the list
24117includes any ciphers already present they will be ignored: that is, they will
24118not moved to the end of the list.
24119
24120
24121
24122
24123[[SECTreqciphgnu]]
24124Requiring specific ciphers in GnuTLS
24125~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24126cindex:[TLS,requiring specific ciphers (GnuTLS)]
24127cindex:[%tls_require_ciphers%,GnuTLS]
24128The GnuTLS library does not have a combined function like OpenSSL. Instead,
24129it allows the caller to specify separate lists of key-exchange methods,
24130main cipher algorithms, and MAC algorithms. Unfortunately, these lists are
24131numerical, and the library does not have a function for turning names into
24132numbers. Consequently, the list of recognized names has to be built into
24133the application.
24134
24135At present, Exim permits only the list of main cipher algorithms to be
24136changed. The %tls_require_ciphers% option is in the same format as for
24137OpenSSL. Exim searches each item for the name of available algorithm. For
24138example, if the list contains RSA_AES_SHA then AES is recognized.
24139
24140The cipher algorithms list starts out with a default set of algorithms. If
24141the first item in %tls_require_ciphers% does 'not' start with an
24142exclamation mark, all the default items are deleted. Thus, only those specified
24143can be used. If the first item in %tls_require_ciphers% 'does' start with
24144an exclamation mark, the defaults are left on the list.
24145
24146Then, any item that starts with an exclamation mark causes the relevent
24147algorithms to be removed from the list, and any item that does not start
24148with an exclamation mark causes the relevant algorithms to be added to the
24149list. Thus,
24150
24151 tls_require_ciphers = !RSA_ARCFOUR_SHA
24152
24153allows all the defaults except those that use ARCFOUR, whereas
24154
24155 tls_require_ciphers = AES : 3DES
24156
24157allows only cipher suites that use AES and 3DES. The currently recognized
24158algorithms are: AES_256, AES_128, AES (both of the preceding), 3DES, and
24159ARCFOUR_128. Unrecognized algorithms are ignored. In a server, the order of the
24160list is unimportant; the server will advertise the availability of all the
24161relevant cipher suites. However, in a client, the order of the list specifies a
24162preference order for the algorithms. The first one in the client's list that is
24163also advertised by the server is tried first. The default order is as listed
24164above.
24165
24166
24167
24168
24169Configuring an Exim server to use TLS
24170~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24171cindex:[TLS,configuring an Exim server]
24172When Exim has been built with TLS support, it advertises the availability of
24173the STARTTLS command to client hosts that match %tls_advertise_hosts%,
24174but not to any others. The default value of this option is unset, which means
24175that STARTTLS is not advertised at all. This default is chosen because you
24176need to set some other options in order to make TLS avaliable, and also it is
24177sensible for systems that want to use TLS only as a client.
24178
24179If a client issues a STARTTLS command and there is some configuration
24180problem in the server, the command is rejected with a 454 error. If the client
24181persists in trying to issue SMTP commands, all except QUIT are rejected
24182with the error
24183
24184 554 Security failure
24185
24186If a STARTTLS command is issued within an existing TLS session, it is
24187rejected with a 554 error code.
24188
24189To enable TLS operations on a server, you must set %tls_advertise_hosts% to
24190match some hosts. You can, of course, set it to \* to match all hosts.
24191However, this is not all you need to do. TLS sessions to a server won't work
24192without some further configuration at the server end.
24193
24194It is rumoured that all existing clients that support TLS/SSL use RSA
24195encryption. To make this work you need to set, in the server,
24196
24197 tls_certificate = /some/file/name
24198 tls_privatekey = /some/file/name
24199
24200The first file contains the server's X509 certificate, and the second contains
24201the private key that goes with it. These files need to be readable by the Exim
24202user, and must always be given as full path names. They can be the same file if
24203both the certificate and the key are contained within it. If %tls_privatekey%
24204is not set, this is assumed to be the case. The certificate file may also
24205contain intermediate certificates that need to be sent to the client to enable
24206it to authenticate the server's certificate.
24207
24208If you do not understand about certificates and keys, please try to find a
24209source of this background information, which is not Exim-specific. (There are a
24210few comments below in section <<SECTcerandall>>.)
24211
24212*Note*: These options do not apply when Exim is operating as a client --
24213they apply only in the case of a server. For a client, you must set the options
24214of the same name in an ^smtp^ transport.
24215
24216With just these options, Exim will work as a server with clients such as
24217Netscape. It does not require the client to have a certificate (but see below
24218for how to insist on this). There is one other option that may be needed in
24219other situations. If
24220
24221 tls_dhparam = /some/file/name
24222
24223is set, the SSL library is initialized for the use of Diffie-Hellman ciphers
24224with the parameters contained in the file. This increases the set of cipher
24225suites that the server supports. See the command
24226
24227 openssl dhparam
24228
24229for a way of generating this data.
24230At present, %tls_dhparam% is used only when Exim is linked with OpenSSL. It is
24231ignored if GnuTLS is being used.
24232
24233The strings supplied for these three options are expanded every time a client
24234host connects. It is therefore possible to use different certificates and keys
24235for different hosts, if you so wish, by making use of the client's IP address
24236in $sender_host_address$ to control the expansion. If a string expansion is
24237forced to fail, Exim behaves as if the option is not set.
24238
24239cindex:[cipher,logging]
24240cindex:[log,TLS cipher]
24241The variable $tls_cipher$ is set to the cipher suite that was negotiated for
24242an incoming TLS connection. It is included in the 'Received:' header of an
24243incoming message (by default -- you can, of course, change this), and it is
24244also included in the log line that records a message's arrival, keyed by ``X='',
24245unless the %tls_cipher% log selector is turned off.
24246The %encrypted% condition can be used to test for specific cipher suites in
24247ACLs.
24248
24249The ACLs that run for subsequent SMTP commands can check the name of the cipher
24250suite and vary their actions accordingly. The cipher suite names are those used
24251by OpenSSL. These may differ from the names used elsewhere. For example,
24252OpenSSL uses the name DES-CBC3-SHA for the cipher suite which in other contexts
24253is known as TLS_RSA_WITH_3DES_EDE_CBC_SHA. Check the OpenSSL
24254documentation for more details.
24255
24256
24257
24258Requesting and verifying client certificates
24259~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24260cindex:[certificate,verification of client]
24261cindex:[TLS,client certificate verification]
24262If you want an Exim server to request a certificate when negotiating a TLS
24263session with a client, you must set either %tls_verify_hosts% or
24264%tls_try_verify_hosts%. You can, of course, set either of them to \* to
24265apply to all TLS connections. For any host that matches one of these options,
24266Exim requests a certificate as part of the setup of the TLS session. The
24267contents of the certificate are verified by comparing it with a list of
24268expected certificates. These must be available in a file or,
24269for OpenSSL only (not GnuTLS), a directory, identified by
24270%tls_verify_certificates%.
24271
24272A file can contain multiple certificates, concatenated end to end. If a
24273directory is used
24274(OpenSSL only),
24275each certificate must be in a separate file, with a name (or a symbolic link)
24276of the form <'hash'>.0, where <'hash'> is a hash value constructed from the
24277certificate. You can compute the relevant hash by running the command
24278
24279 openssl x509 -hash -noout -in /cert/file
24280
24281where _/cert/file_ contains a single certificate.
24282
24283The difference between %tls_verify_hosts% and %tls_try_verify_hosts% is
24284what happens if the client does not supply a certificate, or if the certificate
24285does not match any of the certificates in the collection named by
24286%tls_verify_certificates%. If the client matches %tls_verify_hosts%, the
24287attempt to set up a TLS session is aborted, and the incoming connection is
24288dropped. If the client matches %tls_try_verify_hosts%, the (encrypted) SMTP
24289session continues. ACLs that run for subsequent SMTP commands can detect the
24290fact that no certificate was verified, and vary their actions accordingly. For
24291example, you can insist on a certificate before accepting a message for
24292relaying, but not when the message is destined for local delivery.
24293
24294When a client supplies a certificate (whether it verifies or not), the value of
24295the Distinguished Name of the certificate is made available in the variable
24296$tls_peerdn$ during subsequent processing of the message.
24297
24298cindex:[log,distinguished name]
24299Because it is often a long text string, it is not included in the log line or
24300'Received:' header by default. You can arrange for it to be logged, keyed by
24301``DN='', by setting the %tls_peerdn% log selector, and you can use
24302%received_header_text% to change the 'Received:' header. When no certificate
24303is supplied, $tls_peerdn$ is empty.
24304
24305
24306Revoked certificates
24307~~~~~~~~~~~~~~~~~~~~
24308cindex:[TLS,revoked certificates]
24309cindex:[revocation list]
24310cindex:[certificate,revocation list]
24311Certificate issuing authorities issue Certificate Revocation Lists (CRLs) when
24312certificates are revoked. If you have such a list, you can pass it to an Exim
24313server using the global option called %tls_crl% and to an Exim client using an
24314identically named option for the ^smtp^ transport. In each case, the value of
24315the option is expanded and must then be the name of a file that contains a CRL
24316in PEM format.
24317
24318
24319Configuring an Exim client to use TLS
24320~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24321cindex:[cipher,logging]
24322cindex:[log,TLS cipher]
24323cindex:[log,distinguished name]
24324cindex:[TLS,configuring an Exim client]
24325The %tls_cipher% and %tls_peerdn% log selectors apply to outgoing SMTP
24326deliveries as well as to incoming, the latter one causing logging of the
24327server certificate's DN. The remaining client configuration for TLS is all
24328within the ^smtp^ transport.
24329
24330It is not necessary to set any options to have TLS work in the ^smtp^
24331transport. If Exim is built with TLS support, and TLS is advertised by a
24332server, the ^smtp^ transport always tries to start a TLS session. However,
24333this can be prevented by setting %hosts_avoid_tls% (an option of the
24334transport) to a list of server hosts for which TLS should not be used.
24335
24336If you do not want Exim to attempt to send messages unencrypted when an attempt
24337to set up an encrypted connection fails in any way, you can set
24338%hosts_require_tls% to a list of hosts for which encryption is mandatory. For
24339those hosts, delivery is always deferred if an encrypted connection cannot be
24340set up. If there are any other hosts for the address, they are tried in the
24341usual way.
24342
24343When the server host is not in %hosts_require_tls%, Exim may try to deliver
24344the message unencrypted. It always does this if the response to STARTTLS is
24345a 5##'xx' code. For a temporary error code, or for a failure to negotiate a TLS
24346session after a success response code, what happens is controlled by the
24347%tls_tempfail_tryclear% option of the ^smtp^ transport. If it is false,
24348delivery to this host is deferred, and other hosts (if available) are tried. If
24349it is true, Exim attempts to deliver unencrypted after a 4##'xx' response to
24350STARTTLS, and if STARTTLS is accepted, but the subsequent TLS
24351negotiation fails, Exim closes the current connection (because it is in an
24352unknown state), opens a new one to the same host, and then tries the delivery
24353unencrypted.
24354
24355
24356The %tls_certificate% and %tls_privatekey% options of the ^smtp^ transport
24357provide the client with a certificate, which is passed to the server if it
24358requests it. If the server is Exim, it will request a certificate only if
24359%tls_verify_hosts% or %tls_try_verify_hosts% matches the client.
24360*Note*: these options must be set in the ^smtp^ transport for Exim to use
24361TLS when it is operating as a client. Exim does not assume that a server
24362certificate (set by the global options of the same name) should also be used
24363when operating as a client.
24364
24365If %tls_verify_certificates% is set, it must name a file or,
24366for OpenSSL only (not GnuTLS), a directory, that contains a collection of
24367expected server certificates. The client verifies the server's certificate
24368against this collection, taking into account any revoked certificates that are
24369in the list defined by %tls_crl%.
24370
24371If
24372%tls_require_ciphers% is set on the ^smtp^ transport, it must contain a
24373list of permitted cipher suites. If either of these checks fails, delivery to
24374the current host is abandoned, and the ^smtp^ transport tries to deliver to
24375alternative hosts, if any.
24376
24377All the TLS options in the ^smtp^ transport are expanded before use, with
24378$host$ and $host_address$ containing the name and address of the server to
24379which the client is connected. Forced failure of an expansion causes Exim to
24380behave as if the relevant option were unset.
24381
24382
24383
24384[[SECTmulmessam]]
24385Multiple messages on the same encrypted TCP/IP connection
24386~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24387cindex:[multiple SMTP deliveries with TLS]
24388cindex:[TLS,multiple message deliveries]
24389Exim sends multiple messages down the same TCP/IP connection by starting up
24390an entirely new delivery process for each message, passing the socket from
24391one process to the next. This implementation does not fit well with the use
24392of TLS, because there is quite a lot of state information associated with a TLS
24393connection, not just a socket identification. Passing all the state information
24394to a new process is not feasible. Consequently, Exim shuts down an existing TLS
24395session before passing the socket to a new process. The new process may then
24396try to start a new TLS session, and if successful, may try to re-authenticate
24397if AUTH is in use, before sending the next message.
24398
24399The RFC is not clear as to whether or not an SMTP session continues in clear
24400after TLS has been shut down, or whether TLS may be restarted again later, as
24401just described. However, if the server is Exim, this shutdown and
24402reinitialization works. It is not known which (if any) other servers operate
24403successfully if the client closes a TLS session and continues with unencrypted
24404SMTP, but there are certainly some that do not work. For such servers, Exim
24405should not pass the socket to another process, because the failure of the
24406subsequent attempt to use it would cause Exim to record a temporary host error,
24407and delay other deliveries to that host.
24408
24409To test for this case, Exim sends an EHLO command to the server after
24410closing down the TLS session. If this fails in any way, the connection is
24411closed instead of being passed to a new delivery process, but no retry
24412information is recorded.
24413
24414There is also a manual override; you can set %hosts_nopass_tls% on the
24415^smtp^ transport to match those hosts for which Exim should not pass
24416connections to new processes if TLS has been used.
24417
24418
24419
24420
24421[[SECTcerandall]]
24422Certificates and all that
24423~~~~~~~~~~~~~~~~~~~~~~~~~
24424cindex:[certificate,references to discussion]
24425In order to understand fully how TLS works, you need to know about
24426certificates, certificate signing, and certificate authorities. This is not the
24427place to give a tutorial, especially as I do not know very much about it
24428myself. Some helpful introduction can be found in the FAQ for the SSL addition
24429to Apache, currently at
24430
24431&&&
24432*http://www.modssl.org/docs/2.7/ssl_faq.html#ToC24[]*
24433&&&
24434
24435Other parts of the 'modssl' documentation are also helpful, and have
24436links to further files.
24437Eric Rescorla's book, 'SSL and TLS', published by Addison-Wesley (ISBN
244380-201-61598-3), contains both introductory and more in-depth descriptions.
24439Some sample programs taken from the book are available from
24440
24441&&&
24442*http://www.rtfm.com/openssl-examples/[]*
24443&&&
24444
24445
24446
24447Certificate chains
24448~~~~~~~~~~~~~~~~~~
24449The file named by %tls_certificate% may contain more than one
24450certificate. This is useful in the case where the certificate that is being
24451sent is validated by an intermediate certificate which the other end does
24452not have. Multiple certificates must be in the correct order in the file.
24453First the host's certificate itself, then the first intermediate
24454certificate to validate the issuer of the host certificate, then the next
24455intermediate certificate to validate the issuer of the first intermediate
24456certificate, and so on, until finally (optionally) the root certificate.
24457The root certificate must already be trusted by the recipient for
24458validation to succeed, of course, but if it's not preinstalled, sending the
24459root certificate along with the rest makes it available for the user to
24460install if the receiving end is a client MUA that can interact with a user.
24461
24462
24463Self-signed certificates
24464~~~~~~~~~~~~~~~~~~~~~~~~
24465cindex:[certificate,self-signed]
24466You can create a self-signed certificate using the 'req' command provided
24467with OpenSSL, like this:
24468
24469....
24470openssl req -x509 -newkey rsa:1024 -keyout file1 -out file2 \
24471 -days 9999 -nodes
24472....
24473
24474_file1_ and _file2_ can be the same file; the key and the certificate are
24475delimited and so can be identified independently. The %-days% option
24476specifies a period for which the certificate is valid. The %-nodes% option is
24477important: if you do not set it, the key is encrypted with a passphrase
24478that you are prompted for, and any use that is made of the key causes more
24479prompting for the passphrase. This is not helpful if you are going to use
24480this certificate and key in an MTA, where prompting is not possible.
24481
24482A self-signed certificate made in this way is sufficient for testing, and
24483may be adequate for all your requirements if you are mainly interested in
24484encrypting transfers, and not in secure identification.
24485
24486However, many clients require that the certificate presented by the server be a
24487user (also called ``leaf'' or ``site'') certificate, and not a self-signed
24488certificate. In this situation, the self-signed certificate described above
24489must be installed on the client host as a trusted root 'certification
24490authority' (CA), and the certificate used by Exim must be a user certificate
24491signed with that self-signed certificate.
24492
24493For information on creating self-signed CA certificates and using them to sign
24494user certificates, see the 'General implementation overview' chapter of the
24495Open-source PKI book, available online at *http://ospkibook.sourceforge.net/[]*.
24496
24497
24498
24499////////////////////////////////////////////////////////////////////////////
24500////////////////////////////////////////////////////////////////////////////
24501
24502[[CHAPACL]]
24503Access control lists
24504--------------------
24505cindex:[{ACL},description]
24506cindex:[control of incoming mail]
24507cindex:[message,controlling incoming]
24508cindex:[policy control,access control lists]
24509Access Control Lists (ACLs) are defined in a separate section of the run time
24510configuration file, headed by ``begin acl''. Each ACL definition starts with a
24511name, terminated by a colon. Here is a complete ACL section that contains just
24512one very small ACL:
24513
24514 begin acl
24515
24516 small_acl:
24517 accept hosts = one.host.only
24518
24519You can have as many lists as you like in the ACL section, and the order in
24520which they appear does not matter. The lists are self-terminating.
24521
24522The majority of ACLs are used to control Exim's behaviour when it receives
24523certain SMTP commands. This applies both to incoming TCP/IP connections, and
24524when a local process submits a message using SMTP by specifying the %-bs%
24525option. The most common use is for controlling which recipients are accepted
24526in incoming messages. In addition, you can define an ACL that is used to check
24527local non-SMTP messages. The default configuration file contains an example of
24528a realistic ACL for checking RCPT commands. This is discussed in chapter
24529<<CHAPdefconfil>>.
24530
24531
24532Testing ACLs
24533~~~~~~~~~~~~
24534The %-bh% command line option provides a way of testing your ACL configuration
24535locally by running a fake SMTP session with which you interact. The host
24536'relay-test.mail-abuse.org' provides a service for checking your relaying
24537configuration (see section <<SECTcheralcon>> for more details).
24538
24539
24540
24541Specifying when ACLs are used
24542~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24543cindex:[{ACL},options for specifying]
24544In order to cause an ACL to be used, you have to name it in one of the relevant
24545options in the main part of the configuration. These options are:
24546cindex:[AUTH,ACL for]
24547cindex:[DATA, ACLs for]
24548cindex:[ETRN,ACL for]
24549cindex:[EXPN,ACL for]
24550cindex:[HELO,ACL for]
24551cindex:[EHLO,ACL for]
24552cindex:[MAIL,ACL for]
24553cindex:[QUIT, ACL for]
24554cindex:[RCPT,ACL for]
24555cindex:[STARTTLS, ACL for]
24556cindex:[VRFY,ACL for]
24557cindex:[SMTP connection, ACL for]
24558cindex:[non-smtp message, ACL for]
24559
24560[frame="none"]
24561`--`--------------------`---------------------------------------
24562 %acl_not_smtp% ACL for non-SMTP messages
24563 %acl_smtp_auth% ACL for AUTH
24564 %acl_smtp_connect% ACL for start of SMTP connection
24565 %acl_smtp_data% ACL after DATA is complete
24566 %acl_smtp_etrn% ACL for ETRN
24567 %acl_smtp_expn% ACL for EXPN
24568 %acl_smtp_helo% ACL for HELO or EHLO
24569 %acl_smtp_mail% ACL for MAIL
24570 %acl_smtp_mailauth% ACL for the AUTH parameter of MAIL
24571 %acl_smtp_mime% ACL for content-scanning MIME parts
24572 %acl_smtp_predata% ACL at start of DATA command
24573 %acl_smtp_quit% ACL for QUIT
24574 %acl_smtp_rcpt% ACL for RCPT
24575 %acl_smtp_starttls% ACL for STARTTLS
24576 %acl_smtp_vrfy% ACL for VRFY
24577----------------------------------------------------------------
24578
24579For example, if you set
24580
24581 acl_smtp_rcpt = small_acl
24582
24583the little ACL defined above is used whenever Exim receives a RCPT command
24584in an SMTP dialogue. The majority of policy tests on incoming messages can be
24585done when RCPT commands arrive. A rejection of RCPT should cause the
24586sending MTA to give up on the recipient address contained in the RCPT
24587command, whereas rejection at other times may cause the client MTA to keep on
24588trying to deliver the message. It is therefore recommended that you do as much
24589testing as possible at RCPT time.
24590
24591
24592The non-SMTP ACL
24593~~~~~~~~~~~~~~~~
24594cindex:[non-smtp message, ACL for]
24595The non-SMTP ACL applies to all non-interactive incoming messages, that is, it
24596applies to batch SMTP as well as to non-SMTP messages. (Batch SMTP is not
24597really SMTP.) This ACL is run just before the 'local_scan()' function. Any
24598kind of rejection is treated as permanent, because there is no way of sending a
24599temporary error for these kinds of message. Many of the ACL conditions (for
24600example, host tests, and tests on the state of the SMTP connection such as
24601encryption and authentication) are not relevant and are forbidden in this ACL.
24602
24603
24604The connect ACL
24605~~~~~~~~~~~~~~~
24606cindex:[SMTP connection, ACL for]
24607The ACL test specified by %acl_smtp_connect% happens after the test specified
24608by %host_reject_connection% (which is now an anomaly) and any TCP Wrappers
24609testing (if configured).
24610
24611
24612The DATA ACLs
24613~~~~~~~~~~~~~
24614cindex:[DATA, ACLs for]
24615Two ACLs are associated with the DATA command, because it is two-stage
24616command, with two responses being sent to the client.
24617When the DATA command is received, the ACL defined by %acl_smtp_predata%
24618is obeyed. This gives you control after all the RCPT commands, but before
24619the message itself is received. It offers the opportunity to give a negative
24620response to the DATA command before the data is transmitted. Header lines
24621added by MAIL or RCPT ACLs are not visible at this time, but any that
24622are defined here are visible when the %acl_smtp_data% ACL is run.
24623
24624You cannot test the contents of the message, for example, to verify addresses
24625in the headers, at RCPT time or when the DATA command is received. Such
24626tests have to appear in the ACL that is run after the message itself has been
24627received, before the final response to the DATA command is sent. This is
24628the ACL specified by %acl_smtp_data%, which is the second ACL that is
24629associated with the DATA command.
24630
24631For both of these ACLs, it is not possible to reject individual recipients. An
24632error response rejects the entire message. Unfortunately, it is known that some
24633MTAs do not treat hard (5##'xx') responses to the DATA command (either
24634before or after the data) correctly -- they keep the message on their queues
24635and try again later, but that is their problem, though it does waste some of
24636your resources.
24637
24638
24639The MIME ACL
24640~~~~~~~~~~~~
24641The %acl_smtp_mime% option is available only when Exim is compiled with the
24642content-scanning extension. For details, see chapter <<CHAPexiscan>>.
24643
24644
24645[[SECTQUITACL]]
24646The QUIT ACL
24647~~~~~~~~~~~~
24648cindex:[QUIT, ACL for]
24649The ACL for the SMTP QUIT command is anomalous, in that the
24650outcome of the ACL does not affect the response code to QUIT,
24651which is always 221. Thus, the ACL does not in fact control any access.
24652For this reason, the only verbs that are permitted are %accept% and %warn%.
24653
24654This ACL can be used for tasks such as custom logging at the end of an SMTP
24655session. For example, you can use ACL variables in other ACLs to count
24656messages, recipients, etc., and log the totals at QUIT time using one or
24657more %logwrite% modifiers on a %warn% verb.
24658
24659You do not need to have a final %accept%, but if you do, you can use a
24660%message% modifier to specify custom text that is sent as part of the 221
24661response to QUIT.
24662
24663This ACL is run only for a ``normal'' QUIT. For certain kinds of disastrous
24664failure (for example, failure to open a log file, or when Exim is bombing out
24665because it has detected an unrecoverable error), all SMTP commands from the
24666client are given temporary error responses until QUIT is received or the
24667connection is closed. In these special cases, the QUIT ACL does not run.
24668
24669
24670
24671Finding an ACL to use
24672~~~~~~~~~~~~~~~~~~~~~
24673cindex:[{ACL},finding which to use]
24674The value of an %acl_smtp_'xxx'% option is expanded before use, so you can
24675use different ACLs in different circumstances. The resulting string does not
24676have to be the name of an ACL in the configuration file; there are other
24677possibilities. Having expanded the string, Exim searches for an ACL as follows:
24678
24679- If the string begins with a slash, Exim uses it as a file name, and reads its
24680contents as an ACL. The lines are processed in the same way as lines in the
24681Exim configuration file. In particular, continuation lines are supported, blank
24682lines are ignored, as are lines whose first non-whitespace character is ``#''.
24683If the file does not exist or cannot be read, an error occurs (typically
24684causing a temporary failure of whatever caused the ACL to be run). For example:
24685+
24686....
24687acl_smtp_data = /etc/acls/\
24688 ${lookup{$sender_host_address}lsearch\
24689 {/etc/acllist}{$value}{default}}
24690....
24691+
24692This looks up an ACL file to use on the basis of the host's IP address, falling
24693back to a default if the lookup fails. If an ACL is successfully read from a
24694file, it is retained in memory for the duration of the Exim process, so that it
24695can be re-used without having to re-read the file.
24696
24697- If the string does not start with a slash, and does not contain any spaces,
24698Exim searches the ACL section of the configuration for an ACL whose name
24699matches the string.
24700
24701- If no named ACL is found, or if the string contains spaces, Exim parses
24702the string as an inline ACL. This can save typing in cases where you just
24703want to have something like
24704+
24705 acl_smtp_vrfy = accept
24706+
24707in order to allow free use of the VRFY command. Such a string may contain
24708newlines; it is processed in the same way as an ACL that is read from a file.
24709
24710
24711
24712
24713ACL return codes
24714~~~~~~~~~~~~~~~~
24715cindex:[{ACL},return codes]
24716Except for the QUIT ACL, which does not affect the SMTP return code (see
24717section <<SECTQUITACL>> above), the
24718
24719result of running an ACL is either ``accept'' or ``deny'', or, if some test
24720cannot be completed (for example, if a database is down), ``defer''. These
24721results cause 2##'xx', 5##'xx', and 4##'xx' return codes, respectively, to be
24722used in the SMTP dialogue. A fourth return, ``error'', occurs when there is an
24723error such as invalid syntax in the ACL. This also causes a 4'##xx' return
24724code.
24725
24726For the non-SMTP ACL, ``defer'' and ``error'' are treated in the same way as
24727``deny'', because there is no mechanism for passing temporary errors to the
24728submitters of non-SMTP messages.
24729
24730
24731ACLs that are relevant to message reception may also return ``discard''. This
24732has the effect of ``accept'', but causes either the entire message or an
24733individual recipient address to be discarded. In other words, it is a
24734blackholing facility. Use it with care.
24735
24736If the ACL for MAIL returns ``discard'', all recipients are discarded, and no
24737ACL is run for subsequent RCPT commands. The effect of ``discard'' in a
24738RCPT ACL is to discard just the one recipient address. If there are no
24739recipients left when the message's data is received, the DATA ACL is not
24740run. A ``discard'' return from the DATA or the non-SMTP ACL discards all the
24741remaining recipients.
24742
24743The ``discard'' return is not permitted for the %acl_smtp_predata% ACL.
24744
24745
24746cindex:['local_scan()' function,when all recipients discarded]
24747The 'local_scan()' function is always run, even if there are no remaining
24748recipients; it may create new recipients.
24749
24750
24751
24752Unset ACL options
24753~~~~~~~~~~~~~~~~~
24754cindex:[{ACL},unset options]
24755The default actions when any of the %acl_'xxx'% options are unset are not
24756all the same. *Note*: These defaults apply only when the relevant ACL is
24757not defined at all. For any defined ACL, the default action when control reaches
24758the end of the ACL statements is ``deny''.
24759
24760For %acl_not_smtp%, %acl_smtp_auth%, %acl_smtp_connect%, %acl_smtp_data%,
24761%acl_smtp_helo%, %acl_smtp_mail%, %acl_smtp_mailauth%, %acl_smtp_mime%,
24762%acl_smtp_predata%, %acl_smtp_quit%, and %acl_smtp_starttls%, the action when
24763the ACL is not defined is ``accept''.
24764
24765For the others (%acl_smtp_etrn%, %acl_smtp_expn%, %acl_smtp_rcpt%, and
24766%acl_smtp_vrfy%), the action when the ACL is not defined is ``deny''.
24767This means that %acl_smtp_rcpt% must be defined in order to receive any
24768messages over an SMTP connection. For an example, see the ACL in the default
24769configuration file.
24770
24771
24772
24773
24774Data for message ACLs
24775~~~~~~~~~~~~~~~~~~~~~
24776cindex:[{ACL},data for message ACL]
24777When a MAIL or RCPT ACL, or either of the DATA ACLs, is running,
24778the variables that contain information about the host and the message's sender
24779(for example, $sender_host_address$ and $sender_address$) are set, and
24780can be used in ACL statements. In the case of RCPT (but not MAIL or
24781DATA), $domain$ and $local_part$ are set from the argument address.
24782
24783When an ACL for the AUTH parameter of MAIL is running, the variables that
24784contain information about the host are set, but $sender_address$ is not yet
24785set. Section <<SECTauthparamail>> contains a discussion of this parameter and
24786how it is used.
24787
24788The $message_size$ variable is set to the value of the SIZE parameter on
24789the MAIL command at MAIL, RCPT and pre-data time, or to -1 if
24790that parameter is not given. The value is updated to the true message size by
24791the time the final DATA ACL is run (after the message data has been
24792received).
24793
24794The $rcpt_count$ variable increases by one for each RCPT command
24795received. The $recipients_count$ variable increases by one each time a
24796RCPT command is accepted, so while an ACL for RCPT is being processed,
24797it contains the number of previously accepted recipients. At DATA time (for
24798both the DATA ACLs), $rcpt_count$ contains the total number of RCPT
24799commands, and $recipients_count$ contains the total number of accepted
24800recipients.
24801
24802
24803
24804
24805
24806[[SECTdatfornon]]
24807Data for non-message ACLs
24808~~~~~~~~~~~~~~~~~~~~~~~~~
24809cindex:[{ACL},data for non-message ACL]
24810When an ACL is being run for AUTH, EHLO, ETRN, EXPN, HELO, STARTTLS, or VRFY,
24811the remainder of the SMTP command line is placed in $smtp_command_argument$.
24812This can be tested using a %condition% condition. For example, here is an ACL
24813for use with AUTH, which insists that either the session is encrypted, or the
24814CRAM-MD5 authentication method is used. In other words, it does not permit
24815authentication methods that use cleartext passwords on unencrypted connections.
24816
24817....
24818acl_check_auth:
24819 accept encrypted = *
24820 accept condition = ${if eq{${uc:$smtp_command_argument}}\
24821 {CRAM-MD5}}
24822 deny message = TLS encryption or CRAM-MD5 required
24823....
24824
24825(Another way of applying this restriction is to arrange for the authenticators
24826that use cleartext passwords not to be advertised when the connection is not
24827encrypted. You can use the generic %server_advertise_condition% authenticator
24828option to do this.)
24829
24830
24831
24832Format of an ACL
24833~~~~~~~~~~~~~~~~
24834cindex:[{ACL},format of]
24835cindex:[{ACL},verbs; definition of]
24836An individual ACL consists of a number of statements. Each statement starts
24837with a verb, optionally followed by a number of conditions and ``modifiers''.
24838Modifiers can change the way the verb operates, define error and log messages,
24839set variables, insert delays, and vary the processing of accepted messages.
24840
24841If all the conditions are met, the verb is obeyed. The same condition may be
24842used (with different arguments) more than once in the same statement. This
24843provides a means of specifying an ``and'' conjunction between conditions. For
24844example:
24845
24846 deny dnslists = list1.example
24847 dnslists = list2.example
24848
24849If there are no conditions, the verb is always obeyed. Exim stops evaluating
24850the conditions and modifiers when it reaches a condition that fails. What
24851happens then depends on the verb (and in one case, on a special modifier). Not
24852all the conditions make sense at every testing point. For example, you cannot
24853test a sender address in the ACL that is run for a VRFY command.
24854
24855
24856ACL verbs
24857~~~~~~~~~
24858The ACL verbs are as follows:
24859
24860- cindex:[%accept%, ACL verb]
24861%accept%: If all the conditions are met, the ACL returns ``accept''. If any of
24862the conditions are not met, what happens depends on whether %endpass% appears
24863among the conditions (for syntax see below). If the failing condition is before
24864%endpass%, control is passed to the next ACL statement; if it is after
24865%endpass%, the ACL returns ``deny''. Consider this statement, used to check a
24866RCPT command:
24867
24868 accept domains = +local_domains
24869 endpass
24870 verify = recipient
24871+
24872If the recipient domain does not match the %domains% condition, control passes
24873to the next statement. If it does match, the recipient is verified, and the
24874command is accepted if verification succeeds. However, if verification fails,
24875the ACL yields ``deny'', because the failing condition is after %endpass%.
24876
24877- cindex:[%defer%, ACL verb]
24878%defer%: If all the conditions are met, the ACL returns ``defer'' which, in an
24879SMTP session, causes a 4##'xx' response to be given. For a non-SMTP ACL,
24880%defer% is the same as %deny%, because there is no way of sending a temporary
24881error. For a RCPT command, %defer% is much the same as using a
24882^redirect^ router and `:defer:` while verifying, but the %defer% verb can
24883be used in any ACL, and even for a recipient it might be a simpler approach.
24884
24885- cindex:[%deny%, ACL verb]
24886%deny%: If all the conditions are met, the ACL returns ``deny''. If any of the
24887conditions are not met, control is passed to the next ACL statement. For
24888example,
24889
24890 deny dnslists = blackholes.mail-abuse.org
24891+
24892rejects commands from hosts that are on a DNS black list.
24893
24894- cindex:[%discard%, ACL verb]
24895%discard%: This verb behaves like %accept%, except that it returns ``discard''
24896from the ACL instead of ``accept''. It is permitted only on ACLs that are
24897concerned with receiving messages, and it causes recipients to be discarded.
24898If the %log_message% modifier is set when %discard% operates, its contents are
24899added to the line that is automatically written to the log.
24900+
24901If %discard% is used in an ACL for RCPT, just the one recipient is
24902discarded; if used for MAIL, DATA or in the non-SMTP ACL, all the
24903message's recipients are discarded. Recipients that are discarded before
24904DATA do not appear in the log line when the %log_recipients% log selector
24905is set.
24906
24907- cindex:[%drop%, ACL verb]
24908%drop%: This verb behaves like %deny%, except that an SMTP connection is
24909forcibly closed after the 5##'xx' error message has been sent. For example:
24910
24911 drop message = I don't take more than 20 RCPTs
24912
24913 condition = ${if > {$rcpt_count}{20}}
24914+
24915There is no difference between %deny% and %drop% for the connect-time ACL. The
24916connection is always dropped after sending a 550 response.
24917
24918- cindex:[%require%, ACL verb]
24919%require%: If all the conditions are met, control is passed to the next ACL
24920statement. If any of the conditions are not met, the ACL returns ``deny''. For
24921example, when checking a RCPT command,
24922
24923 require verify = sender
24924+
24925passes control to subsequent statements only if the message's sender can be
24926verified. Otherwise, it rejects the command.
24927
24928- cindex:[%warn%, ACL verb]
24929%warn%: If all the conditions are met, a header line is added to an incoming
24930message and/or a line is written to Exim's main log. In all cases, control
24931passes to the next ACL statement. The text of the added header line and the log
24932line are specified by modifiers; if they are not present, a %warn% verb just
24933checks its conditions and obeys any ``immediate'' modifiers such as %set% and
24934%logwrite%. There is more about adding header lines in section
24935<<SECTaddheadwarn>>.
24936+
24937If any condition on a %warn% statement cannot be completed (that is, there is
24938some sort of defer), no header lines are added and the configured log line is
24939not written. No further conditions or modifiers in the %warn% statement are
24940processed. The incident is logged, but the ACL continues to be processed, from
24941the next statement onwards.
24942+
24943If a %message% modifier is present on a %warn% verb in an ACL that is not
24944testing an incoming message, it is ignored, and the incident is logged.
24945+
24946A %warn% statement may use the %log_message% modifier to cause a line to be
24947written to the main log when the statement's conditions are true.
24948If an identical log line is requested several times in the same message, only
24949one copy is actually written to the log. If you want to force duplicates to be
24950written, use the %logwrite% modifier instead.
24951+
24952When one of the %warn% conditions is an address verification that fails, the
24953text of the verification failure message is in $acl_verify_message$. If you
24954want this logged, you must set it up explicitly. For example:
24955
24956 warn !verify = sender
24957 log_message = sender verify failed: $acl_verify_message
24958
24959At the end of each ACL there is an implicit unconditional %deny%.
24960
24961As you can see from the examples above, the conditions and modifiers are
24962written one to a line, with the first one on the same line as the verb, and
24963subsequent ones on following lines. If you have a very long condition, you can
24964continue it onto several physical lines by the usual backslash continuation
24965mechanism. It is conventional to align the conditions vertically.
24966
24967
24968
24969[[SECTaclvariables]]
24970ACL variables
24971~~~~~~~~~~~~~
24972cindex:[{ACL},variables]
24973There are some special variables that can be set during ACL processing. They
24974can be used to pass information between different ACLs, different invocations
24975of the same ACL in the same SMTP connection, and between ACLs and the routers,
24976transports, and filters that are used to deliver a message. There are two sets
24977of these variables:
24978
24979- The values of $acl_c0$ to $acl_c9$ persist throughout an SMTP connection.
24980They are never reset. Thus, a value that is set while receiving one message is
24981still available when receiving the next message on the same SMTP connection.
24982
24983- The values of $acl_m0$ to $acl_m9$ persist only while a message is being
24984received. They are reset afterwards. They are also reset by MAIL, RSET,
24985EHLO, HELO, and after starting up a TLS session.
24986
24987When a message is accepted, the current values of all the ACL variables are
24988preserved with the message and are subsequently made available at delivery
24989time. The ACL variables are set by modifier called %set%. For example:
24990
24991 accept hosts = whatever
24992 set acl_m4 = some value
24993
24994*Note*: a leading dollar sign is not used when naming a variable that is to
24995be set. If you want to set a variable without taking any action, you can use a
24996%warn% verb without any other modifiers or conditions.
24997
24998
24999
25000Condition and modifier processing
25001~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25002cindex:[{ACL},conditions; processing]
25003cindex:[{ACL},modifiers; processing]
25004An exclamation mark preceding a condition negates its result. For example,
25005
25006 deny domains = *.dom.example
25007 !verify = recipient
25008
25009causes the ACL to return ``deny'' if the recipient domain ends in
25010'dom.example' and the recipient address cannot be verified.
25011
25012The arguments of conditions and modifiers are expanded. A forced failure
25013of an expansion causes a condition to be ignored, that is, it behaves as if the
25014condition is true. Consider these two statements:
25015
25016....
25017accept senders = ${lookup{$host_name}lsearch\
25018 {/some/file}{$value}fail}
25019accept senders = ${lookup{$host_name}lsearch\
25020 {/some/file}{$value}{}}
25021....
25022
25023Each attempts to look up a list of acceptable senders. If the lookup succeeds,
25024the returned list is searched, but if the lookup fails the behaviour is
25025different in the two cases. The %fail% in the first statement causes the
25026condition to be ignored, leaving no further conditions. The %accept% verb
25027therefore succeeds. The second statement, however, generates an empty list when
25028the lookup fails. No sender can match an empty list, so the condition fails,
25029and therefore the %accept% also fails.
25030
25031ACL modifiers appear mixed in with conditions in ACL statements. Some of them
25032specify actions that are taken as the conditions for a statement are checked;
25033others specify text for messages that are used when access is denied or a
25034warning is generated. The %control% modifier affects the way an incoming
25035message is handled.
25036
25037The positioning of the modifiers in an ACL statement important, because the
25038processing of a verb ceases as soon as its outcome is known. Only those
25039modifiers that have already been encountered will take effect. For example,
25040consider this use of the %message% modifier:
25041
25042 require message = Can't verify sender
25043 verify = sender
25044 message = Can't verify recipient
25045 verify = recipient
25046 message = This message cannot be used
25047
25048If sender verification fails, Exim knows that the result of the statement is
25049``deny'', so it goes no further. The first %message% modifier has been seen, so
25050its text is used as the error message. If sender verification succeeds, but
25051recipient verification fails, the second message is used. If recipient
25052verification succeeds, the third message becomes ``current'', but is never used
25053because there are no more conditions to cause failure.
25054
25055For the %deny% verb, on the other hand, it is always the last %message%
25056modifier that is used, because all the conditions must be true for rejection to
25057happen. Specifying more than one %message% modifier does not make sense, and
25058the message can even be specified after all the conditions. For example:
25059
25060 deny hosts = ...
25061 !senders = *@my.domain.example
25062 message = Invalid sender from client host
25063
25064The ``deny'' result does not happen until the end of the statement is reached,
25065by which time Exim has set up the message.
25066
25067
25068
25069[[SECTACLmodi]]
25070ACL modifiers
25071~~~~~~~~~~~~~
25072cindex:[{ACL},modifiers; list of]
25073The ACL modifiers are as follows:
25074
25075*control*~=~<'text'>::
25076cindex:[%control%, ACL modifier]
25077This modifier affects the subsequent processing of the SMTP connection or of an
25078incoming message that is accepted. The effect of the first type of control
25079lasts for the duration of the connection, whereas the effect of the second type
25080lasts only until the current message has been received. The message-specific
25081controls always apply to the whole message, not to individual recipients,
25082even if the %control% modifier appears in a RCPT ACL.
25083+
25084As there are now quite a few controls that can be applied, they are described
25085separately in section <<SECTcontrols>>. The %control% modifier can be used in
25086several different ways. For example:
25087+
25088- It can be at the end of an %accept% statement:
25089+
25090....
25091 accept ...some conditions
25092 control = queue_only
25093....
25094+
25095In this case, the control is applied when this statement yields ``accept'', in
25096other words, when the conditions are all true.
25097
25098- It can be in the middle of an %accept% statement:
25099+
25100....
25101 accept ...some conditions...
25102 control = queue_only
25103 ...some more conditions...
25104....
25105+
25106If the first set of conditions are true, the control is applied, even if the
25107statement does not accept because one of the second set of conditions is false.
25108In this case, some subsequent statement must yield ``accept'' for the control to
25109be relevant.
25110
25111- It can be used with %warn% to apply the control, leaving the
25112decision about accepting or denying to a subsequent verb. For
25113example:
25114+
25115....
25116 warn ...some conditions...
25117 control = freeze
25118 accept ...
25119....
25120+
25121This example of %warn% does not contain %message%, %log_message%, or
25122%logwrite%, so it does not add anything to the message and does not write a log
25123entry.
25124
25125- If you want to apply a control unconditionally, you can use it with a
25126%require% verb. For example:
25127+
25128....
25129 require control = no_multiline_response
25130....
25131
25132///
25133End of bulleted list, continue with variable list
25134///
25135
25136
25137*delay*~=~<'time'>::
25138cindex:[%delay%, ACL modifier]
25139cindex:[%-bh% option]
25140This modifier causes Exim to wait for the time interval before proceeding. The
25141time is given in the usual Exim notation. This modifier may appear in any ACL.
25142The delay happens as soon as the modifier is processed. However, when testing
25143Exim using the %-bh% option, the delay is not actually imposed (an appropriate
25144message is output instead).
25145+
25146Like %control%, %delay% can be used with %accept% or
25147%deny%, for example:
25148
25149 deny ...some conditions...
25150 delay = 30s
25151+
25152The delay happens if all the conditions are true, before the statement returns
25153``deny''. Compare this with:
25154
25155 deny delay = 30s
25156 ...some conditions...
25157+
25158which waits for 30s before processing the conditions. The %delay% modifier can
25159also be used with %warn% and together with %control%:
25160
25161 warn ...some conditions...
25162 delay = 2m
25163 control = freeze
25164 accept ...
25165
25166*endpass*::
25167cindex:[%endpass%, ACL modifier]
25168This modifier, which has no argument, is recognized only in %accept%
25169statements. It marks the boundary between the conditions whose failure causes
25170control to pass to the next statement, and the conditions whose failure causes
25171the ACL to return ``deny''. See the description of %accept% above.
25172
25173*log_message*~=~<'text'>::
25174cindex:[%log_message%, ACL modifier]
25175This modifier sets up a message that is used as part of the log message if the
25176ACL denies access or a %warn% statement's conditions are true. For example:
25177
25178 require log_message = wrong cipher suite $tls_cipher
25179 encrypted = DES-CBC3-SHA
25180+
25181%log_message% adds to any underlying error message that may exist because of
25182the condition failure. For example, while verifying a recipient address, a
25183':fail:' redirection might have already set up a message. Although the message
25184is usually defined before the conditions to which it applies, the expansion
25185does not happen until Exim decides that access is to be denied. This means that
25186any variables that are set by the condition are available for inclusion in the
25187message. For example, the $dnslist_$<'xxx'> variables are set after a DNS
25188black list lookup succeeds. If the expansion of %log_message% fails, or if the
25189result is an empty string, the modifier is ignored.
25190+
25191If you want to use a %warn% statement to log the result of an address
25192verification, you can use $acl_verify_message$ to include the verification
25193error message.
25194+
25195If %log_message% is used with a %warn% statement, ``Warning:'' is added to the
25196start of the logged message. If the same warning log message is requested more
25197than once while receiving a single email message, only one copy is actually
25198logged. If you want to log multiple copies, use %logwrite% instead of
25199%log_message%. In the absence of %log_message% and %logwrite%, nothing is
25200logged for a succesful %warn% statement.
25201+
25202If %log_message% is not present and there is no underlying error message (for
25203example, from the failure of address verification), but %message% is present,
25204the %message% text is used for logging rejections. However, if any text for
25205logging contains newlines, only the first line is logged. In the absence of
25206both %log_message% and %message%, a default built-in message is used for
25207logging rejections.
25208
25209*logwrite*~=~<'text'>::
25210cindex:[%logwrite%, ACL modifier]
25211cindex:[logging in ACL, immediate]
25212This modifier writes a message to a log file as soon as it is encountered when
25213processing an ACL. (Compare %log_message%, which, except in the case of
25214%warn%, is used only if the ACL statement denies access.) The %logwrite%
25215modifier can be used to log special incidents in ACLs. For example:
25216
25217 accept <some special conditions>
25218 control = freeze
25219 logwrite = froze message because ...
25220+
25221By default, the message is written to the main log. However, it may begin
25222with a colon, followed by a comma-separated list of log names, and then
25223another colon, to specify exactly which logs are to be written. For
25224example:
25225
25226 logwrite = :main,reject: text for main and reject logs
25227 logwrite = :panic: text for panic log only
25228
25229*message*~=~<'text'>::
25230cindex:[%message%, ACL modifier]
25231This modifier sets up a text string that is expanded and used as an error
25232message if the current statement causes the ACL to deny access. The expansion
25233happens at the time Exim decides that access is to be denied, not at the time
25234it processes %message%. If the expansion fails, or generates an empty string,
25235the modifier is ignored. For ACLs that are triggered by SMTP commands, the
25236message is returned as part of the SMTP error response.
25237+
25238The %message% modifier is also used with the %warn% verb to specify one or more
25239header lines to be added to an incoming message when all the conditions are
25240true. See section <<SECTaddheadwarn>> for more details. If %message% is used
25241with %warn% in an ACL that is not concerned with receiving a message, it has no
25242effect.
25243+
25244The text is literal; any quotes are taken as literals, but because the string
25245is expanded, backslash escapes are processed anyway. If the message contains
25246newlines, this gives rise to a multi-line SMTP response. Like %log_message%,
25247the contents of %message% are not expanded until after a condition has failed.
25248+
25249If %message% is used on a statement that verifies an address, the message
25250specified overrides any message that is generated by the verification process.
25251However, the original message is available in the variable
25252$acl_verify_message$, so you can incorporate it into your message if you
25253wish. In particular, if you want the text from %:fail:% items in ^redirect^
25254routers to be passed back as part of the SMTP response, you should either not
25255use a %message% modifier, or make use of $acl_verify_message$.
25256
25257*set*~<'acl_name'>~=~<'value'>::
25258cindex:[%set%, ACL modifier]
25259This modifier puts a value into one of the ACL variables (see section
25260<<SECTaclvariables>>).
25261
25262
25263
25264[[SECTcontrols]]
25265Use of the control modifier
25266~~~~~~~~~~~~~~~~~~~~~~~~~~~
25267cindex:[%control%, ACL modifier]
25268The %control% modifier supports the following settings:
25269
25270*control~=~caseful_local_part*::
25271See below.
25272
25273*control~=~caselower_local_part*::
25274cindex:[{ACL},case of local part in]
25275cindex:[case of local parts]
25276These two controls are permitted only in the ACL specified by %acl_smtp_rcpt%
25277(that is, during RCPT processing). By default, the contents of $local_part$ are
25278lower cased before ACL processing. If ``caseful_local_part'' is specified, any
25279uppercase letters in the original local part are restored in $local_part$ for
25280the rest of the ACL, or until a control that sets ``caselower_local_part'' is
25281encountered.
25282+
25283These controls affect only the current recipient. Moreover, they apply only to
25284local part handling that takes place directly in the ACL (for example, as a key
25285in lookups). If a test to verify the recipient is obeyed, the case-related
25286handling of the local part during the verification is controlled by the router
25287configuration (see the %caseful_local_part% generic router option).
25288+
25289This facility could be used, for example, to add a spam score to local parts
25290containing upper case letters. For example, using $acl_m4$ to accumulate the
25291spam score:
25292+
25293....
25294warn control = caseful_local_part
25295 set acl_m4 = ${eval:\
25296 $acl_m4 + \
25297 ${if match{$local_part}{[A-Z]}{1}{0}}\
25298 }
25299 control = caselower_local_part
25300....
25301+
25302Notice that we put back the lower cased version afterwards, assuming that
25303is what is wanted for subsequent tests.
25304
25305*control~=~enforce_sync*::
25306See below.
25307
25308*control~=~no_enforce_sync*::
25309cindex:[SMTP,synchronization checking]
25310cindex:[synchronization checking in SMTP]
25311These controls make it possible to be selective about when SMTP synchronization
25312is enforced. The global option %smtp_enforce_sync% specifies the initial
25313state of the switch (it is true by default). See the description of this option
25314in chapter <<CHAPmainconfig>> for details of SMTP synchronization checking.
25315+
25316The effect of these two controls lasts for the remainder of the SMTP
25317connection. They can appear in any ACL except the one for the non-SMTP
25318messages. The most straightforward place to put them is in the ACL defined by
25319%acl_smtp_connect%, which is run at the start of an incoming SMTP connection,
25320before the first synchronization check. The expected use is to turn off the
25321synchronization checks for badly-behaved hosts that you nevertheless need to
25322work with.
25323
25324*control~=~fakereject/*<'message'>::
25325cindex:[fake rejection]
25326cindex:[rejection, fake]
25327This control is permitted only for the MAIL, RCPT, and DATA ACLs, in other
25328words, only when an SMTP message is being received. If Exim accepts the
25329message, instead the final 250 response, a 550 rejection message is sent.
25330However, Exim proceeds to deliver the message as normal. The control applies
25331only to the current message, not to any subsequent ones that may be received in
25332the same SMTP connection.
25333+
25334The text for the 550 response is taken from the %control% modifier. If no
25335message is supplied, the following is used:
25336
25337 550-Your message has been rejected but is being
25338 550-kept for evaluation.
25339 550-If it was a legitimate message, it may still be
25340 550 delivered to the target recipient(s).
25341+
25342This facilty should be used with extreme caution.
25343
25344*control~=~freeze*::
25345cindex:[frozen messages,forcing in ACL]
25346This control is permitted only for the MAIL, RCPT, DATA, and non-SMTP ACLs, in
25347other words, only when a message is being received. If the message is accepted,
25348it is placed on Exim's queue and frozen. The control applies only to the
25349current message, not to any subsequent ones that may be received in the same
25350SMTP connection.
25351
25352*control~=~no_mbox_unspool*::
25353This control is available when Exim is compiled with the content scanning
25354extension. Content scanning may require a copy of the current message, or parts
25355of it, to be written in ``mbox format'' to a spool file, for passing to a virus
25356or spam scanner. Normally, such copies are deleted when they are no longer
25357needed. If this control is set, the copies are not deleted. The control applies
25358only to the current message, not to any subsequent ones that may be received in
25359the same SMTP connection. It is provided for debugging purposes and is unlikely
25360to be useful in production.
25361
25362*control~=~no_multiline_response*::
25363cindex:[multiline responses, suppressing]
25364This control is permitted for any ACL except the one for non-SMTP messages.
25365It seems that there are broken clients in use that cannot handle multiline
25366SMTP responses, despite the fact that RFC 821 defined them over 20 years ago.
25367+
25368If this control is set, multiline SMTP responses from ACL rejections are
25369suppressed. One way of doing this would have been to put out these responses as
25370one long line. However, RFC 2821 specifies a maximum of 512 bytes per response
25371(``use multiline responses for more'' it says -- ha!), and some of the responses
25372might get close to that. So this facility, which is after all only a sop to
25373broken clients, is implemented by doing two very easy things:
25374+
25375--
25376. Extra information that is normally output as part of a rejection caused by
25377sender verification failure is omitted. Only the final line (typically ``sender
25378verification failed'') is sent.
25379
25380. If a %message% modifier supplies a multiline response, only the first
25381line is output.
25382--
25383+
25384The setting of the switch can, of course, be made conditional on the
25385calling host. Its effect lasts until the end of the SMTP connection.
25386
25387*control~=~queue_only*::
25388cindex:[%queue_only%]
25389cindex:[queueing incoming messages]
25390This control is permitted only for the MAIL, RCPT, DATA, and non-SMTP ACLs, in
25391other words, only when a message is being received. If the message is accepted,
25392it is placed on Exim's queue and left there for delivery by a subsequent queue
25393runner. No immediate delivery process is started. In other words, it has the
25394effect as the %queue_only% global option. However, the control applies only to
25395the current message, not to any subsequent ones that may be received in the
25396same SMTP connection.
25397
25398*control~=~submission/*<'options'>::
25399cindex:[message,submission]
25400cindex:[submission mode]
25401This control is permitted only for the MAIL, RCPT, and start of data ACLs (the
25402latter is the one defined by %acl_smtp_predata%). Setting it tells Exim that
25403the current message is a submission from a local MUA. In this case, Exim
25404operates in ``submission mode'', and applies certain fixups to the message if
25405necessary. For example, it add a 'Date:' header line if one is not present.
25406This control is not permitted in the %acl_smtp_data% ACL, because that is too
25407late (the message has already been created).
25408+
25409Chapter <<CHAPmsgproc>> describes the processing that Exim applies to messages.
25410Section <<SECTsubmodnon>> covers the processing that happens in submission mode;
25411the available options for this control are described there. The control applies
25412only to the current message, not to any subsequent ones that may be received in
25413the same SMTP connection.
25414
25415
25416
25417[[SECTaddheadwarn]]
25418Adding header lines with the warn verb
25419~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25420cindex:[header lines,adding in an ACL]
25421cindex:[header lines,position of added lines]
25422cindex:[%warn%, ACL verb]
25423cindex:[%message%, ACL modifier]
25424The %message% modifier can be used on a %warn% statement to add an extra header
25425line to an incoming message, as in this example:
25426
25427....
25428warn message = X-blacklisted-at: $dnslist_domain
25429 dnslists = sbl.spamhaus.org : \
25430 dialup.mail-abuse.org
25431....
25432
25433If an identical header line is requested several times (provoked, for example,
25434by multiple RCPT commands), only one copy is actually added to the message.
25435If the text of the %message% modifier contains one or more newlines that are
25436not followed by a space or a tab, it is assumed to contain multiple header
25437lines. Each one is checked for valid syntax; `X-ACL-Warn:` is added to the
25438front of any line that is not a valid header line.
25439
25440By default, new lines are added at the end of the existing header lines.
25441However, you can specify that any particular header line should be added right
25442at the start (before all the 'Received:' lines), immediately after the first
25443block of 'Received:' lines, or immediately before any line that is not a
25444'Received:' or 'Resent-something:' header.
25445
25446This is done by specifying ``:at_start:'', ``:after_received:'', or
25447``:at_start_rfc:'' (or, for completeness, ``:at_end:'') before the text of the
25448header line, respectively. (Header text cannot start with a colon, as there has
25449to be a header name first.) For example:
25450
25451 warn message = :after_received:X-My-Header: something or other...
25452
25453
25454If more than one header is supplied in a single warn statement, each one is
25455treated independently and can therefore be placed differently. If you add
25456more than one line at the start, or after the Received: block, they will
25457end up in reverse order.
25458
25459*Warning*: This facility currently applies only to header lines that are
25460added in an ACL. It does NOT work for header lines that are added in a
25461system filter or in a router or transport.
25462
25463cindex:[header lines,added; visibility of]
25464Header lines that are added by an ACL at MAIL or RCPT time are not
25465visible in string expansions in ACLs for subsequent RCPT commands or in the
25466%acl_smtp_predata% ACL. However, they are visible in string expansions in the
25467ACL that is run after DATA is complete (the %acl_smtp_data% ACL). This is
25468also true for header lines that are added in the %acl_smtp_predata% ACL.
25469If a message is rejected after DATA, all added header lines are included in
25470the entry that is written to the reject log.
25471
25472If you want to preserve data between MAIL, RCPT, and the
25473%acl_smtp_predata% ACLs, you can use ACL variables, as described in section
25474<<SECTaclvariables>>.
25475
25476
25477
25478
25479
25480[[SECTaclconditions]]
25481ACL conditions
25482~~~~~~~~~~~~~~
25483cindex:[{ACL},conditions; list of]
25484Some of conditions listed in this section are available only when Exim is
25485compiled with the content-scanning extension. They are included here briefly
25486for completeness. More detailed descriptions can be found in the discussion on
25487content scanning in chapter <<CHAPexiscan>>.
25488
25489Not all conditions are relevant in all circumstances. For example, testing
25490senders and recipients does not make sense in an ACL that is being run as the
25491result of the arrival of an ETRN command, and checks on message headers can be
25492done only in the ACLs specified by %acl_smtp_data% and %acl_not_smtp%. You can
25493use the same condition (with different parameters) more than once in the same
25494ACL statement. This provides a way of specifying an ``and'' conjunction. The
25495conditions are as follows:
25496
25497
25498*acl~=~*<'name~of~acl~or~ACL~string~or~file~name~'>::
25499cindex:[{ACL},nested]
25500cindex:[{ACL},indirect]
25501cindex:[%acl%, ACL condition]
25502The possible values of the argument are the same as for the %acl_smtp_%##'xxx'
25503options. The named or inline ACL is run. If it returns ``accept'' the condition
25504is true; if it returns ``deny'' the condition is false. If it returns
25505``defer'', the current ACL returns ``defer'' unless the condition is on a
25506%warn% verb. In that case, a ``defer'' return makes the condition false. This
25507means that further processing of the %warn% verb ceases, but processing of the
25508ACL continues.
25509+
25510If the nested %acl% returns ``drop'' and the outer condition denies access, the
25511connection is dropped. If it returns ``discard'', the verb must be %accept% or
25512%discard%, and the action is taken immediately -- no further conditions are
25513tested.
25514+
25515ACLs may be nested up to 20 deep; the limit exists purely to catch runaway
25516loops. This condition allows you to use different ACLs in different
25517circumstances. For example, different ACLs can be used to handle RCPT commands
25518for different local users or different local domains.
25519
25520*authenticated~=~*<'string~list'>::
25521cindex:[%authenticated%, ACL condition]
25522cindex:[authentication,ACL checking]
25523cindex:[{ACL},testing for authentication]
25524If the SMTP connection is not authenticated, the condition is false. Otherwise,
25525the name of the authenticator is tested against the list. To test for
25526authentication by any authenticator, you can set
25527
25528 authenticated = *
25529
25530*condition~=~*<'string'>::
25531cindex:[%condition%, ACL condition]
25532cindex:[customizing,ACL condition]
25533cindex:[{ACL},customized test]
25534cindex:[{ACL},testing; customized]
25535This feature allows you to make up custom conditions. If the result of
25536expanding the string is an empty string, the number zero, or one of the strings
25537``no'' or ``false'', the condition is false. If the result is any non-zero
25538number, or one of the strings ``yes'' or ``true'', the condition is true. For
25539any other values, some error is assumed to have occured, and the ACL returns
25540``defer''.
25541
25542*decode~=~*<'location'>::
25543cindex:[%decode%, ACL condition]
25544This condition is available only when Exim is compiled with the
25545content-scanning extension, and it is allowed only the the ACL defined by
25546%acl_smtp_mime%. It causes the current MIME part to be decoded into a file. For
25547details, see chapter <<CHAPexiscan>>.
25548
25549*dnslists~=~*<'list~of~domain~names~and~other~data'>::
25550cindex:[%dnslists%, ACL condition]
25551cindex:[DNS list,in ACL]
25552cindex:[black list (DNS)]
25553cindex:[{ACL},testing a DNS list]
25554This condition checks for entries in DNS black lists. These are also known as
25555``RBL lists'', after the original Realtime Blackhole List, but note that the
25556use of the lists at 'mail-abuse.org' now carries a charge. There are too many
25557different variants of this condition to describe briefly here. See sections
25558<<SECTmorednslists>>--<<SECTmorednslistslast>> for details.
25559
25560*domains~=~*<'domain~list'>::
25561cindex:[%domains%, ACL condition]
25562cindex:[domain,ACL checking]
25563cindex:[{ACL},testing a recipient domain]
25564This condition is relevant only after a RCPT command. It checks that the domain
25565of the recipient address is in the domain list. If percent-hack processing is
25566enabled, it is done before this test is done. If the check succeeds with a
25567lookup, the result of the lookup is placed in $domain_data$ until the next
25568%domains% test.
25569
25570*encrypted~=~*<'string~list'>::
25571cindex:[%encrypted%, ACL condition]
25572cindex:[encryption,checking in an ACL]
25573cindex:[{ACL},testing for encryption]
25574If the SMTP connection is not encrypted, the condition is false. Otherwise, the
25575name of the cipher suite in use is tested against the list. To test for
25576encryption without testing for any specific cipher suite(s), set
25577
25578 encrypted = *
25579
25580*hosts~=~*<'~host~list'>::
25581cindex:[%hosts%, ACL condition]
25582cindex:[host,ACL checking]
25583cindex:[{ACL},testing the client host]
25584This condition tests that the calling host matches the host list. If you have
25585name lookups or wildcarded host names and IP addresses in the same host list,
25586you should normally put the IP addresses first. For example, you could have:
25587
25588 accept hosts = 10.9.8.7 : dbm;/etc/friendly/hosts
25589+
25590The reason for this lies in the left-to-right way that Exim processes lists.
25591It can test IP addresses without doing any DNS lookups, but when it reaches an
25592item that requires a host name, it fails if it cannot find a host name to
25593compare with the pattern. If the above list is given in the opposite order, the
25594%accept% statement fails for a host whose name cannot be found, even if its
25595IP address is 10.9.8.7.
25596+
25597If you really do want to do the name check first, and still recognize the IP
25598address even if the name lookup fails, you can rewrite the ACL like this:
25599
25600 accept hosts = dbm;/etc/friendly/hosts
25601 accept hosts = 10.9.8.7
25602+
25603The default action on failing to find the host name is to assume that the host
25604is not in the list, so the first %accept% statement fails. The second statement
25605can then check the IP address.
25606+
25607If a %hosts% condition is satisfied by means of a lookup, the result
25608of the lookup is made available in the $host_data$ variable. This
25609allows you, for example, to set up a statement like this:
25610
25611 deny hosts = net-lsearch;/some/file
25612 message = $host_data
25613+
25614which gives a custom error message for each denied host.
25615
25616*local_parts~=~*<'local~part~list'>::
25617cindex:[%local_parts%, ACL condition]
25618cindex:[local part,ACL checking]
25619cindex:[{ACL},testing a local part]
25620This condition is relevant only after a RCPT command. It checks that the local
25621part of the recipient address is in the list. If percent-hack processing is
25622enabled, it is done before this test. If the check succeeds with a lookup, the
25623result of the lookup is placed in $local_part_data$ until the next
25624%local_parts% test.
25625
25626*malware~=~*<'option'>::
25627cindex:[%malware%, ACL condition]
25628cindex:[{ACL},virus scanning]
25629cindex:[{ACL},scanning for viruses]
25630This condition is available only when Exim is compiled with the
25631content-scanning extension. It causes the incoming message to be scanned for
25632viruses. For details, see chapter <<CHAPexiscan>>.
25633
25634*mime_regex~=~*<'list~of~regular~expressions'>::
25635cindex:[%mime_regex%, ACL condition]
25636cindex:[{ACL},testing by regex matching]
25637This condition is available only when Exim is compiled with the
25638content-scanning extension, and it is allowed only the the ACL defined by
25639%acl_smtp_mime%. It causes the current MIME part to be scanned for a match with
25640any of the regular expressions. For details, see chapter <<CHAPexiscan>>.
25641
25642*recipients~=~*<'address~list'>::
25643cindex:[%recipients%, ACL condition]
25644cindex:[recipient,ACL checking]
25645cindex:[{ACL},testing a recipient]
25646This condition is relevant only after a RCPT command. It checks the entire
25647recipient address against a list of recipients.
25648
25649*regex~=~*<'list~of~regular~expressions'>::
25650cindex:[%regex%, ACL condition]
25651cindex:[{ACL},testing by regex matching]
25652This condition is available only when Exim is compiled with the
25653content-scanning extension. It causes the incoming message to be scanned for a
25654match with any of the regular expressions. For details, see chapter
25655<<CHAPexiscan>>.
25656
25657*sender_domains~=~*<'domain~list'>::
25658cindex:[%sender_domains%, ACL condition]
25659cindex:[sender,ACL checking]
25660cindex:[{ACL},testing a sender domain]
25661This condition tests the domain of the sender of the message against the given
25662domain list. *Note*: the domain of the sender address is in
25663$sender_address_domain$. It is 'not' put in $domain$ during the testing of this
25664condition. This is an exception to the general rule for testing domain lists.
25665It is done this way so that, if this condition is used in an ACL for a RCPT
25666command, the recipient's domain (which is in $domain$) can be used to influence
25667the sender checking.
25668
25669*senders~=~*<'address~list'>::
25670cindex:[%senders%, ACL condition]
25671cindex:[sender,ACL checking]
25672cindex:[{ACL},testing a sender]
25673This condition tests the sender of the message against the given list. To test
25674for a bounce message, which has an empty sender, set
25675
25676 senders = :
25677
25678*spam~=~*<'username'>::
25679cindex:[%spam%, ACL condition]
25680cindex:[{ACL},scanning for spam]
25681This condition is available only when Exim is compiled with the
25682content-scanning extension. It causes the incoming message to be scanned by
25683SpamAssassin. For details, see chapter <<CHAPexiscan>>.
25684
25685*verify~=~certificate*::
25686cindex:[%verify%, ACL condition]
25687cindex:[TLS,client certificate verification]
25688cindex:[certificate,verification of client]
25689cindex:[{ACL},certificate verification]
25690cindex:[{ACL},testing a TLS certificate]
25691This condition is true in an SMTP session if the session is encrypted, and a
25692certificate was received from the client, and the certificate was verified. The
25693server requests a certificate only if the client matches %tls_verify_hosts% or
25694%tls_try_verify_hosts% (see chapter <<CHAPTLS>>).
25695
25696*verify~=~header_sender/*<'options'>::
25697cindex:[%verify%, ACL condition]
25698cindex:[{ACL},verifying sender in the header]
25699cindex:[header lines,verifying the sender in]
25700cindex:[sender,verifying in header]
25701cindex:[verifying,sender in header]
25702This condition is relevant only in an ACL that is run after a message has been
25703received, that is, in an ACL specified by %acl_smtp_data% or %acl_not_smtp%. It
25704checks that there is a verifiable address in at least one of the 'Sender:',
25705'Reply-To:', or 'From:' header lines. Such an address is loosely thought of as
25706a ``sender'' address (hence the name of the test). However, an address that
25707appears in one of these headers need not be an address that accepts bounce
25708messages; only sender addresses in envelopes are required to accept bounces.
25709Therefore, if you use the callout option on this check, you might want to
25710arrange for a non-empty address in the MAIL command.
25711+
25712Details of address verification and the options are given later, starting at
25713section <<SECTaddressverification>> (callouts are described in section
25714<<SECTcallver>>). You can combine this condition with the %senders% condition to
25715restrict it to bounce messages only:
25716
25717 deny senders = :
25718 message = A valid sender header is required for bounces
25719 !verify = header_sender
25720
25721*verify~=~header_syntax*::
25722cindex:[%verify%, ACL condition]
25723cindex:[{ACL},verifying header syntax]
25724cindex:[header lines,verifying syntax]
25725cindex:[verifying,header syntax]
25726This condition is relevant only in an ACL that is run after a message has been
25727received, that is, in an ACL specified by %acl_smtp_data% or %acl_not_smtp%. It
25728checks the syntax of all header lines that can contain lists of addresses
25729('Sender:', 'From:', 'Reply-To:', 'To:', 'Cc:', and 'Bcc:'). Unqualified
25730addresses (local parts without domains) are permitted only in locally generated
25731messages and from hosts that match %sender_unqualified_hosts% or
25732%recipient_unqualified_hosts%, as appropriate.
25733+
25734Note that this condition is a syntax check only. However, a common spamming
25735ploy used to be to send syntactically invalid headers such as
25736
25737 To: @
25738+
25739and this condition can be used to reject such messages, though they are not as
25740common as they used to be.
25741
25742*verify~=~helo*::
25743cindex:[%verify%, ACL condition]
25744cindex:[{ACL},verifying HELO/EHLO]
25745cindex:[HELO,verifying]
25746cindex:[EHLO,verifying]
25747cindex:[verifying,EHLO]
25748cindex:[verifying,HELO]
25749This condition is true if a HELO or EHLO command has been received from the
25750client host, and its contents have been verified. Verification of these
25751commands does not happen by default. See the description of the
25752%helo_verify_hosts% and %helo_try_verify_hosts% options for details of how to
25753request it.
25754
25755*verify~=~recipient/*<'options'>::
25756cindex:[%verify%, ACL condition]
25757cindex:[{ACL},verifying recipient]
25758cindex:[recipient,verifying]
25759cindex:[verifying,recipient]
25760This condition is relevant only after a RCPT command. It verifies the current
25761recipient. Details of address verification are given later, starting at section
25762<<SECTaddressverification>>. After a recipient has been verified, the value of
25763$address_data$ is the last value that was set while routing the address. This
25764applies even if the verification fails. When an address that is being verified
25765is redirected to a single address, verification continues with the new address,
25766and in that case, the subsequent value of $address_data$ is the value for the
25767child address.
25768
25769*verify~=~reverse_host_lookup*::
25770cindex:[%verify%, ACL condition]
25771cindex:[{ACL},verifying host reverse lookup]
25772cindex:[host,verifying reverse lookup]
25773This condition ensures that a verified host name has been looked up from the IP
25774address of the client host. (This may have happened already if the host name
25775was needed for checking a host list, or if the host matched %host_lookup%.)
25776Verification ensures that the host name obtained from a reverse DNS lookup, or
25777one of its aliases, does, when it is itself looked up in the DNS, yield the
25778original IP address.
25779+
25780If this condition is used for a locally generated message (that is, when there
25781is no client host involved), it always succeeds.
25782
25783*verify~=~sender/*<'options'>::
25784cindex:[%verify%, ACL condition]
25785cindex:[{ACL},verifying sender]
25786cindex:[sender,verifying]
25787cindex:[verifying,sender]
25788This condition is relevant only after a MAIL or RCPT command, or after a
25789message has been received (the %acl_smtp_data% or %acl_not_smtp% ACLs). If the
25790message's sender is empty (that is, this is a bounce message), the condition is
25791true. Otherwise, the sender address is verified.
25792+
25793If there is data in the $address_data$ variable at the end of routing, its
25794value is placed in $sender_address_data$ at the end of verification. This
25795value can be used in subsequent conditions and modifiers in the same ACL
25796statement. It does not persist after the end of the current statement. If you
25797want to preserve the value for longer, you can save it in an ACL variable.
25798+
25799Details of verification are given later, starting at section
25800<<SECTaddressverification>>. Exim caches the result of sender verification, to
25801avoid doing it more than once per message.
25802
25803*verify~=~sender=*<'address'>*/*<'options'>::
25804cindex:[%verify%, ACL condition]
25805This is a variation of the previous option, in which a modified address is
25806verified as a sender.
25807
25808
25809
25810[[SECTmorednslists]]
25811Using DNS lists
25812~~~~~~~~~~~~~~~
25813cindex:[DNS list,in ACL]
25814cindex:[black list (DNS)]
25815cindex:[{ACL},testing a DNS list]
25816In its simplest form, the %dnslists% condition tests whether the calling host
25817is on at least one of a number of DNS lists by looking up the inverted IP
25818address in one or more DNS domains. For example, if the calling host's IP
25819address is 192.168.62.43, and the ACL statement is
25820
25821....
25822deny dnslists = blackholes.mail-abuse.org : \
25823 dialups.mail-abuse.org
25824....
25825
25826the following records are looked up:
25827
25828 43.62.168.192.blackholes.mail-abuse.org
25829 43.62.168.192.dialups.mail-abuse.org
25830
25831As soon as Exim finds an existing DNS record, processing of the list stops.
25832Thus, multiple entries on the list provide an ``or'' conjunction. If you want to
25833test that a host is on more than one list (an ``and'' conjunction), you can use
25834two separate conditions:
25835
25836 deny dnslists = blackholes.mail-abuse.org
25837 dnslists = dialups.mail-abuse.org
25838
25839If a DNS lookup times out or otherwise fails to give a decisive answer, Exim
25840behaves as if the host does not match the list item, that is, as if the DNS
25841record does not exist. If there are further items in the DNS list, they are
25842processed.
25843
25844This is usually the required action when %dnslists% is used with %deny% (which
25845is the most common usage), because it prevents a DNS failure from blocking
25846mail. However, you can change this behaviour by putting one of the following
25847special items in the list:
25848
25849cindex:[`+include_unknown`]
25850cindex:[`+exclude_unknown`]
25851cindex:[`+defer_unknown`]
25852&&&
25853`+include_unknown ` behave as if the item is on the list
25854`+exclude_unknown ` behave as if the item is not on the list (default)
25855`+defer_unknown ` give a temporary error
25856&&&
25857Each of these applies to any subsequent items on the list. For example:
25858
25859 deny dnslists = +defer_unknown : foo.bar.example
25860
25861
25862Testing the list of domains stops as soon as a match is found. If you want to
25863warn for one list and block for another, you can use two different statements:
25864
25865 deny dnslists = blackholes.mail-abuse.org
25866 warn message = X-Warn: sending host is on dialups list
25867 dnslists = dialups.mail-abuse.org
25868
25869
25870DNS list lookups are cached by Exim for the duration of the SMTP session,
25871so a lookup based on the IP address is done at most once for any incoming
25872connection. Exim does not share information between multiple incoming
25873connections (but your local name server cache should be active).
25874
25875
25876
25877Specifying the IP address for a DNS list lookup
25878~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25879cindex:[DNS list,keyed by explicit IP address]
25880By default, the IP address that is used in a DNS list lookup is the IP address
25881of the calling host. However, you can specify another IP address by listing it
25882after the domain name, introduced by a slash. For example:
25883
25884 deny dnslists = black.list.tls/192.168.1.2
25885
25886This feature is not very helpful with explicit IP addresses; it is intended for
25887use with IP addresses that are looked up, for example, the IP addresses of the
25888MX hosts or nameservers of an email sender address. For an example, see section
25889<<SECTmulkeyfor>> below.
25890
25891
25892
25893
25894DNS lists keyed on domain names
25895~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25896cindex:[DNS list,keyed by domain name]
25897There are some lists that are keyed on domain names rather than inverted IP
25898addresses (see for example the 'domain based zones' link at
25899*http://www.rfc-ignorant.org/[]*). No reversing of components is used with
25900these lists. You can change the name that is looked up in a DNS list by listing
25901it after the domain name, introduced by a slash. For example,
25902
25903 deny message = Sender's domain is listed at $dnslist_domain
25904 dnslists = dsn.rfc-ignorant.org/$sender_address_domain
25905
25906This particular example is useful only in ACLs that are obeyed after the
25907RCPT or DATA commands, when a sender address is available. If (for
25908example) the message's sender is 'user@tld.example' the name that is looked
25909up by this example is
25910
25911 tld.example.dsn.rfc-ignorant.org
25912
25913A single %dnslists% condition can contain entries for both names and IP
25914addresses. For example:
25915
25916....
25917deny dnslists = sbl.spamhaus.org : \
25918 dsn.rfc-ignorant.org/$sender_address_domain
25919....
25920
25921The first item checks the sending host's IP address; the second checks a domain
25922name. The whole condition is true if either of the DNS lookups succeeds.
25923
25924
25925
25926
25927[[SECTmulkeyfor]]
25928Multiple explicit keys for a DNS list
25929~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25930cindex:[DNS list,multiple keys for]
25931The syntax described above for looking up explicitly-defined values (either
25932names or IP addresses) in a DNS blacklist is a simplification. After the domain
25933name for the DNS list, what follows the slash can in fact be a list of items.
25934As with all lists in Exim, the default separator is a colon. However, because
25935this is a sublist within the list of DNS blacklist domains, it is necessary
25936either to double the separators like this:
25937
25938 dnslists = black.list.tld/name.1::name.2
25939
25940or to change the separator character, like this:
25941
25942 dnslists = black.list.tld/<;name.1;name.2
25943
25944If an item in the list is an IP address, it is inverted before the DNS
25945blacklist domain is appended. If it is not an IP address, no inversion
25946occurs. Consider this condition:
25947
25948 dnslists = black.list.tld/<;192.168.1.2;a.domain
25949
25950The DNS lookups that occur are:
25951
25952 2.1.168.192.black.list.tld
25953 a.domain.black.list.tld
25954
25955Once a DNS record has been found (that matches a specific IP return
25956address, if specified -- see section <<SECTaddmatcon>>), no further lookups are
25957done. If there is a temporary DNS error, the rest of the sublist of domains or
25958IP addresses is tried. A temporary error for the whole dnslists item occurs
25959only if no other DNS lookup in this sublist succeeds. In other words, a
25960successful lookup for any of the items in the sublist overrides a temporary
25961error for a previous item.
25962
25963The ability to supply a list of items after the slash is in some sense just a
25964syntactic convenience. These two examples have the same effect:
25965
25966 dnslists = black.list.tld/a.domain : black.list.tld/b.domain
25967 dnslists = black.list.tld/a.domain::b.domain
25968
25969However, when the data for the list is obtained from a lookup, the second form
25970is usually much more convenient. Consider this example:
25971
25972....
25973deny message = The mail servers for the domain \
25974 $sender_address_domain \
25975 are listed at $dnslist_domain ($dnslist_value); \
25976 see $dnslist_text.
25977 dnslists = sbl.spamhaus.org/<|${lookup dnsdb {>|a=<|\
25978 ${lookup dnsdb {>|mxh=\
25979 $sender_address_domain} }} }
25980....
25981
25982Note the use of `>|` in the dnsdb lookup to specify the separator for
25983multiple DNS records. The inner dnsdb lookup produces a list of MX hosts
25984and the outer dnsdb lookup finds the IP addresses for these hosts. The result
25985of expanding the condition might be something like this:
25986
25987 dnslists = sbl.spahmaus.org/<|192.168.2.3|192.168.5.6|...
25988
25989Thus, this example checks whether or not the IP addresses of the sender
25990domain's mail servers are on the Spamhaus black list.
25991
25992
25993
25994
25995
25996Data returned by DNS lists
25997~~~~~~~~~~~~~~~~~~~~~~~~~~
25998cindex:[DNS list,data returned from]
25999DNS lists are constructed using address records in the DNS. The original RBL
26000just used the address 127.0.0.1 on the right hand side of each record, but the
26001RBL+ list and some other lists use a number of values with different meanings.
26002The values used on the RBL+ list are:
26003
26004&&&
26005127.1.0.1 RBL
26006127.1.0.2 DUL
26007127.1.0.3 DUL and RBL
26008127.1.0.4 RSS
26009127.1.0.5 RSS and RBL
26010127.1.0.6 RSS and DUL
26011127.1.0.7 RSS and DUL and RBL
26012&&&
26013
26014Some DNS lists may return more than one address record.
26015
26016
26017Variables set from DNS lists
26018~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26019cindex:[DNS list,variables set from]
26020When an entry is found in a DNS list, the variable $dnslist_domain$
26021contains the name of the domain that matched, $dnslist_value$ contains the
26022data from the entry, and $dnslist_text$ contains the contents of any
26023associated TXT record. If more than one address record is returned by the DNS
26024lookup, all the IP addresses are included in $dnslist_value$, separated by
26025commas and spaces.
26026
26027You can use these variables in %message% or %log_message% modifiers --
26028although these appear before the condition in the ACL, they are not expanded
26029until after it has failed. For example:
26030
26031....
26032deny hosts = !+local_networks
26033 message = $sender_host_address is listed \
26034 at $dnslist_domain
26035 dnslists = rbl-plus.mail-abuse.example
26036....
26037
26038
26039
26040
26041[[SECTaddmatcon]]
26042Additional matching conditions for DNS lists
26043~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26044cindex:[DNS list,matching specific returned data]
26045You can add an equals sign and an IP address after a %dnslists% domain name in
26046order to restrict its action to DNS records with a matching right hand side.
26047For example,
26048
26049 deny dnslists = rblplus.mail-abuse.org=127.0.0.2
26050
26051rejects only those hosts that yield 127.0.0.2. Without this additional data,
26052any address record is considered to be a match. If more than one address record
26053is found on the list, they are all checked for a matching right-hand side.
26054
26055More than one IP address may be given for checking, using a comma as a
26056separator. These are alternatives -- if any one of them matches, the %dnslists%
26057condition is true. For example:
26058
26059 deny dnslists = a.b.c=127.0.0.2,127.0.0.3
26060
26061
26062If you want to specify a constraining address list and also specify names or IP
26063addresses to be looked up, the constraining address list must be specified
26064first. For example:
26065
26066....
26067deny dnslists = dsn.rfc-ignorant.org\
26068 =127.0.0.2/$sender_address_domain
26069....
26070
26071
26072If the character ``&'' is used instead of ``='', the comparison for each listed
26073IP address is done by a bitwise ``and'' instead of by an equality test. In
26074other words, the listed addresses are used as bit masks. The comparison is
26075true if all the bits in the mask are present in the address that is being
26076tested. For example:
26077
26078 dnslists = a.b.c&0.0.0.3
26079
26080matches if the address is 'x.x.x.'3, 'x.x.x.'7, 'x.x.x.'11, etc. If you
26081want to test whether one bit or another bit is present (as opposed to both
26082being present), you must use multiple values. For example:
26083
26084 dnslists = a.b.c&0.0.0.1,0.0.0.2
26085
26086matches if the final component of the address is an odd number or two times
26087an odd number.
26088
26089
26090
26091Negated DNS matching conditions
26092~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26093You can supply a negative list of IP addresses as part of a %dnslists%
26094condition. Whereas
26095
26096 deny dnslists = a.b.c=127.0.0.2,127.0.0.3
26097
26098means ``deny if the host is in the black list at the domain 'a.b.c' and the IP
26099address yielded by the list is either 127.0.0.2 or 127.0.0.3'',
26100
26101 deny dnslists = a.b.c!=127.0.0.2,127.0.0.3
26102
26103means ``deny if the host is in the black list at the domain 'a.b.c' and the IP
26104address yielded by the list is not 127.0.0.2 and not 127.0.0.3''. In other
26105words, the result of the test is inverted if an exclamation mark appears before
26106the ``='' (or the ``&'') sign.
26107
26108*Note*: this kind of negation is not the same as negation in a domain,
26109host, or address list (which is why the syntax is different).
26110
26111If you are using just one list, the negation syntax does not gain you much. The
26112previous example is precisely equivalent to
26113
26114 deny dnslists = a.b.c
26115 !dnslists = a.b.c=127.0.0.2,127.0.0.3
26116
26117However, if you are using multiple lists, the negation syntax is clearer.
26118Consider this example:
26119
26120....
26121deny dnslists = sbl.spamhaus.org : \
26122 list.dsbl.org : \
26123 dnsbl.njabl.org!=127.0.0.3 : \
26124 relays.ordb.org
26125....
26126
26127Using only positive lists, this would have to be:
26128
26129....
26130deny dnslists = sbl.spamhaus.org : \
26131 list.dsbl.org
26132deny dnslists = dnsbl.njabl.org
26133 !dnslists = dnsbl.njabl.org=127.0.0.3
26134deny dnslists = relays.ordb.org
26135....
26136
26137which is less clear, and harder to maintain.
26138
26139
26140
26141
26142[[SECTmorednslistslast]]
26143DNS lists and IPv6
26144~~~~~~~~~~~~~~~~~~
26145cindex:[IPv6,DNS black lists]
26146cindex:[DNS list,IPv6 usage]
26147If Exim is asked to do a dnslist lookup for an IPv6 address, it inverts it
26148nibble by nibble. For example, if the calling host's IP address is
261493ffe:ffff:836f:0a00:000a:0800:200a:c031, Exim might look up
26150
26151 1.3.0.c.a.0.0.2.0.0.8.0.a.0.0.0.0.0.a.0.f.6.3.8.
26152 f.f.f.f.e.f.f.3.blackholes.mail-abuse.org
26153
26154(split over two lines here to fit on the page). Unfortunately, some of the DNS
26155lists contain wildcard records, intended for IPv4, that interact badly with
26156IPv6. For example, the DNS entry
26157
26158 *.3.some.list.example. A 127.0.0.1
26159
26160is probably intended to put the entire 3.0.0.0/8 IPv4 network on the list.
26161Unfortunately, it also matches the entire 3::/4 IPv6 network.
26162
26163You can exclude IPv6 addresses from DNS lookups by making use of a suitable
26164%condition% condition, as in this example:
26165
26166 deny condition = ${if isip4{$sender_host_address}}
26167 dnslists = some.list.example
26168
26169
26170
26171
26172[[SECTaddressverification]]
26173Address verification
26174~~~~~~~~~~~~~~~~~~~~
26175cindex:[verifying address, options for]
26176cindex:[policy control,address verification]
26177Several of the %verify% conditions described in section <<SECTaclconditions>>
26178cause addresses to be verified. These conditions can be followed by options
26179that modify the verification process. The options are separated from the
26180keyword and from each other by slashes, and some of them contain parameters.
26181For example:
26182
26183 verify = sender/callout
26184 verify = recipient/defer_ok/callout=10s,defer_ok
26185
26186The first stage of address verification, which always happens, is to run the
26187address through the routers, in ``verify mode''. Routers can detect the
26188difference between verification and routing for delivery, and their actions can
26189be varied by a number of generic options such as %verify% and %verify_only%
26190(see chapter <<CHAProutergeneric>>). If routing fails, verification fails.
26191The available options are as follows:
26192
26193- If the %callout% option is specified, successful routing to one or more remote
26194hosts is followed by a ``callout'' to those hosts as an additional check.
26195Callouts and their sub-options are discussed in the next section.
26196
26197- If there is a defer error while doing verification routing, the ACL
26198normally returns ``defer''. However, if you include %defer_ok% in the options,
26199the condition is forced to be true instead. Note that this is a main
26200verification option as well as a suboption for callouts.
26201
26202- The %no_details% option is covered in section <<SECTsenaddver>>, which discusses
26203the reporting of sender address verification failures.
26204
26205cindex:[verifying address, differentiating failures]
26206After an address verification failure, $sender_verify_failure$ or
26207$recipient_verify_failure$ (as appropriate) contains one of the following
26208words:
26209
26210- %qualify%: The address was unqualified (no domain), and the message
26211was neither local nor came from an exempted host.
26212
26213- %route%: Routing failed.
26214
26215- %mail%: Routing succeeded, and a callout was attempted; rejection
26216occurred at or before the MAIL command (that is, on initial
26217connection, HELO, or MAIL).
26218
26219- %recipient%: The RCPT command in a callout was rejected.
26220
26221- %postmaster%: The postmaster check in a callout was rejected.
26222
26223
26224The main use of these variables is expected to be to distinguish between
26225rejections of MAIL and rejections of RCPT in callouts.
26226
26227
26228
26229
26230[[SECTcallver]]
26231Callout verification
26232~~~~~~~~~~~~~~~~~~~~
26233cindex:[verifying address, by callout]
26234cindex:[callout,verification]
26235cindex:[SMTP,callout verification]
26236For non-local addresses, routing verifies the domain, but is unable to do any
26237checking of the local part. There are situations where some means of verifying
26238the local part is desirable. One way this can be done is to make an SMTP
26239'callback' to the sending host (for a sender address) or a 'callforward' to
26240a subsequent host (for a recipient address), to see if the host accepts the
26241address. We use the term 'callout' to cover both cases. This facility should
26242be used with care, because it can add a lot of resource usage to the cost of
26243verifying an address. However, Exim does cache the results of callouts, which
26244helps to reduce the cost. Details of caching are in the next section.
26245
26246Recipient callouts are usually used only between hosts that are controlled by
26247the same administration. For example, a corporate gateway host could use
26248callouts to check for valid recipients on an internal mailserver.
26249A successful callout does not guarantee that a real delivery to the address
26250would succeed; on the other hand, a failing callout does guarantee that
26251a delivery would fail.
26252
26253If the %callout% option is present on a condition that verifies an address, a
26254second stage of verification occurs if the address is successfully routed to
26255one or more remote hosts. The usual case is routing by a ^dnslookup^ or a
26256^manualroute^ router, where the router specifies the hosts. However, if a
26257router that does not set up hosts routes to an ^smtp^ transport with a
26258%hosts% setting, the transport's hosts are used. If an ^smtp^ transport has
26259%hosts_override% set, its hosts are always used, whether or not the router
26260supplies a host list.
26261
26262The port that is used is taken from the transport, if it is specified and is a
26263remote transport. (For routers that do verification only, no transport need be
26264specified.) Otherwise, the default SMTP port is used. If a remote transport
26265specifies an outgoing interface, this is used; otherwise the interface is not
26266specified.
26267
26268For a sender callout check, Exim makes SMTP connections to the remote hosts, to
26269test whether a bounce message could be delivered to the sender address. The
26270following SMTP commands are sent:
26271
26272&&&
26273`HELO `<'smtp active host name'>
26274`MAIL FROM:<>`
26275`RCPT TO:`<'the address to be tested'>
26276`QUIT`
26277&&&
26278
26279LHLO is used instead of HELO if the transport's %protocol% option is
26280set to ``lmtp''.
26281
26282A recipient callout check is similar. By default, it also uses an empty address
26283for the sender. This default is chosen because most hosts do not make use of
26284the sender address when verifying a recipient. Using the same address means
26285that a single cache entry can be used for each recipient. Some sites, however,
26286do make use of the sender address when verifying. These are catered for by the
26287%use_sender% and %use_postmaster% options, described in the next section.
26288
26289If the response to the RCPT command is a 2'##xx' code, the verification
26290succeeds. If it is 5##'xx', the verification fails. For any other condition,
26291Exim tries the next host, if any. If there is a problem with all the remote
26292hosts, the ACL yields ``defer'', unless the %defer_ok% parameter of the
26293%callout% option is given, in which case the condition is forced to succeed.
26294
26295
26296
26297
26298
26299[[CALLaddparcall]]
26300Additional parameters for callouts
26301~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26302cindex:[callout,additional parameters for]
26303The %callout% option can be followed by an equals sign and a number of optional
26304parameters, separated by commas. For example:
26305
26306 verify = recipient/callout=10s,defer_ok
26307
26308The old syntax, which had %callout_defer_ok% and %check_postmaster% as
26309separate verify options, is retained for backwards compatibility, but is now
26310deprecated. The additional parameters for %callout% are as follows:
26311
26312
26313<'a~time~interval'>::
26314cindex:[callout timeout, specifying]
26315This specifies the timeout that applies for the callout attempt to each host.
26316For example:
26317
26318 verify = sender/callout=5s
26319+
26320The default is 30 seconds. The timeout is used for each response from the
26321remote host. It is also used for the intial connection, unless overridden by
26322the %connect% parameter.
26323
26324
26325*connect~=~*<'time~interval'>::
26326cindex:[callout connection timeout, specifying]
26327This parameter makes it possible to set a different (usually smaller) timeout
26328for making the SMTP connection. For example:
26329
26330 verify = sender/callout=5s,connect=1s
26331+
26332If not specified, this timeout defaults to the general timeout value.
26333
26334*defer_ok*::
26335cindex:[callout defer, action on]
26336When this parameter is present, failure to contact any host, or any other kind
26337of temporary error, is treated as success by the ACL. However, the cache is not
26338updated in this circumstance.
26339
26340*mailfrom~=~*<'email~address'>::
26341cindex:[callout,sender when verifying header]
26342When verifying addresses in header lines using the %header_sender% verification
26343option, Exim behaves by default as if the addresses are envelope sender
26344addresses from a message. Callout verification therefore tests to see whether a
26345bounce message could be delivered, by using an empty address in the MAIL
26346command. However, it is arguable that these addresses might never be used as
26347envelope senders, and could therefore justifiably reject bounce messages (empty
26348senders). The %mailfrom% callout parameter allows you to specify what address
26349to use in the MAIL command. For example:
26350
26351 require verify = header_sender/callout=mailfrom=abcd@x.y.z
26352+
26353This parameter is available only for the %header_sender% verification option.
26354
26355
26356*maxwait~=~*<'time~interval'>::
26357cindex:[callout overall timeout, specifying]
26358This parameter sets an overall timeout for performing a callout verification.
26359For example:
26360
26361 verify = sender/callout=5s,maxwait=30s
26362+
26363This timeout defaults to four times the callout timeout for individual SMTP
26364commands. The overall timeout applies when there is more than one host that can
26365be tried. The timeout is checked before trying the next host. This prevents
26366very long delays if there are a large number of hosts and all are timing out
26367(for example, when network connections are timing out).
26368
26369
26370*no_cache*::
26371cindex:[callout cache, suppressing]
26372cindex:[caching callout, suppressing]
26373When this parameter is given, the callout cache is neither read nor updated.
26374
26375*postmaster*::
26376cindex:[callout,postmaster; checking]
26377When this parameter is set, a sucessful callout check is followed by a similar
26378check for the local part 'postmaster' at the same domain. If this address is
26379rejected, the callout fails. The result of the postmaster check is recorded in
26380a cache record; if it is a failure, this is used to fail subsequent callouts
26381for the domain without a connection being made, until the cache record expires.
26382
26383*postmaster_mailfrom~=~*<'email~address'>::
26384The postmaster check uses an empty sender in the MAIL command by default.
26385You can use this parameter to do a postmaster check using a different address.
26386For example:
26387
26388 require verify = sender/callout=postmaster_mailfrom=abc@x.y.z
26389+
26390If both %postmaster% and %postmaster_mailfrom% are present, the rightmost one
26391overrides. The %postmaster% parameter is equivalent to this example:
26392
26393 require verify = sender/callout=postmaster_mailfrom=
26394+
26395*Warning*: The caching arrangements for postmaster checking do not take
26396account of the sender address. It is assumed that either the empty address or
26397a fixed non-empty address will be used. All that Exim remembers is that the
26398postmaster check for the domain succeeded or failed.
26399
26400
26401*random*::
26402cindex:[callout,``random'' check]
26403When this parameter is set, before doing the normal callout check, Exim does a
26404check for a ``random'' local part at the same domain. The local part is not
26405really random -- it is defined by the expansion of the option
26406%callout_random_local_part%, which defaults to
26407
26408 $primary_host_name-$tod_epoch-testing
26409+
26410The idea here is to try to determine whether the remote host accepts all local
26411parts without checking. If it does, there is no point in doing callouts for
26412specific local parts. If the ``random'' check succeeds, the result is saved in
26413a cache record, and used to force the current and subsequent callout checks to
26414succeed without a connection being made, until the cache record expires.
26415
26416*use_postmaster*::
26417cindex:[callout,sender for recipient check]
26418This parameter applies to recipient callouts only. For example:
26419
26420 deny !verify = recipient/callout=use_postmaster
26421+
26422It causes a non-empty postmaster address to be used in the MAIL command
26423when performing the callout. The local part of the address is `postmaster`
26424and the domain is the contents of $qualify_domain$.
26425
26426*use_sender*::
26427This option applies to recipient callouts only. For example:
26428
26429 require verify = recipient/callout=use_sender
26430+
26431It causes the message's actual sender address to be used in the MAIL
26432command when performing the callout, instead of an empty address. There is no
26433need to use this option unless you know that the called hosts make use of the
26434sender when checking recipients. If used indiscriminately, it reduces the
26435usefulness of callout caching.
26436
26437///
26438End of list
26439///
26440
26441If you use any of the parameters that set a non-empty sender for the MAIL
26442command (%mailfrom%, %postmaster_mailfrom%, %use_postmaster%, or
26443%use_sender%), you should think about possible loops. Recipient checking is
26444usually done between two hosts that are under the same management, and the host
26445that receives the callouts is not normally configured to do callouts itself.
26446Therefore, it is normally safe to use %use_postmaster% or %use_sender% in
26447these circumstances.
26448
26449However, if you use a non-empty sender address for a callout to an arbitrary
26450host, there is the likelihood that the remote host will itself initiate a
26451callout check back to your host. As it is checking what appears to be a message
26452sender, it is likely to use an empty address in MAIL, thus avoiding a
26453callout loop. However, to be on the safe side it would be best to set up your
26454own ACLs so that they do not do sender verification checks when the recipient
26455is the address you use for header sender or postmaster callout checking.
26456
26457Another issue to think about when using non-empty senders for callouts is
26458caching. When you set %mailfrom% or %use_sender%, the cache record is keyed by
26459the sender/recipient combination; thus, for any given recipient, many more
26460actual callouts are performed than when an empty sender or postmaster is used.
26461
26462
26463
26464
26465[[SECTcallvercache]]
26466Callout caching
26467~~~~~~~~~~~~~~~
26468cindex:[hints database,callout cache]
26469cindex:[callout,caching]
26470cindex:[caching,callout]
26471Exim caches the results of callouts in order to reduce the amount of resources
26472used, unless you specify the %no_cache% parameter with the %callout% option.
26473A hints database called ``callout'' is used for the cache. Two different record
26474types are used: one records the result of a callout check for a specific
26475address, and the other records information that applies to the entire domain
26476(for example, that it accepts the local part 'postmaster').
26477
26478When an original callout fails, a detailed SMTP error message is given about
26479the failure. However, for subsequent failures use the cache data, this message
26480is not available.
26481
26482The expiry times for negative and positive address cache records are
26483independent, and can be set by the global options %callout_negative_expire%
26484(default 2h) and %callout_positive_expire% (default 24h), respectively.
26485
26486If a host gives a negative response to an SMTP connection, or rejects any
26487commands up to and including
26488
26489 MAIL FROM:<>
26490
26491(but not including the MAIL command with a non-empty address),
26492any callout attempt is bound to fail. Exim remembers such failures in a
26493domain cache record, which it uses to fail callouts for the domain without
26494making new connections, until the domain record times out. There are two
26495separate expiry times for domain cache records:
26496%callout_domain_negative_expire% (default 3h) and
26497%callout_domain_positive_expire% (default 7d).
26498
26499Domain records expire when the negative expiry time is reached if callouts
26500cannot be made for the domain, or if the postmaster check failed.
26501Otherwise, they expire when the positive expiry time is reached. This
26502ensures that, for example, a host that stops accepting ``random'' local parts
26503will eventually be noticed.
26504
26505The callout caching mechanism is based on the domain of the address that is
26506being tested. If the domain routes to several hosts, it is assumed that their
26507behaviour will be the same.
26508
26509
26510
26511[[SECTsenaddver]]
26512Sender address verification reporting
26513~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26514cindex:[verifying,suppressing error details]
26515When sender verification fails in an ACL, the details of the failure are
26516given as additional output lines before the 550 response to the relevant
26517SMTP command (RCPT or DATA). For example, if sender callout is in use,
26518you might see:
26519
26520 MAIL FROM:<xyz@abc.example>
26521 250 OK
26522 RCPT TO:<pqr@def.example>
26523 550-Verification failed for <xyz@abc.example>
26524 550-Called: 192.168.34.43
26525 550-Sent: RCPT TO:<xyz@abc.example>
26526 550-Response: 550 Unknown local part xyz in <xyz@abc.example>
26527 550 Sender verification failed
26528
26529If more than one RCPT command fails in the same way, the details are given
26530only for the first of them. However, some administrators do not want to send
26531out this much information. You can suppress the details by adding
26532``/no_details'' to the ACL statement that requests sender verification. For
26533example:
26534
26535 verify = sender/no_details
26536
26537
26538
26539
26540Redirection while verifying
26541~~~~~~~~~~~~~~~~~~~~~~~~~~~
26542cindex:[verifying,redirection while]
26543cindex:[address redirection,while verifying]
26544A dilemma arises when a local address is redirected by aliasing or forwarding
26545during verification: should the generated addresses themselves be verified,
26546or should the successful expansion of the original address be enough to verify
26547it? Exim takes the following pragmatic approach:
26548
26549- When an incoming address is redirected to just one child address, verification
26550continues with the child address, and if that fails to verify, the original
26551verification also fails.
26552
26553- When an incoming address is redirected to more than one child address,
26554verification does not continue. A success result is returned.
26555
26556This seems the most reasonable behaviour for the common use of aliasing as a
26557way of redirecting different local parts to the same mailbox. It means, for
26558example, that a pair of alias entries of the form
26559
26560 A.Wol: aw123
26561 aw123: :fail: Gone away, no forwarding address
26562
26563work as expected, with both local parts causing verification failure. When a
26564redirection generates more than one address, the behaviour is more like a
26565mailing list, where the existence of the alias itself is sufficient for
26566verification to succeed.
26567
26568
26569
26570[[SECTrelaycontrol]]
26571Using an ACL to control relaying
26572~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26573cindex:[{ACL},relay control]
26574cindex:[relaying,control by ACL]
26575cindex:[policy control,relay control]
26576An MTA is said to 'relay' a message if it receives it from some host and
26577delivers it directly to another host as a result of a remote address contained
26578within it. Redirecting a local address via an alias or forward file and then
26579passing the message on to another host is not relaying,
26580
26581cindex:[``percent hack'']
26582but a redirection as a result of the ``percent hack'' is.
26583
26584Two kinds of relaying exist, which are termed ``incoming'' and ``outgoing''.
26585A host which is acting as a gateway or an MX backup is concerned with incoming
26586relaying from arbitrary hosts to a specific set of domains. On the other hand,
26587a host which is acting as a smart host for a number of clients is concerned
26588with outgoing relaying from those clients to the Internet at large. Often the
26589same host is fulfilling both functions,
26590///
26591as illustrated in the diagram below,
26592///
26593but in principle these two kinds of relaying are entirely independent. What is
26594not wanted is the transmission of mail from arbitrary remote hosts through your
26595system to arbitrary domains.
26596
26597
26598You can implement relay control by means of suitable statements in the ACL that
26599runs for each RCPT command. For convenience, it is often easiest to use
26600Exim's named list facility to define the domains and hosts involved. For
26601example, suppose you want to do the following:
26602
26603- Deliver a number of domains to mailboxes on the local host (or process them
26604locally in some other way). Let's say these are 'my.dom1.example' and
26605'my.dom2.example'.
26606
26607- Relay mail for a number of other domains for which you are the secondary MX.
26608These might be 'friend1.example' and 'friend2.example'.
26609
26610- Relay mail from the hosts on your local LAN, to whatever domains are involved.
26611Suppose your LAN is 192.168.45.0/24.
26612
26613
26614In the main part of the configuration, you put the following definitions:
26615
26616 domainlist local_domains = my.dom1.example : my.dom2.example
26617 domainlist relay_domains = friend1.example : friend2.example
26618 hostlist relay_hosts = 192.168.45.0/24
26619
26620Now you can use these definitions in the ACL that is run for every RCPT
26621command:
26622
26623 acl_check_rcpt:
26624 accept domains = +local_domains : +relay_domains
26625 accept hosts = +relay_hosts
26626
26627The first statement accepts any RCPT command that contains an address in
26628the local or relay domains. For any other domain, control passes to the second
26629statement, which accepts the command only if it comes from one of the relay
26630hosts. In practice, you will probably want to make your ACL more sophisticated
26631than this, for example, by including sender and recipient verification. The
26632default configuration includes a more comprehensive example, which is described
26633in chapter <<CHAPdefconfil>>.
26634
26635
26636
26637[[SECTcheralcon]]
26638Checking a relay configuration
26639~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26640cindex:[relaying,checking control of]
26641You can check the relay characteristics of your configuration in the same way
26642that you can test any ACL behaviour for an incoming SMTP connection, by using
26643the %-bh% option to run a fake SMTP session with which you interact.
26644
26645For specifically testing for unwanted relaying, the host
26646'relay-test.mail-abuse.org' provides a useful service. If you telnet to this
26647host from the host on which Exim is running, using the normal telnet port, you
26648will see a normal telnet connection message and then quite a long delay. Be
26649patient. The remote host is making an SMTP connection back to your host, and
26650trying a number of common probes to test for open relay vulnerability. The
26651results of the tests will eventually appear on your terminal.
26652
26653
26654
26655
26656////////////////////////////////////////////////////////////////////////////
26657////////////////////////////////////////////////////////////////////////////
26658
26659[[CHAPexiscan]]
26660Content scanning
26661----------------
26662cindex:[content scanning]
26663The content-scanning extension of Exim, formerly known as ``exiscan'', was
26664originally implemented as a patch by Tom Kistner. The code was integrated into
26665the main source for Exim release 4.50, and Tom continues to maintain it. Most
26666of the wording of this chapter is taken from Tom's specification.
26667
26668If you want to include the content-scanning features when you compile Exim, you
26669need to arrange for WITH_CONTENT_SCAN to be defined in your
26670_Local/Makefile_. When you do that, the Exim binary is built with:
26671
26672- An additional ACL (%acl_smtp_mime%) that is run for all MIME parts.
26673
26674- Additional ACL conditions and modifiers: %decode%, %malware%, %mime_regex%,
26675%regex%, and %spam%. These can be used in the ACL that is run at the end of
26676message reception (the %acl_smtp_data% ACL).
26677
26678- An additional control feature (``no_mbox_unspool'') that saves spooled copies
26679of messages, or parts of messages, for debugging purposes.
26680
26681- Additional expansion variables that are set in the new ACL and by the new
26682conditions.
26683
26684- Two new main configuration options: %av_scanner% and %spamd_address%.
26685
26686There is another content-scanning configuration option for _Local/Makefile_,
26687called WITH_OLD_DEMIME. If this is set, the old, deprecated %demime% ACL
26688condition is compiled, in addition to all the other content-scanning features.
26689
26690Content-scanning is continually evolving, and new features are still being
26691added. While such features are still unstable and liable to incompatible
26692changes, they are made available in Exim by setting options whose names begin
26693EXPERIMENTAL_ in _Local/Makefile_. Such features are not documented in
26694this manual. You can find out about them by reading the file called
26695_doc/experimental.txt_.
26696
26697All the content-scanning facilites work on a MBOX copy of the message that is
26698temporarily created in a file called:
26699
26700 <spool_directory>/scan/<message_id>/<message_id>.eml
26701
26702The _.eml_ extension is a friendly hint to virus scanners that they can
26703expect an MBOX-like structure inside that file. The file is created when the
26704first content scanning facility is called. Subsequent calls to content
26705scanning conditions open the same file again. The directory is recursively
26706removed when the %acl_smtp_data% ACL has finished running, unless
26707
26708 control = no_mbox_unspool
26709
26710has been encountered. When the MIME ACL decodes files, they are put into the
26711same directory by default.
26712
26713
26714
26715[[SECTscanvirus]]
26716Scanning for viruses
26717~~~~~~~~~~~~~~~~~~~~
26718cindex:[virus scanning]
26719cindex:[content scanning,for viruses]
26720cindex:[content scanning,the %malware% condition]
26721The %malware% ACL condition lets you connect virus scanner software to Exim. It
26722supports a ``generic'' interface to scanners called via the shell, and
26723specialized interfaces for ``daemon'' type virus scanners, which are resident in
26724memory and thus are much faster.
26725
26726cindex:[%av_scanner%]
26727You can set the %av_scanner% option in first part of the Exim configuration
26728file to specify which scanner to use, together with any additional options that
26729are needed. The basic syntax is as follows:
26730
26731 av_scanner = <scanner-type>:<option1>:<option2>:[...]
26732
26733If you do not set %av_scanner%, it defaults to
26734
26735 av_scanner = sophie:/var/run/sophie
26736
26737If the value of %av_scanner% starts with dollar character, it is expanded
26738before use.
26739
26740The following scanner types are supported in this release:
26741
26742%aveserver%::
26743cindex:[virus scanners,Kaspersky]
26744This is the scanner daemon of Kaspersky Version 5. You can get a trial version
26745at *http://www.kaspersky.com[]*. This scanner type takes one option, which is
26746the path to the daemon's UNIX socket. The default is shown in this example:
26747
26748 av_scanner = aveserver:/var/run/aveserver
26749
26750%clamd%::
26751cindex:[virus scanners,clamd]
26752This daemon-type scanner is GPL and free. You can get it at
26753*http://www.clamav.net/[]*. Clamd does not seem to unpack MIME containers, so
26754it is recommended to unpack MIME attachments in the MIME ACL. It takes one
26755option: either the path and name of a UNIX socket file, or a hostname or IP
26756number, and a port, separated by space, as in the second of these examples:
26757
26758 av_scanner = clamd:/opt/clamd/socket
26759 av_scanner = clamd:192.168.2.100 1234
26760+
26761If the option is unset, the default is _/tmp/clamd_. Thanks to David Saez for
26762contributing the code for this scanner.
26763
26764%cmdline%::
26765cindex:[virus scanners,command line interface]
26766This is the keyword for the generic command line scanner interface. It can be
26767used to attach virus scanners that are invoked from the shell. This scanner
26768type takes 3 mandatory options:
26769+
26770--
26771. The full path and name of the scanner binary, with all command line options,
26772and a placeholder (%s) for the directory to scan.
26773
26774. A regular expression to match against the STDOUT and STDERR output of the
26775virus scanner. If the expression matches, a virus was found. You must make
26776absolutely sure that this expression matches on ``virus found''. This is called
26777the ``trigger'' expression.
26778
26779. Another regular expression, containing exactly one pair of parentheses, to
26780match the name of the virus found in the scanners output. This is called the
26781``name'' expression.
26782--
26783+
26784For example, Sophos Sweep reports a virus on a line like this:
26785
26786 Virus 'W32/Magistr-B' found in file ./those.bat
26787+
26788For the trigger expression, we can just match the word ``found''. For the name
26789expression, we want to extract the W32/Magistr-B string, so we can match for
26790the single quotes left and right of it. Altogether, this makes the
26791configuration setting:
26792+
26793....
26794av_scanner = cmdline:\
26795 /path/to/sweep -all -rec -archive %s:\
26796 found:'(.+)'
26797....
26798
26799
26800%drweb%::
26801cindex:[virus scanners,DrWeb]
26802The DrWeb daemon scanner (*http://www.sald.com/[]*) interface takes one
26803argument, either a full path to a UNIX socket, or an IP address and port
26804separated by whitespace, as in these examples:
26805
26806 av_scanner = drweb:/var/run/drwebd.sock
26807 av_scanner = drweb:192.168.2.20 31337
26808+
26809If you omit the argument, the default path _/usr/local/drweb/run/drwebd.sock_
26810is used. Thanks to Alex Miller for contributing the code for this scanner.
26811
26812%fsecure%::
26813cindex:[virus scanners,F-Secure]
26814The F-Secure daemon scanner (*http://www.f-secure.com[]*) takes one argument
26815which is the path to a UNIX socket. For example:
26816
26817 av_scanner = fsecure:/path/to/.fsav
26818+
26819If no argument is given, the default is _/var/run/.fsav_. Thanks to Johan
26820Thelmen for contributing the code for this scanner.
26821
26822%kavdaemon%::
26823cindex:[virus scanners,Kaspersky]
26824This is the scanner daemon of Kaspersky Version 4. This version of the
26825Kaspersky scanner is outdated. Please upgrade (see %aveserver% above). This
26826scanner type takes one option, which is the path to the daemon's UNIX socket.
26827For example:
26828
26829 av_scanner = kavdaemon:/opt/AVP/AvpCtl
26830+
26831The default path is _/var/run/AvpCtl_.
26832
26833%mksd%::
26834cindex:[virus scanners,mksd]
26835This is a daemon type scanner that is aimed mainly at Polish users, though some
26836parts of documentation are now available in English. You can get it at
26837*http://linux.mks.com.pl/[]*. The only option for this scanner type is the
26838maximum number of processes used simultaneously to scan the attachments,
26839provided that the demime facility is employed and also provided that mksd has
26840been run with at least the same number of child processes. For example:
26841
26842 av_scanner = mksd:2
26843+
26844You can safely omit this option (the default value is 1).
26845
26846%sophie%::
26847cindex:[virus scanners,Sophos and Sophie]
26848Sophie is a daemon that uses Sophos' %libsavi% library to scan for viruses. You
26849can get Sophie at *http://www.vanja.com/tools/sophie/[]*. The only option for
26850this scanner type is the path to the UNIX socket that Sophie uses for client
26851communication. For example:
26852
26853 av_scanner = sophie:/tmp/sophie
26854+
26855The default path is _/var/run/sophie_, so if you are using this, you can omit
26856the option.
26857
26858///
26859End of list
26860///
26861
26862When %av_scanner% is correctly set, you can use the %malware% condition in the
26863DATA ACL. The %av_scanner% option is expanded each time %malware% is
26864called. This makes it possible to use different scanners. See further below for
26865an example. The %malware% condition caches its results, so when you use it
26866multiple times for the same message, the actual scanning process is only
26867carried out once. However, using expandable items in %av_scanner% disables
26868this caching, in which case each use of the %malware% condition causes a new
26869scan of the message.
26870
26871The %malware% condition takes a right-hand argument that is expanded before
26872use. It can then be one of
26873
26874- ``true'', ``\*'', or ``1'', in which case the message is scanned for viruses.
26875The condition succeeds if a virus was found, and fail otherwise. This is the
26876recommended usage.
26877
26878- ``false'' or ``0'', in which case no scanning is done and the condition fails
26879immediately.
26880
26881- A regular expression, in which case the message is scanned for viruses. The
26882condition succeeds if a virus is found and its name matches the regular
26883expression. This allows you to take special actions on certain types of virus.
26884
26885You can append `/defer_ok` to the %malware% condition to accept messages even
26886if there is a problem with the virus scanner.
26887
26888cindex:[$malware_name$]
26889When a virus is found, the condition sets up an expansion variable called
26890$malware_name$ that contains the name of the virus. You can use it in a
26891%message% modifier that specifies the error returned to the sender, and/or in
26892logging data.
26893
26894If your virus scanner cannot unpack MIME and TNEF containers itself, you should
26895use the %demime% condition (see section <<SECTdemimecond>>) before the %malware%
26896condition.
26897
26898Here is a very simple scanning example:
26899
26900 deny message = This message contains malware ($malware_name)
26901 demime = *
26902 malware = *
26903
26904The next example accepts messages when there is a problem with the scanner:
26905
26906 deny message = This message contains malware ($malware_name)
26907 demime = *
26908 malware = */defer_ok
26909
26910The next example shows how to use an ACL variable to scan with both sophie and
26911aveserver. It assumes you have set:
26912
26913 av_scanner = $acl_m0
26914
26915in the main Exim configuration.
26916
26917 deny message = This message contains malware ($malware_name)
26918 set acl_m0 = sophie
26919 malware = *
26920
26921 deny message = This message contains malware ($malware_name)
26922 set acl_m0 = aveserver
26923 malware = *
26924
26925
26926
26927
26928[[SECTscanspamass]]
26929Scanning with SpamAssassin
26930~~~~~~~~~~~~~~~~~~~~~~~~~~
26931cindex:[content scanning,for spam]
26932cindex:[spam scanning]
26933cindex:[SpamAssassin, scanning with]
26934The %spam% ACL condition calls SpamAssassin's %spamd% daemon to get a spam
26935score and a report for the message. You can get SpamAssassin at
26936*http://www.spamassassin.org[]*, or, if you have a working Perl installation,
26937you can use CPAN by running:
26938
26939 perl -MCPAN -e 'install Mail::SpamAssassin'
26940
26941SpamAssassin has its own set of configuration files. Please review its
26942documentation to see how you can tweak it. The default installation should work
26943nicely, however.
26944
26945cindex:[%spamd_address%]
26946After having installed and configured SpamAssassin, start the %spamd% daemon.
26947By default, it listens on 127.0.0.1, TCP port 783. If you use another host or
26948port for %spamd%, you must set the %spamd_address% option in the global part
26949of the Exim configuration as follows (example):
26950
26951 spamd_address = 192.168.99.45 387
26952
26953You do not need to set this option if you use the default. As of version 2.60,
26954%spamd% also supports communication over UNIX sockets. If you want to use
26955these, supply %spamd_address% with an absolute file name instead of a
26956address/port pair:
26957
26958 spamd_address = /var/run/spamd_socket
26959
26960
26961You can have multiple %spamd% servers to improve scalability. These can reside
26962on other hardware reachable over the network. To specify multiple %spamd%
26963servers, put multiple address/port pairs in the %spamd_address% option,
26964separated with colons:
26965
26966....
26967spamd_address = 192.168.2.10 783 : \
26968 192.168.2.11 783 : \
26969 192.168.2.12 783
26970....
26971
26972Up to 32 %spamd% servers are supported. The servers are
26973queried in a random fashion. When a server fails to respond
26974to the connection attempt, all other servers are tried
26975until one succeeds. If no server responds, the %spam%
26976condition defers.
26977
26978*Warning*: It is not possible to use the UNIX socket connection method with
26979multiple %spamd% servers.
26980
26981Here is a simple example of the use of the %spam% condition in a DATA ACL:
26982
26983 deny message = This message was classified as SPAM
26984 spam = joe
26985
26986The right-hand side of the %spam% condition specifies the username that
26987SpamAssassin should scan for. If you do not want to scan for a particular user,
26988but rather use the SpamAssassin system-wide default profile, you can scan for
26989an unknown user, or simply use ``nobody''. However, you must put something on the
26990right-hand side.
26991
26992The username allows you to use per-domain or per-user antispam profiles. The
26993right-hand side is expanded before being used, so you can put lookups or
26994conditions there. When the right-hand side evaluates to ``0'' or ``false'', no
26995scanning is done and the condition fails immediately.
26996
26997The %spam% condition returns true if the threshold specified in the user's
26998SpamAssassin profile has been matched or exceeded. If you want to use the
26999%spam% condition for its side effects (see the variables below), you can make
27000it always return ``true'' by appending `:true` to the username.
27001
27002cindex:[spam scanning,returned variables]
27003When the %spam% condition is run, it sets up the following expansion
27004variables:
27005
27006$spam_score$::
27007The spam score of the message, for example ``3.4'' or ``30.5''. This is useful
27008for inclusion in log or reject messages.
27009
27010$spam_score_int$::
27011The spam score of the message, multiplied by ten, as an integer value. For
27012example ``34'' or ``305''. This is useful for numeric comparisons in
27013conditions. This variable is special; it is saved with the message, and written
27014to Exim's spool file. This means that it can be used during the whole life of
27015the message on your Exim system, in particular, in routers or transports during
27016the later delivery phase.
27017
27018$spam_bar$::
27019A string consisting of a number of ``+'' or ``-'' characters, representing the
27020integer part of the spam score value. A spam score of 4.4 would have a
27021$spam_bar$ value of ``++++''. This is useful for inclusion in warning headers,
27022since MUAs can match on such strings.
27023
27024$spam_report$::
27025A multiline text table, containing the full SpamAssassin report for the
27026message. Useful for inclusion in headers or reject messages.
27027
27028///
27029End of list
27030///
27031
27032The %spam% condition caches its results. If you call it again with the same
27033user name, it does not scan again, but rather returns the same values as
27034before.
27035
27036The %spam% condition returns DEFER if there is any error while running the
27037message through SpamAssassin. If you want to treat DEFER as FAIL (to pass on to
27038the next ACL statement block), append `/defer_ok` to the right-hand side of
27039the spam condition, like this:
27040
27041 deny message = This message was classified as SPAM
27042 spam = joe/defer_ok
27043
27044This causes messages to be accepted even if there is a
27045problem with %spamd%.
27046
27047Here is a longer, commented example of the use of the %spam%
27048condition:
27049
27050 # put headers in all messages (no matter if spam or not)
27051 warn message = X-Spam-Score: $spam_score ($spam_bar)
27052 spam = nobody:true
27053 warn message = X-Spam-Report: $spam_report
27054 spam = nobody:true
27055
27056 # add second subject line with *SPAM* marker when message
27057 # is over threshold
27058 warn message = Subject: *SPAM* $h_Subject:
27059 spam = nobody
27060
27061 # reject spam at high scores (> 12)
27062 deny message = This message scored $spam_score spam points.
27063 spam = nobody:true
27064 condition = ${if >{$spam_score_int}{120}{1}{0}}
27065
27066
27067
27068
27069
27070[[SECTscanmimepart]]
27071Scanning MIME parts
27072~~~~~~~~~~~~~~~~~~~
27073cindex:[content scanning,MIME parts]
27074cindex:[MIME content scanning]
27075cindex:[%acl_smtp_mime%]
27076The %acl_smtp_mime% global option defines an ACL that is called once for each
27077MIME part of a message, including multipart types, in the sequence of their
27078position in the message.
27079
27080This ACL is called (possibly many times) just before the %acl_smtp_data% ACL,
27081but only if the message has a 'MIME-Version:' header. When a call to the MIME
27082ACL does not yield ``accept'', ACL processing is aborted and the appropriate
27083result code is sent to the remote client. The %acl_smtp_data% ACL is not
27084called in this circumstance.
27085
27086At the start of the MIME ACL, a number of variables are set from the header
27087information for the relevant MIME part. These are described below. The contents
27088of the MIME part are not by default decoded into a disk file except for MIME
27089parts whose content-type is ``message/rfc822''. If you want to decode a MIME part
27090into a disk file, you can use the %decode% modifier. The general syntax is:
27091
27092 decode = [/<path>/]<filename>
27093
27094The right hand side is expanded before use. After expansion,
27095the value can be:
27096
27097. ``0'' or ``false'', in which case no decoding is done.
27098
27099. The string ``default''. In that case, the file is put in the temporary
27100``default'' directory <'spool_directory'>_/scan/_<'message_id'>_/_ with a
27101sequential file name consisting of the message id and a sequence number. The
27102full path and name is available in $mime_decoded_filename$ after decoding.
27103
27104. A full path name starting with a slash. If the full name is an existing
27105directory, it is used as a replacement for the default directory. The filename
27106is then sequentially assigned. If the path does not exist, it is used as
27107the full path and file name.
27108
27109. If the string does not start with a slash, it is used as the
27110filename, and the default path is then used.
27111
27112///
27113End of list
27114///
27115
27116You can easily decode a file with its original, proposed filename using
27117
27118 decode = $mime_filename
27119
27120However, you should keep in mind that $mime_filename$ might contain
27121anything. If you place files outside of the default path, they are not
27122automatically unlinked.
27123
27124For RFC822 attachments (these are messages attached to messages, with a
27125content-type of ``message/rfc822''), the ACL is called again in the same manner
27126as for the primary message, only that the $mime_is_rfc822$ expansion
27127variable is set (see below). Attached messages are always decoded to disk
27128before being checked, and the files are unlinked once the check is done.
27129
27130The MIME ACL supports the %regex% and %mime_regex% conditions. These can be
27131used to match regular expressions against raw and decoded MIME parts,
27132respectively. They are described in section <<SECTscanregex>>.
27133
27134cindex:[MIME content scanning,returned variables]
27135The following list describes all expansion variables that are
27136available in the MIME ACL:
27137
27138$mime_boundary$::
27139If the current part is a multipart (see $mime_is_multipart$) below, it should
27140have a boundary string, which is stored in this variable. If the current part
27141has no boundary parameter in the 'Content-Type:' header, this variable contains
27142the empty string.
27143
27144$mime_charset$::
27145This variable contains the character set identifier, if one was found in the
27146'Content-Type:' header. Examples for charset identifiers are:
27147
27148 us-ascii
27149 gb2312 (Chinese)
27150 iso-8859-1
27151+
27152Please note that this value is not normalized, so you should do matches
27153case-insensitively.
27154
27155$mime_content_description$::
27156This variable contains the normalized content of the 'Content-Description:'
27157header. It can contain a human-readable description of the parts content. Some
27158implementations repeat the filename for attachments here, but they are usually
27159only used for display purposes.
27160
27161$mime_content_disposition$::
27162This variable contains the normalized content of the 'Content-Disposition:'
27163header. You can expect strings like ``attachment'' or ``inline'' here.
27164
27165$mime_content_id$::
27166This variable contains the normalized content of the 'Content-ID:' header.
27167This is a unique ID that can be used to reference a part from another part.
27168
27169$mime_content_size$::
27170This variable is set only after the %decode% modifier (see above) has been
27171successfully run. It contains the size of the decoded part in kilobytes. The
27172size is always rounded up to full kilobytes, so only a completely empty part
27173has a $mime_content_size$ of zero.
27174
27175$mime_content_transfer_encoding$::
27176This variable contains the normalized content of the
27177'Content-transfer-encoding:' header. This is a symbolic name for an encoding
27178type. Typical values are ``base64'' and ``quoted-printable''.
27179
27180$mime_content_type$::
27181If the MIME part has a 'Content-Type:' header, this variable contains its
27182value, lowercased, and without any options (like ``name'' or ``charset''). Here
27183are some examples of popular MIME types, as they may appear in this variable:
27184
27185 text/plain
27186 text/html
27187 application/octet-stream
27188 image/jpeg
27189 audio/midi
27190+
27191If the MIME part has no 'Content-Type:' header, this variable contains the
27192empty string.
27193
27194$mime_decoded_filename$::
27195This variable is set only after the %decode% modifier (see above) has been
27196successfully run. It contains the full path and file name of the file
27197containing the decoded data.
27198
27199$mime_filename$::
27200This is perhaps the most important of the MIME variables. It contains a
27201proposed filename for an attachment, if one was found in either the
27202'Content-Type:' or 'Content-Disposition:' headers. The filename will be RFC2047
27203decoded, but no additional sanity checks are done. If no filename was found,
27204this variable contains the empty string.
27205
27206$mime_is_coverletter$::
27207This variable attempts to differentiate the ``cover letter'' of an e-mail from
27208attached data. It can be used to clamp down on flashy or unneccessarily encoded
27209content in the cover letter, while not restricting attachments at all.
27210+
27211The variable contains 1 (true) for a MIME part believed to be part of the
27212cover letter, and 0 (false) for an attachment. At present, the algorithm is as
27213follows:
27214+
27215--
27216. The outermost MIME part of a message is always a cover letter.
27217
27218. If a multipart/alternative or multipart/related MIME part is a cover letter, so
27219are all MIME subparts within that multipart.
27220
27221. If any other multipart is a cover letter, the first subpart is a cover letter,
27222and the rest are attachments.
27223
27224. All parts contained within an attachment multipart are attachments.
27225--
27226+
27227As an example, the following will ban ``HTML mail'' (including that sent with
27228alternative plain text), while allowing HTML files to be attached. HTML
27229coverletter mail attached to non-HMTL coverletter mail will also be allowed:
27230
27231 deny message = HTML mail is not accepted here
27232 !condition = $mime_is_rfc822
27233 condition = $mime_is_coverletter
27234 condition = ${if eq{$mime_content_type}{text/html}{1}{0}}
27235
27236$mime_is_multipart$::
27237This variable has the value 1 (true) when the current part has the main type
27238``multipart'', for example ``multipart/alternative'' or ``multipart/mixed''.
27239Since multipart entities only serve as containers for other parts, you may not
27240want to carry out specific actions on them.
27241
27242$mime_is_rfc822$::
27243This variable has the value 1 (true) if the current part is not a part of the
27244checked message itself, but part of an attached message. Attached message
27245decoding is fully recursive.
27246
27247$mime_part_count$::
27248This variable is a counter that is raised for each processed MIME part. It
27249starts at zero for the very first part (which is usually a multipart). The
27250counter is per-message, so it is reset when processing RFC822 attachments (see
27251$mime_is_rfc822$). The counter stays set after %acl_smtp_mime% is
27252complete, so you can use it in the DATA ACL to determine the number of MIME
27253parts of a message. For non-MIME messages, this variable contains the value -1.
27254
27255
27256
27257[[SECTscanregex]]
27258Scanning with regular expressions
27259~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27260cindex:[content scanning,with regular expressions]
27261cindex:[regular expressions,content scanning with]
27262You can specify your own custom regular expression matches on the full body of
27263the message, or on individual MIME parts.
27264
27265The %regex% condition takes one or more regular expressions as arguments and
27266matches them against the full message (when called in the DATA ACL) or a raw
27267MIME part (when called in the MIME ACL). The %regex% condition matches
27268linewise, with a maximum line length of 32K characters. That means you cannot
27269have multiline matches with the %regex% condition.
27270
27271The %mime_regex% condition can be called only in the MIME ACL. It matches up
27272to 32K of decoded content (the whole content at once, not linewise). If the
27273part has not been decoded with the %decode% modifier earlier in the ACL, it is
27274decoded automatically when %mime_regex% is executed (using default path and
27275filename values). If the decoded data is larger than 32K, only the first 32K
27276characters are checked.
27277
27278The regular expressions are passed as a colon-separated list. To include a
27279literal colon, you must double it. Since the whole right-hand side string is
27280expanded before being used, you must also escape dollar signs and backslashes
27281with more backslashes, or use the `\N` facility to disable expansion.
27282Here is a simple example that contains two regular expressions:
27283
27284 deny message = contains blacklisted regex ($regex_match_string)
27285 regex = [Mm]ortgage : URGENT BUSINESS PROPOSAL
27286
27287The conditions returns true if any one of the regular expressions matches. The
27288$regex_match_string$ expansion variable is then set up and contains the
27289matching regular expression.
27290
27291*Warning*: With large messages, these conditions can be fairly
27292CPU-intensive.
27293
27294
27295
27296
27297[[SECTdemimecond]]
27298The demime condition
27299~~~~~~~~~~~~~~~~~~~~
27300cindex:[content scanning,MIME checking]
27301cindex:[MIME content scanning]
27302The %demime% ACL condition provides MIME unpacking, sanity checking and file
27303extension blocking. It uses a simpler interface to MIME decoding than the MIME
27304ACL functionality, but provides no additional facilities. Please note that this
27305condition is deprecated and kept only for for backward compatibility. You must
27306set the WITH_OLD_DEMIME option in _Local/Makefile_ at build time to be
27307able to use the %demime% condition.
27308
27309The %demime% condition unpacks MIME containers in the message. It detects
27310errors in MIME containers and can match file extensions found in the message
27311against a list. Using this facility produces files containing the unpacked MIME
27312parts of the message in the temporary scan directory. If you do antivirus
27313scanning, it is recommened that you use the %demime% condition before the
27314antivirus (%malware%) condition.
27315
27316On the right-hand side of the %demime% condition you can pass a colon-separated
27317list of file extensions that it should match against. For example:
27318
27319 deny message = Found blacklisted file attachment
27320 demime = vbs:com:bat:pif:prf:lnk
27321
27322If one of the file extensions is found, the condition is true, otherwise it is
27323false. If there is a temporary error while demimeing (for example, ``disk
27324full''), the condition defers, and the message is temporarily rejected (unless
27325the condition is on a %warn% verb).
27326
27327The right-hand side is expanded before being treated as a list, so you can have
27328conditions and lookups there. If it expands to an empty string, ``false'', or
27329zero (``0''), no demimeing is done and the condition is false.
27330
27331The %demime% condition set the following variables:
27332
27333$demime_errorlevel$::
27334When an error is detected in a MIME container, this variable contains the
27335severity of the error, as an integer number. The higher the value, the more
27336severe the error. If this variable is unset or zero, no error occurred.
27337
27338$demime_reason$::
27339When $demime_errorlevel$ is greater than zero, this variable contains a
27340human-readable text string describing the MIME error that occurred.
27341
27342$found_extension$::
27343When the %demime% condition is true, this variable contains the file extension
27344it found.
27345
27346///
27347End of list
27348///
27349
27350Both $demime_errorlevel$ and $demime_reason$ are set by the first call of
27351the %demime% condition, and are not changed on subsequent calls.
27352
27353If you do not want to check for file extensions, but rather use the %demime%
27354condition for unpacking or error checking purposes, pass ``\*'' as the
27355right-hand side value. Here is a more elaborate example of how to use this
27356facility:
27357
27358 # Reject messages with serious MIME container errors
27359 deny message = Found MIME error ($demime_reason).
27360 demime = *
27361 condition = ${if >{$demime_errorlevel}{2}{1}{0}}
27362
27363 # Reject known virus spreading file extensions.
27364 # Accepting these is pretty much braindead.
27365 deny message = contains $found_extension file (blacklisted).
27366 demime = com:vbs:bat:pif:scr
27367
27368 # Freeze .exe and .doc files. Postmaster can
27369 # examine them and eventually thaw them.
27370 deny log_message = Another $found_extension file.
27371 demime = exe:doc
27372 control = freeze
27373
27374
27375
27376
27377
27378
27379////////////////////////////////////////////////////////////////////////////
27380////////////////////////////////////////////////////////////////////////////
27381
27382[[CHAPlocalscan]]
27383[titleabbrev="Local scan function"]
27384Adding a local scan function to Exim
27385------------------------------------
27386cindex:['local_scan()' function,description of]
27387cindex:[customizing,input scan using C function]
27388cindex:[policy control,by local scan function]
27389In these days of email worms, viruses, and ever-increasing spam, some sites
27390want to apply a lot of checking to messages before accepting them.
27391
27392The content scanning extension (chapter <<CHAPexiscan>>) has facilities for
27393passing messages to external virus and spam scanning software. You can also do
27394
27395a certain amount in Exim itself through string expansions and the %condition%
27396condition in the ACL that runs after the SMTP DATA command or the ACL for
27397non-SMTP messages (see chapter <<CHAPACL>>), but this has its limitations.
27398
27399To allow for further customization to a site's own requirements, there is the
27400possibility of linking Exim with a private message scanning function, written
27401in C. If you want to run code that is written in something other than C, you
27402can of course use a little C stub to call it.
27403
27404The local scan function is run once for every incoming message, at the point
27405when Exim is just about to accept the message.
27406It can therefore be used to control non-SMTP messages from local processes as
27407well as messages arriving via SMTP.
27408
27409Exim applies a timeout to calls of the local scan function, and there is an
27410option called %local_scan_timeout% for setting it. The default is 5 minutes.
27411Zero means ``no timeout''.
27412Exim also sets up signal handlers for SIGSEGV, SIGILL, SIGFPE, and SIGBUS
27413before calling the local scan function, so that the most common types of crash
27414are caught. If the timeout is exceeded or one of those signals is caught, the
27415incoming message is rejected with a temporary error if it is an SMTP message.
27416For a non-SMTP message, the message is dropped and Exim ends with a non-zero
27417code. The incident is logged on the main and reject logs.
27418
27419
27420
27421Building Exim to use a local scan function
27422~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27423cindex:['local_scan()' function,building Exim to use]
27424To make use of the local scan function feature, you must tell Exim where your
27425function is before building Exim, by setting LOCAL_SCAN_SOURCE in your
27426_Local/Makefile_. A recommended place to put it is in the _Local_
27427directory, so you might set
27428
27429 LOCAL_SCAN_SOURCE=Local/local_scan.c
27430
27431for example. The function must be called 'local_scan()'. It is called by
27432Exim after it has received a message, when the success return code is about to
27433be sent. This is after all the ACLs have been run. The return code from your
27434function controls whether the message is actually accepted or not. There is a
27435commented template function (that just accepts the message) in the file
27436_src/local_scan.c_.
27437
27438If you want to make use of Exim's run time configuration file to set options
27439for your 'local_scan()' function, you must also set
27440
27441 LOCAL_SCAN_HAS_OPTIONS=yes
27442
27443in _Local/Makefile_ (see section <<SECTconoptloc>> below).
27444
27445
27446
27447
27448[[SECTapiforloc]]
27449API for local_scan()
27450~~~~~~~~~~~~~~~~~~~~
27451cindex:['local_scan()' function,API description]
27452You must include this line near the start of your code:
27453
27454 #include "local_scan.h"
27455
27456This header file defines a number of variables and other values, and the
27457prototype for the function itself. Exim is coded to use unsigned char values
27458almost exclusively, and one of the things this header defines is a shorthand
27459for `unsigned char` called `uschar`.
27460It also contains the following macro definitions, to simplify casting character
27461strings and pointers to character strings:
27462
27463 #define CS (char *)
27464 #define CCS (const char *)
27465 #define CSS (char **)
27466 #define US (unsigned char *)
27467 #define CUS (const unsigned char *)
27468 #define USS (unsigned char **)
27469
27470
27471The function prototype for 'local_scan()' is:
27472
27473 extern int local_scan(int fd, uschar **return_text);
27474
27475The arguments are as follows:
27476
27477- %fd% is a file descriptor for the file that contains the body of the message
27478(the -D file). The file is open for reading and writing, but updating it is not
27479recommended. *Warning*: You must 'not' close this file descriptor.
27480+
27481The descriptor is positioned at character 19 of the file, which is the first
27482character of the body itself, because the first 19 characters are the message
27483id followed by `-D` and a newline. If you rewind the file, you should use the
27484macro SPOOL_DATA_START_OFFSET to reset to the start of the data, just in
27485case this changes in some future version.
27486
27487- %return_text% is an address which you can use to return a pointer to a text
27488string at the end of the function. The value it points to on entry is NULL.
27489
27490The function must return an %int% value which is one of the following macros:
27491
27492`LOCAL_SCAN_ACCEPT`::
27493The message is accepted. If you pass back a string of text, it is saved with
27494the message, and made available in the variable $local_scan_data$. No
27495newlines are permitted (if there are any, they are turned into spaces) and the
27496maximum length of text is 1000 characters.
27497
27498`LOCAL_SCAN_ACCEPT_FREEZE`::
27499This behaves as LOCAL_SCAN_ACCEPT, except that the accepted message is
27500queued without immediate delivery, and is frozen.
27501
27502`LOCAL_SCAN_ACCEPT_QUEUE`::
27503This behaves as LOCAL_SCAN_ACCEPT, except that the accepted message is
27504queued without immediate delivery.
27505
27506`LOCAL_SCAN_REJECT`::
27507The message is rejected; the returned text is used as an error message which is
27508passed back to the sender and which is also logged. Newlines are permitted --
27509they cause a multiline response for SMTP rejections, but are converted to `\n`
27510in log lines. If no message is given, ``Administrative prohibition'' is used.
27511
27512`LOCAL_SCAN_TEMPREJECT`::
27513The message is temporarily rejected; the returned text is used as an error
27514message as for LOCAL_SCAN_REJECT. If no message is given, ``Temporary local
27515problem'' is used.
27516
27517`LOCAL_SCAN_REJECT_NOLOGHDR`::
27518This behaves as LOCAL_SCAN_REJECT, except that the header of the rejected
27519message is not written to the reject log. It has the effect of unsetting the
27520%rejected_header% log selector for just this rejection. If %rejected_header%
27521is already unset (see the discussion of the %log_selection% option in section
27522<<SECTlogselector>>), this code is the same as LOCAL_SCAN_REJECT.
27523
27524`LOCAL_SCAN_TEMPREJECT_NOLOGHDR`::
27525This code is a variation of LOCAL_SCAN_TEMPREJECT in the same way that
27526LOCAL_SCAN_REJECT_NOLOGHDR is a variation of LOCAL_SCAN_REJECT.
27527
27528///
27529End of list
27530///
27531
27532If the message is not being received by interactive SMTP, rejections are
27533reported by writing to %stderr% or by sending an email, as configured by the
27534%-oe% command line options.
27535
27536
27537
27538[[SECTconoptloc]]
27539Configuration options for local_scan()
27540~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27541cindex:['local_scan()' function,configuration options]
27542It is possible to have option settings in the main configuration file
27543that set values in static variables in the 'local_scan()' module. If you
27544want to do this, you must have the line
27545
27546 LOCAL_SCAN_HAS_OPTIONS=yes
27547
27548in your _Local/Makefile_ when you build Exim. (This line is in
27549_OS/Makefile-Default_, commented out). Then, in the 'local_scan()' source
27550file, you must define static variables to hold the option values, and a table to
27551define them.
27552
27553The table must be a vector called %local_scan_options%, of type
27554`optionlist`. Each entry is a triplet, consisting of a name, an option type,
27555and a pointer to the variable that holds the value. The entries must appear in
27556alphabetical order. Following %local_scan_options% you must also define a
27557variable called %local_scan_options_count% that contains the number of
27558entries in the table. Here is a short example, showing two kinds of option:
27559
27560 static int my_integer_option = 42;
27561 static uschar *my_string_option = US"a default string";
27562
27563 optionlist local_scan_options[] = {
27564 { "my_integer", opt_int, &my_integer_option },
27565 { "my_string", opt_stringptr, &my_string_option }
27566 };
27567 int local_scan_options_count =
27568 sizeof(local_scan_options)/sizeof(optionlist);
27569
27570The values of the variables can now be changed from Exim's runtime
27571configuration file by including a local scan section as in this example:
27572
27573 begin local_scan
27574 my_integer = 99
27575 my_string = some string of text...
27576
27577The available types of option data are as follows:
27578
27579*opt_bool*::
27580This specifies a boolean (true/false) option. The address should point to a
27581variable of type `BOOL`, which will be set to TRUE or FALSE, which are macros
27582that are defined as ``1'' and ``0'', respectively. If you want to detect
27583whether such a variable has been set at all, you can initialize it to
27584TRUE_UNSET. (BOOL variables are integers underneath, so can hold more than two
27585values.)
27586
27587*opt_fixed*::
27588This specifies a fixed point number, such as is used for load averages.
27589The address should point to a variable of type `int`. The value is stored
27590multiplied by 1000, so, for example, 1.4142 is truncated and stored as 1414.
27591
27592*opt_int*::
27593This specifies an integer; the address should point to a variable of type
27594`int`. The value may be specified in any of the integer formats accepted by
27595Exim.
27596
27597*opt_mkint*::
27598This is the same as %opt_int%, except that when such a value is output in a
27599%-bP% listing, if it is an exact number of kilobytes or megabytes, it is
27600printed with the suffix K or M.
27601
27602*opt_octint*::
27603This also specifies an integer, but the value is always interpeted as an
27604octal integer, whether or not it starts with the digit zero, and it is
27605always output in octal.
27606
27607*opt_stringptr*::
27608This specifies a string value; the address must be a pointer to a
27609variable that points to a string (for example, of type `uschar \*`).
27610
27611*opt_time*::
27612This specifies a time interval value. The address must point to a variable of
27613type `int`. The value that is placed there is a number of seconds.
27614
27615///
27616End of list
27617///
27618
27619If the %-bP% command line option is followed by `local_scan`, Exim prints
27620out the values of all the 'local_scan()' options.
27621
27622
27623
27624Available Exim variables
27625~~~~~~~~~~~~~~~~~~~~~~~~
27626cindex:['local_scan()' function,available Exim variables]
27627The header _local_scan.h_ gives you access to a number of C variables. These
27628are the only ones that are guaranteed to be maintained from release to release.
27629Note, however, that you can obtain the value of any Exim variable by calling
27630'expand_string()'. The exported variables are as follows:
27631
27632*unsigned~int~debug_selector*::
27633This variable is set to zero when no debugging is taking place. Otherwise, it
27634is a bitmap of debugging selectors. Two bits are identified for use in
27635'local_scan()'; they are defined as macros:
27636+
27637--
27638- The `D_v` bit is set when %-v% was present on the command line. This is a
27639testing option that is not privileged -- any caller may set it. All the
27640other selector bits can be set only by admin users.
27641
27642- The `D_local_scan` bit is provided for use by 'local_scan()'; it is set
27643by the `+local_scan` debug selector. It is not included in the default set
27644of debugging bits.
27645--
27646+
27647Thus, to write to the debugging output only when `+local_scan` has been
27648selected, you should use code like this:
27649
27650 if ((debug_selector & D_local_scan) != 0)
27651 debug_printf("xxx", ...);
27652
27653
27654*uschar~\*expand_string_message*::
27655After a failing call to 'expand_string()' (returned value NULL), the
27656variable %expand_string_message% contains the error message, zero-terminated.
27657
27658*header_line~\*header_list*::
27659A pointer to a chain of header lines. The %header_line% structure is discussed
27660below.
27661
27662*header_line~\*header_last*::
27663A pointer to the last of the header lines.
27664
27665*uschar~\*headers_charset*::
27666The value of the %headers_charset% configuration option.
27667
27668*BOOL~host_checking*::
27669This variable is TRUE during a host checking session that is initiated by the
27670%-bh% command line option.
27671
27672*uschar~\*interface_address*::
27673The IP address of the interface that received the message, as a string. This
27674is NULL for locally submitted messages.
27675
27676*int~interface_port*::
27677The port on which this message was received.
27678
27679*uschar~\*message_id*::
27680This variable contains the message id for the incoming message as a
27681zero-terminated string.
27682
27683*uschar~\*received_protocol*::
27684The name of the protocol by which the message was received.
27685
27686*int~recipients_count*::
27687The number of accepted recipients.
27688
27689*recipient_item~\*recipients_list*::
27690cindex:[recipient,adding in local scan]
27691cindex:[recipient,removing in local scan]
27692The list of accepted recipients, held in a vector of length %recipients_count%.
27693The %recipient_item% structure is discussed below. You can add additional
27694recipients by calling 'receive_add_recipient()' (see below). You can delete
27695recipients by removing them from the vector and adusting the value in
27696%recipients_count%. In particular, by setting %recipients_count% to zero you
27697remove all recipients. If you then return the value `LOCAL_SCAN_ACCEPT`, the
27698message is accepted, but immediately blackholed. To replace the recipients, set
27699%recipients_count% to zero and then call 'receive_add_recipient()' as often as
27700needed.
27701
27702*uschar~\*sender_address*::
27703The envelope sender address. For bounce messages this is the empty string.
27704
27705*uschar~\*sender_host_address*::
27706The IP address of the sending host, as a string. This is NULL for
27707locally-submitted messages.
27708
27709*uschar~\*sender_host_authenticated*::
27710The name of the authentication mechanism that was used, or NULL if the message
27711was not received over an authenticated SMTP connection.
27712
27713*uschar~\*sender_host_name*::
27714The name of the sending host, if known.
27715
27716*int~sender_host_port*::
27717The port on the sending host.
27718
27719*BOOL~smtp_input*::
27720This variable is TRUE for all SMTP input, including BSMTP.
27721
27722*BOOL~smtp_batched_input*::
27723This variable is TRUE for BSMTP input.
27724
27725*int~store_pool*::
27726The contents of this variable control which pool of memory is used for new
27727requests. See section <<SECTmemhanloc>> for details.
27728
27729///
27730End of list
27731///
27732
27733
27734
27735Structure of header lines
27736~~~~~~~~~~~~~~~~~~~~~~~~~
27737The %header_line% structure contains the members listed below.
27738You can add additional header lines by calling the 'header_add()' function
27739(see below). You can cause header lines to be ignored (deleted) by setting
27740their type to \*.
27741
27742
27743*struct~header_line~\*next*::
27744A pointer to the next header line, or NULL for the last line.
27745
27746*int~type*::
27747A code identifying certain headers that Exim recognizes. The codes are printing
27748characters, and are documented in chapter <<CHAPspool>> of this manual. Notice
27749in particular that any header line whose type is \* is not transmitted with the
27750message. This flagging is used for header lines that have been rewritten, or
27751are to be removed (for example, 'Envelope-sender:' header lines.) Effectively,
27752\* means ``deleted''.
27753
27754*int~slen*::
27755The number of characters in the header line, including the terminating and any
27756internal newlines.
27757
27758*uschar~\*text*::
27759A pointer to the text of the header. It always ends with a newline, followed by
27760a zero byte. Internal newlines are preserved.
27761
27762
27763
27764Structure of recipient items
27765~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27766The %recipient_item% structure contains these members:
27767
27768*uschar~\*address*::
27769This is a pointer to the recipient address as it was received.
27770
27771*int~pno*::
27772This is used in later Exim processing when top level addresses are created by
27773the %one_time% option. It is not relevant at the time 'local_scan()' is run and
27774must always contain -1 at this stage.
27775
27776*uschar~\*errors_to*::
27777If this value is not NULL, bounce messages caused by failing to deliver to the
27778recipient are sent to the address it contains. In other words, it overrides the
27779envelope sender for this one recipient. (Compare the %errors_to% generic router
27780option.) If a 'local_scan()' function sets an %errors_to% field to an
27781unqualified address, Exim qualifies it using the domain from
27782%qualify_recipient%. When 'local_scan()' is called, the %errors_to% field is
27783NULL for all recipients.
27784
27785
27786
27787Available Exim functions
27788~~~~~~~~~~~~~~~~~~~~~~~~
27789cindex:['local_scan()' function,available Exim functions]
27790The header _local_scan.h_ gives you access to a number of Exim functions.
27791These are the only ones that are guaranteed to be maintained from release to
27792release:
27793
27794*pid_t~child_open(uschar~{star}{star}argv,~uschar~{star}{star}envp,~int~newumask,~int~{star}infdptr,~int~{star}outfdptr,~BOOL~make_leader)*::
27795
27796This function creates a child process that runs the command specified by
27797%argv%. The environment for the process is specified by %envp%, which can be
27798NULL if no environment variables are to be passed. A new umask is supplied for
27799the process in %newumask%.
27800+
27801Pipes to the standard input and output of the new process are set up
27802and returned to the caller via the %infdptr% and %outfdptr% arguments. The
27803standard error is cloned to the standard output. If there are any file
27804descriptors ``in the way'' in the new process, they are closed. If the final
27805argument is TRUE, the new process is made into a process group leader.
27806+
27807The function returns the pid of the new process, or -1 if things go wrong.
27808
27809*int~child_close(pid_t~pid,~int~timeout)*::
27810This function waits for a child process to terminate, or for a timeout (in
27811seconds) to expire. A timeout value of zero means wait as long as it takes. The
27812return value is as follows:
27813+
27814- >= 0
27815+
27816The process terminated by a normal exit and the value is the process ending
27817status.
27818
27819- < 0 and > --256
27820+
27821The process was terminated by a signal and the value is the negation of the
27822signal number.
27823
27824- --256
27825+
27826The process timed out.
27827
27828- --257
27829+
27830The was some other error in wait(); %errno% is still set.
27831
27832
27833*pid_t~child_open_exim(int~{star}fd)*::
27834This function provide you with a means of submitting a new message to
27835Exim. (Of course, you can also call _/usr/sbin/sendmail_ yourself if you
27836want, but this packages it all up for you.) The function creates a pipe,
27837forks a subprocess that is running
27838
27839 exim -t -oem -oi -f <>
27840+
27841and returns to you (via the `int *` argument) a file descriptor for the pipe
27842that is connected to the standard input. The yield of the function is the PID
27843of the subprocess. You can then write a message to the file descriptor, with
27844recipients in 'To:', 'Cc:', and/or 'Bcc:' header lines.
27845+
27846When you have finished, call 'child_close()' to wait for the process to
27847finish and to collect its ending status. A timeout value of zero is usually
27848fine in this circumstance. Unless you have made a mistake with the recipient
27849addresses, you should get a return code of zero.
27850
27851*void~debug_printf(char~{star},~...)*::
27852This is Exim's debugging function, with arguments as for '(printf()'. The
27853output is written to the standard error stream. If no debugging is selected,
27854calls to 'debug_printf()' have no effect. Normally, you should make calls
27855conditional on the `local_scan` debug selector by coding like this:
27856
27857 if ((debug_selector & D_local_scan) != 0)
27858 debug_printf("xxx", ...);
27859
27860*uschar~{star}expand_string(uschar~{star}string)*::
27861This is an interface to Exim's string expansion code. The return value is the
27862expanded string, or NULL if there was an expansion failure.
27863The C variable %expand_string_message% contains an error message after an
27864expansion failure. If expansion does not change the string, the return value is
27865the pointer to the input string. Otherwise, the return value points to a new
27866block of memory that was obtained by a call to 'store_get()'. See section
27867<<SECTmemhanloc>> below for a discussion of memory handling.
27868
27869*void~header_add(int~type,~char~{star}format,~...)*::
27870This function allows you to an add additional header line at the end of the
27871existing ones. The first argument is the type, and should normally be a space
27872character. The second argument is a format string and any number of
27873substitution arguments as for 'sprintf()'. You may include internal newlines if
27874you want, and you must ensure that the string ends with a newline.
27875
27876*void~header_add_at_position(BOOL~after,~uschar~{star}name,~BOOL~topnot,~int~type,~char~{star}format,~...)*::
27877This function adds a new header line at a specified point in the header
27878chain. The header itself is specified as for 'header_add()'.
27879+
27880If %name% is NULL, the new header is added at the end of the chain if %after%
27881is true, or at the start if %after% is false. If %name% is not NULL, the header
27882lines are searched for the first non-deleted header that matches the name. If
27883one is found, the new header is added before it if %after% is false. If %after%
27884is true, the new header is added after the found header and any adjacent
27885subsequent ones with the same name (even if marked ``deleted''). If no matching
27886non-deleted header is found, the %topnot% option controls where the header is
27887added. If it is true, addition is at the top; otherwise at the bottom. Thus, to
27888add a header after all the 'Received:' headers, or at the top if there are no
27889'Received:' headers, you could use
27890
27891 header_add_at_position(TRUE, US"Received", TRUE,
27892 ' ', "X-xxx: ...");
27893+
27894Normally, there is always at least one non-deleted 'Received:' header, but
27895there may not be if %received_header_text% expands to an empty string.
27896
27897
27898*void~header_remove(int~occurrence,~uschar~{star}name)*::
27899This function removes header lines. If %occurrence% is zero or negative, all
27900occurrences of the header are removed. If occurrence is greater than zero, that
27901particular instance of the header is removed. If no header(s) can be found that
27902match the specification, the function does nothing.
27903
27904
27905*BOOL~header_testname(header_line~{star}hdr,~uschar~{star}name,~int~length,~BOOL~notdel)*::
27906This function tests whether the given header has the given name. It is not just
27907a string comparison, because whitespace is permitted between the name and the
27908colon. If the %notdel% argument is true, a false return is forced for all
27909``deleted'' headers; otherwise they are not treated specially. For example:
27910
27911 if (header_testname(h, US"X-Spam", 6, TRUE)) ...
27912
27913
27914*uschar~{star}lss_b64encode(uschar~{star}cleartext,~int~length)*::
27915cindex:[base64 encoding,functions for 'local_scan()' use]
27916This function base64-encodes a string, which is passed by address and length.
27917The text may contain bytes of any value, including zero. The result is passed
27918back in dynamic memory that is obtained by calling 'store_get()'. It is
27919zero-terminated.
27920
27921*int~lss_b64decode(uschar~{star}codetext,~uschar~{star}{star}cleartext)*::
27922This function decodes a base64-encoded string. Its arguments are a
27923zero-terminated base64-encoded string and the address of a variable that is set
27924to point to the result, which is in dynamic memory. The length of the decoded
27925string is the yield of the function. If the input is invalid base64 data, the
27926yield is -1. A zero byte is added to the end of the output string to make it
27927easy to interpret as a C string (assuming it contains no zeros of its own). The
27928added zero byte is not included in the returned count.
27929
27930*int~lss_match_domain(uschar~{star}domain,~uschar~{star}list)*::
27931This function checks for a match in a domain list. Domains are always
27932matched caselessly. The return value is one of the following:
27933+
27934&&&
27935`OK ` match succeeded
27936`FAIL ` match failed
27937`DEFER ` match deferred
27938&&&
27939+
27940DEFER is usually caused by some kind of lookup defer, such as the
27941inability to contact a database.
27942
27943*int~lss_match_local_part(uschar~{star}localpart,~uschar~{star}list,~BOOL~caseless)*::
27944This function checks for a match in a local part list. The third argument
27945controls case-sensitivity. The return values are as for
27946'lss_match_domain()'.
27947
27948*int~lss_match_address(uschar~{star}address,~uschar~{star}list,~BOOL~caseless)*::
27949This function checks for a match in an address list. The third argument
27950controls the case-sensitivity of the local part match. The domain is always
27951matched caselessly. The return values are as for 'lss_match_domain()'.
27952
27953*int~lss_match_host(uschar~{star}host_name,~uschar~{star}host_address,~uschar~{star}list)*::
27954This function checks for a match in a host list. The most common usage is
27955expected to be
27956
27957 lss_match_host(sender_host_name, sender_host_address, ...)
27958+
27959An empty address field matches an empty item in the host list. If the
27960host name is NULL, the name corresponding to $sender_host_address$ is
27961automatically looked up if a host name is required to match an item in the
27962list. The return values are as for 'lss_match_domain()', but in addition,
27963'lss_match_host()' returns ERROR in the case when it had to look up a host
27964name, but the lookup failed.
27965
27966*void~log_write(unsigned~int~selector,~int~which,~char~{star}format,~...)*::
27967This function writes to Exim's log files. The first argument should be zero (it
27968is concerned with %log_selector%). The second argument can be `LOG_MAIN` or
27969`LOG_REJECT` or `LOG_PANIC` or the inclusive ``or'' of any combination of them.
27970It specifies to which log or logs the message is written. The remaining
27971arguments are a format and relevant insertion arguments. The string should not
27972contain any newlines, not even at the end.
27973
27974
27975*void~receive_add_recipient(uschar~{star}address,~int~pno)*::
27976This function adds an additional recipient to the message. The first argument
27977is the recipient address. If it is unqualified (has no domain), it is qualified
27978with the %qualify_recipient% domain. The second argument must always be -1.
27979+
27980This function does not allow you to specify a private %errors_to% address (as
27981described with the structure of %recipient_item% above), because it pre-dates
27982the addition of that field to the structure. However, it is easy to add such a
27983value afterwards. For example:
27984
27985 receive_add_recipient(US"monitor@mydom.example", -1);
27986 recipients_list[recipients_count-1].errors_to =
27987 US"postmaster@mydom.example";
27988
27989*BOOL~receive_remove_recipient(uschar~{star}recipient)*::
27990This is a convenience function to remove a named recipient from the list of
27991recipients. It returns true if a recipient was removed, and false if no
27992matching recipient could be found. The argument must be a complete email
27993address.
27994
27995
27996*uschar~*rfc2047_decode(uschar~{star}string,~BOOL~lencheck,~uschar~{star}target,~int~zeroval,~int~{star}lenptr,~uschar~{star}{star}error)*::
27997This function decodes strings that are encoded according to RFC 2047. Typically
27998these are the contents of header lines. First, each encoded ``word'' is decoded
27999from the Q or B encoding into a byte-string. Then, if provided with the name of
28000a charset encoding, and if the 'iconv()' function is available, an attempt is
28001made to translate the result to the named character set. If this fails, the
28002binary string is returned with an error message.
28003+
28004The first argument is the string to be decoded. If %lencheck% is TRUE, the
28005maximum MIME word length is enforced. The third argument is the target
28006encoding, or NULL if no translation is wanted.
28007+
28008cindex:[binary zero,in RFC 2047 decoding]
28009If a binary zero is encountered in the decoded string, it is replaced by the
28010contents of the %zeroval% argument. For use with Exim headers, the value must
28011not be 0 because header lines are handled as zero-terminated strings.
28012+
28013The function returns the result of processing the string, zero-terminated; if
28014%lenptr% is not NULL, the length of the result is set in the variable to which
28015it points. When %zeroval% is 0, %lenptr% should not be NULL.
28016+
28017If an error is encountered, the function returns NULL and uses the %error%
28018argument to return an error message. The variable pointed to by %error% is set
28019to NULL if there is no error; it may be set non-NULL even when the function
28020returns a non-NULL value if decoding was successful, but there was a problem
28021with translation.
28022
28023
28024*int~smtp_fflush(void)*::
28025This function is used in conjunction with 'smtp_printf()', as described
28026below.
28027
28028*void~smtp_printf(char~{star},~...)*::
28029The arguments of this function are like 'printf()'; it writes to the SMTP
28030output stream. You should use this function only when there is an SMTP output
28031stream, that is, when the incoming message is being received via interactive
28032SMTP. This is the case when %smtp_input% is TRUE and %smtp_batched_input% is
28033FALSE. If you want to test for an incoming message from another host (as
28034opposed to a local process that used the %-bs% command line option), you can
28035test the value of %sender_host_address%, which is non-NULL when a remote host
28036is involved.
28037+
28038If an SMTP TLS connection is established, 'smtp_printf()' uses the TLS
28039output function, so it can be used for all forms of SMTP connection.
28040+
28041Strings that are written by 'smtp_printf()' from within 'local_scan()'
28042must start with an appropriate response code: 550 if you are going to return
28043LOCAL_SCAN_REJECT, 451 if you are going to return
28044LOCAL_SCAN_TEMPREJECT, and 250 otherwise. Because you are writing the
28045initial lines of a multi-line response, the code must be followed by a hyphen
28046to indicate that the line is not the final response line. You must also ensure
28047that the lines you write terminate with CRLF. For example:
28048
28049 smtp_printf("550-this is some extra info\r\n");
28050 return LOCAL_SCAN_REJECT;
28051+
28052Note that you can also create multi-line responses by including newlines in
28053the data returned via the %return_text% argument. The added value of using
28054'smtp_printf()' is that, for instance, you could introduce delays between
28055multiple output lines.
28056+
28057The 'smtp_printf()' function does not return any error indication, because it
28058does not automatically flush pending output, and therefore does not test
28059the state of the stream. (In the main code of Exim, flushing and error
28060detection is done when Exim is ready for the next SMTP input command.) If
28061you want to flush the output and check for an error (for example, the
28062dropping of a TCP/IP connection), you can call 'smtp_fflush()', which has no
28063arguments. It flushes the output stream, and returns a non-zero value if there
28064is an error.
28065
28066*void~{star}store_get(int)*::
28067This function accesses Exim's internal store (memory) manager. It gets a new
28068chunk of memory whose size is given by the argument. Exim bombs out if it ever
28069runs out of memory. See the next section for a discussion of memory handling.
28070
28071*void~{star}store_get_perm(int)*::
28072This function is like 'store_get()', but it always gets memory from the
28073permanent pool. See the next section for a discussion of memory handling.
28074
28075*uschar~{star}string_copy(uschar~{star}string)*::
28076See below.
28077
28078*uschar~{star}string_copyn(uschar~{star}string,~int~length)*::
28079See below.
28080
28081*uschar~{star}string_sprintf(char~{star}format,~...)*::
28082These three functions create strings using Exim's dynamic memory facilities.
28083The first makes a copy of an entire string. The second copies up to a maximum
28084number of characters, indicated by the second argument. The third uses a format
28085and insertion arguments to create a new string. In each case, the result is a
28086pointer to a new string in the current memory pool. See the next section for
28087more discussion.
28088
28089///
28090End of list
28091///
28092
28093
28094
28095
28096[[SECTmemhanloc]]
28097More about Exim's memory handling
28098~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28099cindex:['local_scan()' function,memory handling]
28100No function is provided for freeing memory, because that is never needed.
28101The dynamic memory that Exim uses when receiving a message is automatically
28102recycled if another message is received by the same process (this applies only
28103to incoming SMTP connections -- other input methods can supply only one message
28104at a time). After receiving the last message, a reception process terminates.
28105
28106Because it is recycled, the normal dynamic memory cannot be used for holding
28107data that must be preserved over a number of incoming messages on the same SMTP
28108connection. However, Exim in fact uses two pools of dynamic memory; the second
28109one is not recycled, and can be used for this purpose.
28110
28111If you want to allocate memory that remains available for subsequent messages
28112in the same SMTP connection, you should set
28113
28114 store_pool = POOL_PERM
28115
28116before calling the function that does the allocation. There is no need to
28117restore the value if you do not need to; however, if you do want to revert to
28118the normal pool, you can either restore the previous value of %store_pool% or
28119set it explicitly to POOL_MAIN.
28120
28121The pool setting applies to all functions that get dynamic memory, including
28122'expand_string()', 'store_get()', and the 'string_xxx()' functions.
28123There is also a convenience function called 'store_get_perm()' that gets a
28124block of memory from the permanent pool while preserving the value of
28125%store_pool%.
28126
28127
28128
28129
28130
28131////////////////////////////////////////////////////////////////////////////
28132////////////////////////////////////////////////////////////////////////////
28133
28134[[CHAPsystemfilter]]
28135System-wide message filtering
28136-----------------------------
28137cindex:[filter,system filter]
28138cindex:[filtering all mail]
28139cindex:[system filter]
28140The previous chapters (on ACLs and the local scan function) describe checks
28141that can be applied to messages before they are accepted by a host. There is
28142also a mechanism for checking messages once they have been received, but before
28143they are delivered. This is called the 'system filter'.
28144
28145The system filter operates in a similar manner to users' filter files, but it
28146is run just once per message (however many recipients the message has).
28147It should not normally be used as a substitute for routing, because %deliver%
28148commands in a system router provide new envelope recipient addresses.
28149The system filter must be an Exim filter. It cannot be a Sieve filter.
28150
28151The system filter is run at the start of a delivery attempt, before any routing
28152is done. If a message fails to be completely delivered at the first attempt,
28153the system filter is run again at the start of every retry.
28154If you want your filter to do something only once per message, you can make use
28155of the %first_delivery% condition in an %if% command in the filter to prevent
28156it happening on retries.
28157
28158*Warning*: Because the system filter runs just once, variables that are
28159specific to individual recipient addresses, such as $local_part$ and
28160$domain$, are not set, and the ``personal'' condition is not meaningful. If you
28161want to run a centrally-specified filter for each recipient address
28162independently, you can do so by setting up a suitable ^redirect^ router, as
28163described in section <<SECTperaddfil>> below.
28164
28165
28166Specifying a system filter
28167~~~~~~~~~~~~~~~~~~~~~~~~~~
28168cindex:[uid (user id),system filter]
28169cindex:[gid (group id),system filter]
28170The name of the file that contains the system filter must be specified by
28171setting %system_filter%. If you want the filter to run under a uid and gid
28172other than root, you must also set %system_filter_user% and
28173%system_filter_group% as appropriate. For example:
28174
28175 system_filter = /etc/mail/exim.filter
28176 system_filter_user = exim
28177
28178If a system filter generates any deliveries directly to files or pipes (via the
28179%save% or %pipe% commands), transports to handle these deliveries must be
28180specified by setting %system_filter_file_transport% and
28181%system_filter_pipe_transport%, respectively. Similarly,
28182%system_filter_reply_transport% must be set to handle any messages generated
28183by the %reply% command.
28184
28185
28186Testing a system filter
28187~~~~~~~~~~~~~~~~~~~~~~~
28188You can run simple tests of a system filter in the same way as for a user
28189filter, but you should use %-bF% rather than %-bf%, so that features that
28190are permitted only in system filters are recognized.
28191
28192If you want to test the combined effect of a system filter and a user filter,
28193you can use both %-bF% and %-bf% on the same command line.
28194
28195
28196
28197Contents of a system filter
28198~~~~~~~~~~~~~~~~~~~~~~~~~~~
28199The language used to specify system filters is the same as for users' filter
28200files. It is described in the separate end-user document 'Exim's interface to
28201mail filtering'. However, there are some additional features that are
28202available only in system filters; these are described in subsequent sections.
28203If they are encountered in a user's filter file or when testing with %-bf%,
28204they cause errors.
28205
28206cindex:[frozen messages,manual thaw; testing in filter]
28207There are two special conditions which, though available in users' filter
28208files, are designed for use in system filters. The condition %first_delivery%
28209is true only for the first attempt at delivering a message, and
28210%manually_thawed% is true only if the message has been frozen, and
28211subsequently thawed by an admin user. An explicit forced delivery counts as a
28212manual thaw, but thawing as a result of the %auto_thaw% setting does not.
28213
28214*Warning*: If a system filter uses the %first_delivery% condition to
28215specify an ``unseen'' (non-significant) delivery, and that delivery does not
28216succeed, it will not be tried again.
28217If you want Exim to retry an unseen delivery until it succeeds, you should
28218arrange to set it up every time the filter runs.
28219
28220When a system filter finishes running, the values of the variables $n0$ --
28221$n9$ are copied into $sn0$ -- $sn9$ and are thereby made available to
28222users' filter files. Thus a system filter can, for example, set up ``scores'' to
28223which users' filter files can refer.
28224
28225
28226
28227Additional variable for system filters
28228~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28229The expansion variable $recipients$, containing a list of all the recipients
28230of the message (separated by commas and white space), is available in system
28231filters. It is not available in users' filters for privacy reasons.
28232
28233
28234
28235Defer, freeze, and fail commands for system filters
28236~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28237cindex:[freezing messages]
28238cindex:[message,freezing]
28239cindex:[message,forced failure]
28240cindex:[%fail%,in system filter]
28241cindex:[%freeze% in system filter]
28242cindex:[%defer% in system filter]
28243There are three extra commands (%defer%, %freeze% and %fail%) which are always
28244available in system filters, but are not normally enabled in users' filters.
28245(See the %allow_defer%,
28246%allow_freeze% and %allow_fail% options for the ^redirect^ router.) These
28247commands can optionally be followed by the word %text% and a string containing
28248an error message, for example:
28249
28250 fail text "this message looks like spam to me"
28251
28252The keyword %text% is optional if the next character is a double quote.
28253
28254The %defer% command defers delivery of the original recipients of the message.
28255The %fail% command causes all the original recipients to be failed, and a
28256bounce message to be created. The %freeze% command suspends all delivery
28257attempts for the original recipients. In all cases, any new deliveries that are
28258specified by the filter are attempted as normal after the filter has run.
28259
28260The %freeze% command is ignored if the message has been manually unfrozen and
28261not manually frozen since. This means that automatic freezing by a system
28262filter can be used as a way of checking out suspicious messages. If a message
28263is found to be all right, manually unfreezing it allows it to be delivered.
28264
28265cindex:[log,%fail% command log line]
28266cindex:[%fail%,log line; reducing]
28267The text given with a fail command is used as part of the bounce message as
28268well as being written to the log. If the message is quite long, this can fill
28269up a lot of log space when such failures are common. To reduce the size of the
28270log message, Exim interprets the text in a special way if it starts with the
28271two characters `<<` and contains `>>` later. The text between these two
28272strings is written to the log, and the rest of the text is used in the bounce
28273message. For example:
28274
28275....
28276fail "<<filter test 1>>Your message is rejected \
28277 because it contains attachments that we are \
28278 not prepared to receive."
28279....
28280
28281
28282cindex:[loop,caused by %fail%]
28283Take great care with the %fail% command when basing the decision to fail on the
28284contents of the message, because the bounce message will of course include the
28285contents of the original message and will therefore trigger the %fail% command
28286again (causing a mail loop) unless steps are taken to prevent this. Testing the
28287%error_message% condition is one way to prevent this. You could use, for
28288example
28289
28290 if $message_body contains "this is spam" and not error_message
28291 then fail text "spam is not wanted here" endif
28292
28293though of course that might let through unwanted bounce messages. The
28294alternative is clever checking of the body and/or headers to detect bounces
28295generated by the filter.
28296
28297The interpretation of a system filter file ceases after a
28298%defer%,
28299%freeze%, or %fail% command is obeyed. However, any deliveries that were set up
28300earlier in the filter file are honoured, so you can use a sequence such as
28301
28302 mail ...
28303 freeze
28304
28305to send a specified message when the system filter is freezing (or deferring or
28306failing) a message. The normal deliveries for the message do not, of course,
28307take place.
28308
28309
28310
28311[[SECTaddremheasys]]
28312Adding and removing headers in a system filter
28313~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28314cindex:[header lines,adding; in system filter]
28315cindex:[header lines,removing; in system filter]
28316cindex:[filter,header lines; adding/removing]
28317Two filter commands that are available only in system filters are:
28318
28319 headers add <string>
28320 headers remove <string>
28321
28322The argument for the %headers add% is a string that is expanded and then added
28323to the end of the message's headers. It is the responsibility of the filter
28324maintainer to make sure it conforms to RFC 2822 syntax. Leading white space is
28325ignored, and if the string is otherwise empty, or if the expansion is forced to
28326fail, the command has no effect.
28327
28328You can use ``\n'' within the string, followed by white space, to specify
28329continued header lines. More than one header may be added in one command by
28330including ``\n'' within the string without any following white space. For
28331example:
28332
28333....
28334headers add "X-header-1: ....\n \
28335 continuation of X-header-1 ...\n\
28336 X-header-2: ...."
28337....
28338
28339Note that the header line continuation white space after the first newline must
28340be placed before the backslash that continues the input string, because white
28341space after input continuations is ignored.
28342
28343The argument for %headers remove% is a colon-separated list of header names.
28344This command applies only to those headers that are stored with the message;
28345those that are added at delivery time (such as 'Envelope-To:' and
28346'Return-Path:') cannot be removed by this means. If there is more than one
28347header with the same name, they are all removed.
28348
28349The %headers% command in a system filter makes an immediate change to the set
28350of header lines that was received with the message (with possible additions
28351from ACL processing). Subsequent commands in the system filter operate on the
28352modified set, which also forms the basis for subsequent message delivery.
28353Unless further modified during routing or transporting, this set of headers is
28354used for all recipients of the message.
28355
28356During routing and transporting, the variables that refer to the contents of
28357header lines refer only to those lines that are in this set. Thus, header lines
28358that are added by a system filter are visible to users' filter files and to all
28359routers and transports. This contrasts with the manipulation of header lines by
28360routers and transports, which is not immediate, but which instead is saved up
28361until the message is actually being written (see section <<SECTheadersaddrem>>).
28362
28363If the message is not delivered at the first attempt, header lines that were
28364added by the system filter are stored with the message, and so are still
28365present at the next delivery attempt. Header lines that were removed are still
28366present, but marked ``deleted'' so that they are not transported with the
28367message. For this reason, it is usual to make the %headers% command conditional
28368on %first_delivery% so that the set of header lines is not modified more than
28369once.
28370
28371Because header modification in a system filter acts immediately, you have to
28372use an indirect approach if you want to modify the contents of a header line.
28373For example:
28374
28375 headers add "Old-Subject: $h_subject:"
28376 headers remove "Subject"
28377 headers add "Subject: new subject (was: $h_old-subject:)"
28378 headers remove "Old-Subject"
28379
28380
28381
28382
28383
28384Setting an errors address in a system filter
28385~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28386cindex:[envelope sender]
28387In a system filter, if a %deliver% command is followed by
28388
28389 errors_to <some address>
28390
28391in order to change the envelope sender (and hence the error reporting) for that
28392delivery, any address may be specified. (In a user filter, only the current
28393user's address can be set.) For example, if some mail is being monitored, you
28394might use
28395
28396 unseen deliver monitor@spying.example errors_to root@local.example
28397
28398to take a copy which would not be sent back to the normal error reporting
28399address if its delivery failed.
28400
28401
28402
28403[[SECTperaddfil]]
28404Per-address filtering
28405~~~~~~~~~~~~~~~~~~~~~
28406In contrast to the system filter, which is run just once per message for each
28407delivery attempt, it is also possible to set up a system-wide filtering
28408operation that runs once for each recipient address. In this case, variables
28409such as $local_part$ and $domain$ can be used, and indeed, the choice of
28410filter file could be made dependent on them. This is an example of a router
28411which implements such a filter:
28412
28413 central_filter:
28414 check_local_user
28415 driver = redirect
28416 domains = +local_domains
28417 file = /central/filters/$local_part
28418 no_verify
28419 allow_filter
28420 allow_freeze
28421
28422The filter is run in a separate process under its own uid. Therefore, either
28423%check_local_user% must be set (as above), in which case the filter is run as
28424the local user, or the %user% option must be used to specify which user to use.
28425If both are set, %user% overrides.
28426
28427Care should be taken to ensure that none of the commands in the filter file
28428specify a significant delivery if the message is to go on to be delivered to
28429its intended recipient. The router will not then claim to have dealt with the
28430address, so it will be passed on to subsequent routers to be delivered in the
28431normal way.
28432
28433
28434
28435
28436
28437
28438////////////////////////////////////////////////////////////////////////////
28439////////////////////////////////////////////////////////////////////////////
28440
28441[[CHAPmsgproc]]
28442Message processing
28443------------------
28444cindex:[message,general processing]
28445Exim performs various transformations on the sender and recipient addresses of
28446all messages that it handles, and also on the messages' header lines. Some of
28447these are optional and configurable, while others always take place. All of
28448this processing, except rewriting as a result of routing, and the addition or
28449removal of header lines while delivering, happens when a message is received,
28450before it is placed on Exim's queue.
28451
28452Some of the automatic processing takes place by default only for
28453``locally-originated'' messages. This adjective is used to describe messages that
28454are not received over TCP/IP, but instead are passed to an Exim process on its
28455standard input. This includes the interactive ``local SMTP'' case that is set up
28456by the %-bs% command line option.
28457
28458*Note*: messages received over TCP/IP on the loopback interface (127.0.0.1
28459or ::1) are not considered to be locally-originated. Exim does not treat the
28460loopback interface specially in any way.
28461
28462If you want the loopback interface to be treated specially, you must ensure
28463that there are appropriate entries in your ACLs.
28464
28465
28466
28467
28468[[SECTsubmodnon]]
28469Submission mode for non-local messages
28470~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28471cindex:[message,submission]
28472cindex:[submission mode]
28473Processing that happens automatically for locally-originated messages can also
28474be requested for other messages. The term ``submission mode'' is used to describe
28475this state. Submisssion mode is set by the modifier
28476
28477 control = submission
28478
28479in a MAIL, RCPT, or pre-data ACL for an incoming SMTP message (see
28480sections <<SECTACLmodi>> and <<SECTcontrols>>). This makes Exim treat the message
28481as a local submission, and is normally used when the source of the message is
28482known to be an MUA running on a client host (as opposed to an MTA). For
28483example, to set submission mode for messages originating on the IPv4 loopback
28484interface, you could include the following in the MAIL ACL:
28485
28486 warn hosts = 127.0.0.1
28487 control = submission
28488
28489There are some options that can be used when setting submission mode. A slash
28490is used to separate options. For example:
28491
28492 control = submission/sender_retain
28493
28494Specifying %sender_retain% has the effect of setting %local_sender_retain%
28495true and %local_from_check% false for the current incoming message. The first
28496of these allows an existing 'Sender:' header in the message to remain, and the
28497second suppresses the check to ensure that 'From:' matches the authenticated
28498sender. With this setting, Exim still fixes up messages by adding 'Date:' and
28499'Message-ID:' header lines if they are missing, but makes no attempt to check
28500sender authenticity in header lines.
28501
28502A submission mode setting may also specify a domain to be used when generating
28503a 'From:' or 'Sender:' header. For example:
28504
28505 control = submission/domain=some.domain
28506
28507The domain may be empty. How this value is used is described in sections
28508<<SECTthefrohea>> and <<SECTthesenhea>>.
28509
28510
28511
28512
28513
28514[[SECTlineendings]]
28515Line endings
28516~~~~~~~~~~~~
28517cindex:[line endings]
28518cindex:[carriage return]
28519cindex:[linefeed]
28520RFC 2821 specifies that CRLF (two characters: carriage-return, followed by
28521linefeed) is the line ending for messages transmitted over the Internet using
28522SMTP over TCP/IP. However, within individual operating systems, different
28523conventions are used. For example, Unix-like systems use just LF, but others
28524use CRLF or just CR.
28525
28526Exim was designed for Unix-like systems, and internally, it stores messages
28527using the system's convention of a single LF as a line terminator. When
28528receiving a message, all line endings are translated to this standard format.
28529Originally, it was thought that programs that passed messages directly to an
28530MTA within an operating system would use that system's convention. Experience
28531has shown that this is not the case; for example, there are Unix applications
28532that use CRLF in this circumstance. For this reason, and for compatibility with
28533other MTAs, the way Exim handles line endings for all messages is now as
28534follows:
28535
28536- LF not preceded by CR is treated as a line ending.
28537
28538- CR is treated as a line ending; if it is immediately followed by LF, the LF
28539is ignored.
28540
28541- The sequence ``CR, dot, CR'' does not terminate an incoming SMTP message,
28542nor a local message in the state where a line containing only a dot is a
28543terminator.
28544
28545- If a bare CR is encountered within a header line, an extra space is added after
28546the line terminator so as not to end the header line. The reasoning behind this
28547is that bare CRs in header lines are most likely either to be mistakes, or
28548people trying to play silly games.
28549
28550- If the first header line received in a message ends with CRLF, a subsequent
28551bare LF in a header line is treated in the same way as a bare CR in a header
28552line.
28553
28554
28555
28556
28557
28558Unqualified addresses
28559~~~~~~~~~~~~~~~~~~~~~
28560cindex:[unqualified addresses]
28561cindex:[address,qualification]
28562By default, Exim expects every envelope address it receives from an external
28563host to be fully qualified. Unqualified addresses cause negative responses to
28564SMTP commands. However, because SMTP is used as a means of transporting
28565messages from MUAs running on personal workstations, there is sometimes a
28566requirement to accept unqualified addresses from specific hosts or IP networks.
28567
28568Exim has two options that separately control which hosts may send unqualified
28569sender or receipient addresses in SMTP commands, namely
28570%sender_unqualified_hosts% and %recipient_unqualified_hosts%. In both
28571cases, if an unqualified address is accepted, it is qualified by adding the
28572value of %qualify_domain% or %qualify_recipient%, as appropriate.
28573
28574cindex:[%qualify_domain%]
28575cindex:[%qualify_recipient%]
28576Unqualified addresses in header lines are automatically qualified for messages
28577that are locally originated, unless the %-bnq% option is given on the command
28578line. For messages received over SMTP, unqualified addresses in header lines
28579are qualified only if unqualified addresses are permitted in SMTP commands. In
28580other words, such qualification is also controlled by
28581%sender_unqualified_hosts% and %recipient_unqualified_hosts%,
28582
28583
28584
28585
28586The UUCP From line
28587~~~~~~~~~~~~~~~~~~
28588cindex:[``From'' line]
28589cindex:[UUCP,``From'' line]
28590cindex:[sender,address]
28591cindex:[%uucp_from_pattern%]
28592cindex:[%uucp_from_sender%]
28593cindex:[envelope sender]
28594cindex:[Sendmail compatibility,``From'' line]
28595Messages that have come from UUCP (and some other applications) often begin
28596with a line containing the envelope sender and a timestamp, following the word
28597``From''. Examples of two common formats are:
28598
28599 From a.oakley@berlin.mus Fri Jan 5 12:35 GMT 1996
28600 From f.butler@berlin.mus Fri, 7 Jan 97 14:00:00 GMT
28601
28602This line precedes the RFC 2822 header lines. For compatibility with Sendmail,
28603Exim recognizes such lines at the start of messages that are submitted to it
28604via the command line (that is, on the standard input). It does not recognize
28605such lines in incoming SMTP messages, unless the sending host matches
28606%ignore_fromline_hosts% or the %-bs% option was used for a local message and
28607%ignore_fromline_local% is set. The recognition is controlled by a regular
28608expression that is defined by the %uucp_from_pattern% option, whose default
28609value matches the two common cases shown above and puts the address that
28610follows ``From'' into $1$.
28611
28612cindex:[numerical variables ($1$ $2$ etc),in ``From '' line handling]
28613When the caller of Exim for a non-SMTP message that contains a ``From'' line is a
28614trusted user, the message's sender address is constructed by expanding the
28615contents of %uucp_sender_address%, whose default value is ``\$1''. This is then
28616parsed as an RFC 2822 address. If there is no domain, the local part is
28617qualified with %qualify_domain% unless it is the empty string. However, if the
28618command line %-f% option is used, it overrides the ``From'' line.
28619
28620If the caller of Exim is not trusted, the ``From'' line is recognized, but the
28621sender address is not changed. This is also the case for incoming SMTP messages
28622that are permitted to contain ``From'' lines.
28623
28624Only one ``From'' line is recognized. If there is more than one, the second is
28625treated as a data line that starts the body of the message, as it is not valid
28626as a header line. This also happens if a ``From'' line is present in an incoming
28627SMTP message from a source that is not permitted to send them.
28628
28629
28630
28631Resent- header lines
28632~~~~~~~~~~~~~~~~~~~~
28633cindex:[%Resent-% header lines]
28634RFC 2822 makes provision for sets of header lines starting with the string
28635`Resent-` to be added to a message when it is resent by the original
28636recipient to somebody else. These headers are 'Resent-Date:', 'Resent-From:',
28637'Resent-Sender:', 'Resent-To:', 'Resent-Cc:', 'Resent-Bcc:' and
28638'Resent-Message-ID:'. The RFC says:
28639
28640'Resent fields are strictly informational. They MUST NOT be used in the normal
28641processing of replies or other such automatic actions on messages.'
28642
28643This leaves things a bit vague as far as other processing actions such as
28644address rewriting are concerned. Exim treats %Resent-% header lines as
28645follows:
28646
28647- A 'Resent-From:' line that just contains the login id of the submitting user
28648is automatically rewritten in the same way as 'From:' (see below).
28649
28650- If there's a rewriting rule for a particular header line, it is also applied to
28651%Resent-% header lines of the same type. For example, a rule that rewrites
28652'From:' also rewrites 'Resent-From:'.
28653
28654- For local messages, if 'Sender:' is removed on input, 'Resent-Sender:' is also
28655removed.
28656
28657- For a locally-submitted message,
28658if there are any %Resent-% header lines but no 'Resent-Date:',
28659'Resent-From:', or 'Resent-Message-Id:', they are added as necessary. It is
28660the contents of 'Resent-Message-Id:' (rather than 'Message-Id:') which are
28661included in log lines in this case.
28662
28663- The logic for adding 'Sender:' is duplicated for 'Resent-Sender:' when any
28664%Resent-% header lines are present.
28665
28666
28667
28668
28669The Auto-Submitted: header line
28670~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28671Whenever Exim generates a bounce or a delay warning message, it includes the
28672header line
28673
28674 Auto-Submitted: auto-generated
28675
28676
28677
28678
28679The Bcc: header line
28680~~~~~~~~~~~~~~~~~~~~
28681cindex:['Bcc:' header line]
28682If Exim is called with the %-t% option, to take recipient addresses from a
28683message's header, it removes any 'Bcc:' header line that may exist (after
28684extracting its addresses). If %-t% is not present on the command line, any
28685existing 'Bcc:' is not removed.
28686
28687
28688The Date: header line
28689~~~~~~~~~~~~~~~~~~~~~
28690cindex:['Date:' header line]
28691If a locally-generated
28692or submission-mode
28693message has no 'Date:' header line, Exim adds one, using the current date and
28694time.
28695
28696
28697The Delivery-date: header line
28698~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28699cindex:['Delivery-date:' header line]
28700cindex:[%delivery_date_remove%]
28701'Delivery-date:' header lines are not part of the standard RFC 2822 header
28702set. Exim can be configured to add them to the final delivery of messages. (See
28703the generic %delivery_date_add% transport option.) They should not be present
28704in messages in transit. If the %delivery_date_remove% configuration option is
28705set (the default), Exim removes 'Delivery-date:' header lines from incoming
28706messages.
28707
28708
28709The Envelope-to: header line
28710~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28711cindex:['Envelope-to:' header line]
28712cindex:[%envelope_to_remove%]
28713'Envelope-to:' header lines are not part of the standard RFC 2822 header set.
28714Exim can be configured to add them to the final delivery of messages. (See the
28715generic %envelope_to_add% transport option.) They should not be present in
28716messages in transit. If the %envelope_to_remove% configuration option is set
28717(the default), Exim removes 'Envelope-to:' header lines from incoming
28718messages.
28719
28720
28721[[SECTthefrohea]]
28722The From: header line
28723~~~~~~~~~~~~~~~~~~~~~
28724cindex:['From:' header line]
28725cindex:[Sendmail compatibility,``From'' line]
28726cindex:[message,submission]
28727cindex:[submission mode]
28728If a submission-mode message does not contain a 'From:' header line, Exim adds
28729one if either of the following conditions is true:
28730
28731- The envelope sender address is not empty (that is, this is not a bounce
28732message). The added header line copies the envelope sender address.
28733
28734- The SMTP session is authenticated and $authenticated_id$ is not empty.
28735
28736.. If no domain is specified by the submission control, the local part is
28737$authenticated_id$ and the domain is $qualify_domain$.
28738
28739.. If a non-empty domain is specified by the submission control, the local
28740part is $authenticated_id$, and the the domain is the specified domain.
28741
28742.. If an empty domain is specified by the submission control,
28743$authenticated_id$ is assumed to be the complete address.
28744
28745A non-empty envelope sender takes precedence.
28746
28747If a locally-generated incoming message does not contain a 'From:' header
28748line, Exim adds one containing the sender's address. The calling user's login
28749name and full name are used to construct the address, as described in section
28750<<SECTconstr>>. They are obtained from the password data by calling
28751'getpwuid()' (but see the %unknown_login% configuration option). The address
28752is qualified with %qualify_domain%.
28753
28754For compatibility with Sendmail, if an incoming, non-SMTP message has a
28755'From:' header line containing just the unqualified login name of the calling
28756user, this is replaced by an address containing the user's login name and full
28757name as described in section <<SECTconstr>>.
28758
28759
28760The Message-ID: header line
28761~~~~~~~~~~~~~~~~~~~~~~~~~~~
28762cindex:['Message-ID:' header line]
28763cindex:[message,submission]
28764If a locally-generated or submission-mode incoming message does not contain a
28765'Message-ID:' or 'Resent-Message-ID:' header line, Exim adds one to the
28766message. If there are any 'Resent-:' headers in the message, it creates
28767'Resent-Message-ID:'. The id is constructed from Exim's internal message id,
28768preceded by the letter E to ensure it starts with a letter, and followed by @
28769and the primary host name. Additional information can be included in this
28770header line by setting the
28771cindex:[%message_id_header_text%]
28772%message_id_header_text% and/or %message_id_header_domain% options.
28773
28774
28775
28776The Received: header line
28777~~~~~~~~~~~~~~~~~~~~~~~~~
28778cindex:['Received:' header line]
28779A 'Received:' header line is added at the start of every message. The contents
28780are defined by the %received_header_text% configuration option, and Exim
28781automatically adds a semicolon and a timestamp to the configured string.
28782
28783The 'Received:' header is generated as soon as the message's header lines have
28784been received. At this stage, the timestamp in the 'Received:' header line is
28785the time that the message started to be received. This is the value that is
28786seen by the DATA ACL and by the 'local_scan()' function.
28787
28788Once a message is accepted, the timestamp in the 'Received:' header line is
28789changed to the time of acceptance, which is (apart from a small delay while the
28790-H spool file is written) the earliest time at which delivery could start.
28791
28792
28793
28794The Return-path: header line
28795~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28796cindex:['Return-path:' header line]
28797cindex:[%return_path_remove%]
28798'Return-path:' header lines are defined as something an MTA may insert when
28799it does the final delivery of messages. (See the generic %return_path_add%
28800transport option.) Therefore, they should not be present in messages in
28801transit. If the %return_path_remove% configuration option is set (the
28802default), Exim removes 'Return-path:' header lines from incoming messages.
28803
28804
28805
28806[[SECTthesenhea]]
28807The Sender: header line
28808~~~~~~~~~~~~~~~~~~~~~~~
28809cindex:['Sender:' header line]
28810cindex:[message,submission]
28811For a locally-originated message from an untrusted user, Exim may remove an
28812existing 'Sender:' header line, and it may add a new one. You can modify these
28813actions by setting %local_sender_retain% true or %local_from_check% false.
28814
28815When a local message is received from an untrusted user and
28816%local_from_check% is true (the default), a check is made to see if the
28817address given in the 'From:' header line is the correct (local) sender of the
28818message. The address that is expected has the login name as the local part and
28819the value of %qualify_domain% as the domain. Prefixes and suffixes for the
28820local part can be permitted by setting %local_from_prefix% and
28821%local_from_suffix% appropriately. If 'From:' does not contain the correct
28822sender, a 'Sender:' line is added to the message.
28823
28824If you set %local_from_check% false, this checking does not occur. However,
28825the removal of an existing 'Sender:' line still happens, unless you also set
28826%local_sender_retain% to be true. It is not possible to set both of these
28827options true at the same time.
28828
28829cindex:[submission mode]
28830By default, no processing of 'Sender:' header lines is done for messages
28831received over TCP/IP or for messages submitted by trusted users. However, when
28832a message is received over TCP/IP in submission mode, and %sender_retain% is
28833not specified on the submission control, the following processing takes place:
28834
28835First, any existing 'Sender:' lines are removed. Then, if the SMTP session is
28836authenticated, and $authenticated_id$ is not empty, a sender address is
28837created as follows:
28838
28839- If no domain is specified by the submission control, the local part is
28840$authenticated_id$ and the domain is $qualify_domain$.
28841
28842- If a non-empty domain is specified by the submission control, the local part is
28843$authenticated_id$, and the the domain is the specified domain.
28844
28845- If an empty domain is specified by the submission control,
28846$authenticated_id$ is assumed to be the complete address.
28847
28848This address is compared with the address in the 'From:' header line. If they
28849are different, a 'Sender:' header line containing the created address is
28850added. Prefixes and suffixes for the local part in 'From:' can be permitted by
28851setting %local_from_prefix% and %local_from_suffix% appropriately.
28852
28853
28854
28855
28856[[SECTheadersaddrem]]
28857Adding and removing header lines in routers and transports
28858~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28859cindex:[header lines,adding; in router or transport]
28860cindex:[header lines,removing; in router or transport]
28861When a message is delivered, the addition and removal of header lines can be
28862specified in a system filter, or on any of the routers and transports that
28863process the message. Section <<SECTaddremheasys>> contains details about
28864modifying headers in a system filter.
28865
28866In contrast to what happens in a system filter, header modifications that are
28867specified on routers and transports apply only to the particular recipient
28868addresses that are being processed by those routers and transports. These
28869changes do not actually take place until a copy of the message is being
28870transported. Therefore, they do not affect the basic set of header lines, and
28871they do not affect the values of the variables that refer to header lines.
28872
28873For both routers and transports, the result of expanding a %headers_add%
28874option must be in the form of one or more RFC 2822 header lines, separated by
28875newlines (coded as ``\n''). For example:
28876
28877....
28878headers_add = X-added-header: added by $primary_hostname\n\
28879 X-added-second: another added header line
28880....
28881
28882Exim does not check the syntax of these added header lines.
28883
28884The result of expanding %headers_remove% must consist of a colon-separated
28885list of header names. This is confusing, because header names themselves are
28886often terminated by colons. In this case, the colons are the list separators,
28887not part of the names. For example:
28888
28889 headers_remove = return-receipt-to:acknowledge-to
28890
28891When %headers_add% or %headers_remove% is specified on a router, its value is
28892expanded at routing time, and then associated with all addresses that are
28893accepted by that router, and also with any new addresses that it generates. If
28894an address passes through several routers as a result of aliasing or
28895forwarding, the changes are cumulative.
28896
28897cindex:[%unseen% option]
28898However, this does not apply to multiple routers that result from the use of
28899the %unseen% option. Any header modifications that were specified by the
28900``unseen'' router or its predecessors apply only to the ``unseen'' delivery.
28901
28902Addresses that end up with different %headers_add% or %headers_remove%
28903settings cannot be delivered together in a batch, so a transport is always
28904dealing with a set of addresses that have the same header-processing
28905requirements.
28906
28907The transport starts by writing the original set of header lines that arrived
28908with the message, possibly modified by the system filter. As it writes out
28909these lines, it consults the list of header names that were attached to the
28910recipient address(es) by %headers_remove% options in routers, and it also
28911consults the transport's own %headers_remove% option. Header lines whose names
28912are on either of these lists are not written out. If there are multiple
28913instances of any listed header, they are all skipped.
28914
28915After the remaining original header lines have been written, new header
28916lines that were specified by routers' %headers_add% options are written, in
28917the order in which they were attached to the address. These are followed by any
28918header lines specified by the transport's %headers_add% option.
28919
28920This way of handling header line modifications in routers and transports has
28921the following consequences:
28922
28923- The original set of header lines, possibly modified by the system filter,
28924remains ``visible'', in the sense that the $header_$'xxx' variables refer to
28925it, at all times.
28926
28927- Header lines that are added by a router's
28928%headers_add% option are not accessible by means of the $header_$'xxx'
28929expansion syntax in subsequent routers or the transport.
28930
28931- Conversely, header lines that are specified for removal by %headers_remove% in
28932a router remain visible to subsequent routers and the transport.
28933
28934- Headers added to an address by %headers_add% in a router cannot be removed by
28935a later router or by a transport.
28936
28937- An added header can refer to the contents of an original header that is to be
28938removed, even it has the same name as the added header. For example:
28939
28940 headers_remove = subject
28941 headers_add = Subject: new subject (was: $h_subject:)
28942
28943
28944*Warning*: The %headers_add% and %headers_remove% options cannot be used
28945for a ^redirect^ router that has the %one_time% option set.
28946
28947
28948
28949
28950
28951[[SECTconstr]]
28952Constructed addresses
28953~~~~~~~~~~~~~~~~~~~~~
28954cindex:[address,constructed]
28955cindex:[constructed address]
28956When Exim constructs a sender address for a locally-generated message, it uses
28957the form
28958
28959 <user name> <<login>@<qualify_domain>>
28960
28961For example:
28962
28963 Zaphod Beeblebrox <zaphod@end.univ.example>
28964
28965The user name is obtained from the %-F% command line option if set, or
28966otherwise by looking up the calling user by 'getpwuid()' and extracting the
28967``gecos'' field from the password entry. If the ``gecos'' field contains an
28968ampersand character, this is replaced by the login name with the first letter
28969upper cased, as is conventional in a number of operating systems. See the
28970%gecos_name% option for a way to tailor the handling of the ``gecos'' field. The
28971%unknown_username% option can be used to specify user names in cases when
28972there is no password file entry.
28973
28974In all cases, the user name is made to conform to RFC 2822 by quoting all or
28975parts of it if necessary. In addition, if it contains any non-printing
28976characters, it is encoded as described in RFC 2047, which defines a way of
28977including non-ASCII characters in header lines.
28978The value of the %headers_charset% option specifies the name of the encoding
28979that is used (the characters are assumed to be in this encoding).
28980The setting of %print_topbitchars% controls whether characters with the top
28981bit set (that is, with codes greater than 127) count as printing characters or
28982not.
28983
28984
28985
28986Case of local parts
28987~~~~~~~~~~~~~~~~~~~
28988cindex:[case of local parts]
28989cindex:[local part,case of]
28990RFC 2822 states that the case of letters in the local parts of addresses cannot
28991be assumed to be non-significant. Exim preserves the case of local parts of
28992addresses, but by default it uses a lower-cased form when it is routing,
28993because on most Unix systems, usernames are in lower case and case-insensitive
28994routing is required. However, any particular router can be made to use the
28995original case for local parts by setting the %caseful_local_part% generic
28996router option.
28997
28998cindex:[mixed-case login names]
28999If you must have mixed-case user names on your system, the best way to proceed,
29000assuming you want case-independent handling of incoming email, is to set up
29001your first router to convert incoming local parts in your domains to the
29002correct case by means of a file lookup. For example:
29003
29004....
29005correct_case:
29006 driver = redirect
29007 domains = +local_domains
29008 data = ${lookup{$local_part}cdb\
29009 {/etc/usercased.cdb}{$value}fail}\
29010 @$domain
29011....
29012
29013For this router, the local part is forced to lower case by the default action
29014(%caseful_local_part% is not set). The lower-cased local part is used to look
29015up a new local part in the correct case. If you then set %caseful_local_part%
29016on any subsequent routers which process your domains, they will operate on
29017local parts with the correct case in a case-sensitive manner.
29018
29019
29020
29021Dots in local parts
29022~~~~~~~~~~~~~~~~~~~
29023cindex:[dot,in local part]
29024cindex:[local part,dots in]
29025RFC 2822 forbids empty components in local parts. That is, an unquoted local
29026part may not begin or end with a dot, nor have two consecutive dots in the
29027middle. However, it seems that many MTAs do not enforce this, so Exim permits
29028empty components for compatibility.
29029
29030
29031
29032Rewriting addresses
29033~~~~~~~~~~~~~~~~~~~
29034cindex:[rewriting,addresses]
29035Rewriting of sender and recipient addresses, and addresses in headers, can
29036happen automatically, or as the result of configuration options, as described
29037in chapter <<CHAPrewrite>>. The headers that may be affected by this are 'Bcc:',
29038'Cc:', 'From:', 'Reply-To:', 'Sender:', and 'To:'.
29039
29040Automatic rewriting includes qualification, as mentioned above. The other case
29041in which it can happen is when an incomplete non-local domain is given. The
29042routing process may cause this to be expanded into the full domain name. For
29043example, a header such as
29044
29045 To: hare@teaparty
29046
29047might get rewritten as
29048
29049 To: hare@teaparty.wonderland.fict.example
29050
29051Rewriting as a result of routing is the one kind of message processing that
29052does not happen at input time, as it cannot be done until the address has
29053been routed.
29054
29055Strictly, one should not do 'any' deliveries of a message until all its
29056addresses have been routed, in case any of the headers get changed as a
29057result of routing. However, doing this in practice would hold up many
29058deliveries for unreasonable amounts of time, just because one address could not
29059immediately be routed. Exim therefore does not delay other deliveries when
29060routing of one or more addresses is deferred.
29061
29062
29063////////////////////////////////////////////////////////////////////////////
29064////////////////////////////////////////////////////////////////////////////
29065
29066[[CHAPSMTP]]
29067SMTP processing
29068---------------
29069cindex:[SMTP,processing details]
29070cindex:[LMTP,processing details]
29071Exim supports a number of different ways of using the SMTP protocol, and its
29072LMTP variant, which is an interactive protocol for transferring messages into a
29073closed mail store application. This chapter contains details of how SMTP is
29074processed. For incoming mail, the following are available:
29075
29076- SMTP over TCP/IP (Exim daemon or 'inetd');
29077
29078- SMTP over the standard input and output (the %-bs% option);
29079
29080- Batched SMTP on the standard input (the %-bS% option).
29081
29082For mail delivery, the following are available:
29083
29084- SMTP over TCP/IP (the ^smtp^ transport);
29085
29086- LMTP over TCP/IP (the ^smtp^ transport with the %protocol% option set to
29087``lmtp'');
29088
29089- LMTP over a pipe to a process running in the local host (the ^lmtp^
29090transport);
29091
29092- Batched SMTP to a file or pipe (the ^appendfile^ and ^pipe^ transports with
29093the %use_bsmtp% option set).
29094
29095'Batched SMTP' is the name for a process in which batches of messages are
29096stored in or read from files (or pipes), in a format in which SMTP commands are
29097used to contain the envelope information.
29098
29099
29100
29101[[SECToutSMTPTCP]]
29102Outgoing SMTP and LMTP over TCP/IP
29103~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29104cindex:[SMTP,outgoing over TCP/IP]
29105cindex:[outgoing SMTP over TCP/IP]
29106cindex:[LMTP,over TCP/IP]
29107cindex:[outgoing LMTP over TCP/IP]
29108cindex:[EHLO]
29109cindex:[HELO]
29110cindex:[SIZE option on MAIL command]
29111Outgoing SMTP and LMTP over TCP/IP is implemented by the ^smtp^ transport.
29112The %protocol% option selects which protocol is to be used, but the actual
29113processing is the same in both cases.
29114
29115If, in response to its EHLO command, Exim is told that the SIZE
29116parameter is supported, it adds SIZE=<'n'> to each subsequent MAIL
29117command. The value of <'n'> is the message size plus the value of the
29118%size_addition% option (default 1024) to allow for additions to the message
29119such as per-transport header lines, or changes made in a
29120cindex:[transport,filter]
29121cindex:[filter,transport filter]
29122transport filter. If %size_addition% is set negative, the use of SIZE is
29123suppressed.
29124
29125If the remote server advertises support for PIPELINING, Exim uses the
29126pipelining extension to SMTP (RFC 2197) to reduce the number of TCP/IP packets
29127required for the transaction.
29128
29129If the remote server advertises support for the STARTTLS command, and Exim
29130was built to support TLS encryption, it tries to start a TLS session unless the
29131server matches %hosts_avoid_tls%. See chapter <<CHAPTLS>> for more details.
29132
29133If the remote server advertises support for the AUTH command, Exim scans
29134the authenticators configuration for any suitable client settings, as described
29135in chapter <<CHAPSMTPAUTH>>.
29136
29137cindex:[carriage return]
29138cindex:[linefeed]
29139Responses from the remote host are supposed to be terminated by CR followed by
29140LF. However, there are known to be hosts that do not send CR characters, so in
29141order to be able to interwork with such hosts, Exim treats LF on its own as a
29142line terminator.
29143
29144If a message contains a number of different addresses, all those with the same
29145characteristics (for example, the same envelope sender) that resolve to the
29146same set of hosts, in the same order, are sent in a single SMTP transaction,
29147even if they are for different domains, unless there are more than the setting
29148of the %max_rcpts% option in the ^smtp^ transport allows, in which case they
29149are split into groups containing no more than %max_rcpts% addresses each. If
29150%remote_max_parallel% is greater than one, such groups may be sent in
29151parallel sessions. The order of hosts with identical MX values is not
29152significant when checking whether addresses can be batched in this way.
29153
29154When the ^smtp^ transport suffers a temporary failure that is not
29155message-related, Exim updates its transport-specific database, which contains
29156records indexed by host name that remember which messages are waiting for each
29157particular host. It also updates the retry database with new retry times.
29158
29159cindex:[hints database,retry keys]
29160Exim's retry hints are based on host name plus IP address, so if one address of
29161a multi-homed host is broken, it will soon be skipped most of the time.
29162See the next section for more detail about error handling.
29163
29164cindex:[SMTP,passed connection]
29165cindex:[SMTP,batching over TCP/IP]
29166When a message is successfully delivered over a TCP/IP SMTP connection, Exim
29167looks in the hints database for the transport to see if there are any queued
29168messages waiting for the host to which it is connected. If it finds one, it
29169creates a new Exim process using the %-MC% option (which can only be used by a
29170process running as root or the Exim user) and passes the TCP/IP socket to it so
29171that it can deliver another message using the same socket. The new process does
29172only those deliveries that are routed to the connected host, and may in turn
29173pass the socket on to a third process, and so on.
29174
29175The %connection_max_messages% option of the ^smtp^ transport can be used to
29176limit the number of messages sent down a single TCP/IP connection.
29177
29178cindex:[asterisk,after IP address]
29179The second and subsequent messages delivered down an existing connection are
29180identified in the main log by the addition of an asterisk after the closing
29181square bracket of the IP address.
29182
29183
29184
29185
29186[[SECToutSMTPerr]]
29187Errors in outgoing SMTP
29188~~~~~~~~~~~~~~~~~~~~~~~
29189cindex:[error,in outgoing SMTP]
29190cindex:[SMTP,errors in outgoing]
29191cindex:[host,error]
29192Three different kinds of error are recognized for outgoing SMTP: host errors,
29193message errors, and recipient errors.
29194
29195. A host error is not associated with a particular message or with a
29196particular recipient of a message. The host errors are:
29197+
29198--
29199- Connection refused or timed out,
29200
29201- Any error response code on connection,
29202
29203- Any error response code to EHLO or HELO,
29204
29205- Loss of connection at any time, except after ``.'',
29206
29207- I/O errors at any time,
29208
29209- Timeouts during the session, other than in response to MAIL, RCPT or
29210the ``.'' at the end of the data.
29211--
29212+
29213For a host error, a permanent error response on connection, or in response to
29214EHLO, causes all addresses routed to the host to be failed. Any other host
29215error causes all addresses to be deferred, and retry data to be created for the
29216host. It is not tried again, for any message, until its retry time arrives. If
29217the current set of addresses are not all delivered in this run (to some
29218alternative host), the message is added to the list of those waiting for this
29219host, so if it is still undelivered when a subsequent successful delivery is
29220made to the host, it will be sent down the same SMTP connection.
29221
29222. cindex:[message,error]
29223A message error is associated with a particular message when sent to a
29224particular host, but not with a particular recipient of the message. The
29225message errors are:
29226+
29227--
29228- Any error response code to MAIL, DATA, or the ``.'' that terminates
29229the data,
29230
29231- Timeout after MAIL,
29232
29233- Timeout or loss of connection after the ``.'' that terminates the data. A
29234timeout after the DATA command itself is treated as a host error, as is loss of
29235connection at any other time.
29236--
29237+
29238For a message error, a permanent error response (5##'xx') causes all addresses
29239to be failed, and a delivery error report to be returned to the sender. A
29240temporary error response (4##'xx'), or one of the timeouts, causes all
29241addresses to be deferred. Retry data is not created for the host, but instead,
29242a retry record for the combination of host plus message id is created. The
29243message is not added to the list of those waiting for this host. This ensures
29244that the failing message will not be sent to this host again until the retry
29245time arrives. However, other messages that are routed to the host are not
29246affected, so if it is some property of the message that is causing the error,
29247it will not stop the delivery of other mail.
29248+
29249If the remote host specified support for the SIZE parameter in its response
29250to EHLO, Exim adds SIZE='nnn' to the MAIL command, so an
29251over-large message will cause a message error because the error arrives as a
29252response to MAIL.
29253
29254. cindex:[recipient,error]
29255A recipient error is associated with a particular recipient of a message. The
29256recipient errors are:
29257+
29258--
29259- Any error response to RCPT,
29260
29261- Timeout after RCPT.
29262--
29263+
29264For a recipient error, a permanent error response (5##'xx') causes the
29265recipient address to be failed, and a bounce message to be returned to the
29266sender. A temporary error response (4##'xx') or a timeout causes the failing
29267address to be deferred, and routing retry data to be created for it. This is
29268used to delay processing of the address in subsequent queue runs, until its
29269routing retry time arrives. This applies to all messages, but because it
29270operates only in queue runs, one attempt will be made to deliver a new message
29271to the failing address before the delay starts to operate. This ensures that,
29272if the failure is really related to the message rather than the recipient
29273(``message too big for this recipient'' is a possible example), other messages
29274have a chance of getting delivered. If a delivery to the address does succeed,
29275the retry information gets cleared, so all stuck messages get tried again, and
29276the retry clock is reset.
29277+
29278The message is not added to the list of those waiting for this host. Use of the
29279host for other messages is unaffected, and except in the case of a timeout,
29280other recipients are processed independently, and may be successfully delivered
29281in the current SMTP session. After a timeout it is of course impossible to
29282proceed with the session, so all addresses get deferred. However, those other
29283than the one that failed do not suffer any subsequent retry delays. Therefore,
29284if one recipient is causing trouble, the others have a chance of getting
29285through when a subsequent delivery attempt occurs before the failing
29286recipient's retry time.
29287
29288///
29289End of list
29290///
29291
29292In all cases, if there are other hosts (or IP addresses) available for the
29293current set of addresses (for example, from multiple MX records), they are
29294tried in this run for any undelivered addresses, subject of course to their
29295own retry data. In other words, recipient error retry data does not take effect
29296until the next delivery attempt.
29297
29298Some hosts have been observed to give temporary error responses to every
29299MAIL command at certain times (``insufficient space'' has been seen). It
29300would be nice if such circumstances could be recognized, and defer data for the
29301host itself created, but this is not possible within the current Exim design.
29302What actually happens is that retry data for every (host, message) combination
29303is created.
29304
29305The reason that timeouts after MAIL and RCPT are treated specially is that
29306these can sometimes arise as a result of the remote host's verification
29307procedures. Exim makes this assumption, and treats them as if a temporary error
29308response had been received. A timeout after ``.'' is treated specially because
29309it is known that some broken implementations fail to recognize the end of the
29310message if the last character of the last line is a binary zero. Thus, it is
29311helpful to treat this case as a message error.
29312
29313Timeouts at other times are treated as host errors, assuming a problem with the
29314host, or the connection to it. If a timeout after MAIL, RCPT,
29315or ``.'' is really a connection problem, the assumption is that at the next try
29316the timeout is likely to occur at some other point in the dialogue, causing it
29317then to be treated as a host error.
29318
29319There is experimental evidence that some MTAs drop the connection after the
29320terminating ``.'' if they do not like the contents of the message for some
29321reason, in contravention of the RFC, which indicates that a 5##'xx' response
29322should be given. That is why Exim treats this case as a message rather than a
29323host error, in order not to delay other messages to the same host.
29324
29325
29326
29327
29328
29329Variable Envelope Return Paths (VERP)
29330~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29331cindex:[VERP]
29332cindex:[Variable Envelope Return Paths]
29333cindex:[envelope sender]
29334Variable Envelope Return Paths -- see
29335*ftp://koobera.math.uic.edu/www/proto/verp.txt[]* -- can be supported in Exim
29336by using the %return_path% generic transport option to rewrite the return path
29337at transport time. For example, the following could be used on an ^smtp^
29338transport:
29339
29340....
29341return_path = \
29342 ${if match {$return_path}{^(.+?)-request@your.dom.example\$}\
29343 {$1-request=$local_part%$domain@your.dom.example}fail}
29344....
29345
29346This has the effect of rewriting the return path (envelope sender) on all
29347outgoing SMTP messages, if the local part of the original return path ends in
29348``-request'', and the domain is 'your.dom.example'. The rewriting inserts the
29349local part and domain of the recipient into the return path. Suppose, for
29350example, that a message whose return path has been set to
29351'somelist-request@your.dom.example' is sent to
29352'subscriber@other.dom.example'. In the transport, the return path is
29353rewritten as
29354
29355 somelist-request=subscriber%other.dom.example@your.dom.example
29356
29357For this to work, you must arrange for outgoing messages that have ``-request''
29358in their return paths to have just a single recipient. This can be done by
29359setting
29360
29361 max_rcpt = 1
29362
29363in the ^smtp^ transport. Otherwise a single copy of a message might be
29364addressed to several different recipients in the same domain, in which case
29365$local_part$ is not available (because it is not unique). Of course, if you
29366do start sending out messages with this kind of return path, you must also
29367configure Exim to accept the bounce messages that come back to those paths.
29368Typically this would be done by setting an %local_part_suffix% option for a
29369suitable router.
29370
29371The overhead incurred in using VERP depends very much on the size of the
29372message, the number of recipient addresses that resolve to the same remote
29373host, and the speed of the connection over which the message is being sent. If
29374a lot of addresses resolve to the same host and the connection is slow, sending
29375a separate copy of the message for each address may take substantially longer
29376than sending a single copy with many recipients (for which VERP cannot be
29377used).
29378
29379
29380
29381Incoming SMTP messages over TCP/IP
29382~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29383cindex:[SMTP,incoming over TCP/IP]
29384cindex:[incoming SMTP over TCP/IP]
29385cindex:[inetd]
29386cindex:[daemon]
29387Incoming SMTP messages can be accepted in one of two ways: by running a
29388listening daemon, or by using 'inetd'. In the latter case, the entry in
29389_/etc/inetd.conf_ should be like this:
29390
29391 smtp stream tcp nowait exim /opt/exim/bin/exim in.exim -bs
29392
29393Exim distinguishes between this case and the case of a locally running user
29394agent using the %-bs% option by checking whether or not the standard input is
29395a socket. When it is, either the port must be privileged (less than 1024), or
29396the caller must be root or the Exim user. If any other user passes a socket
29397with an unprivileged port number, Exim prints a message on the standard error
29398stream and exits with an error code.
29399
29400By default, Exim does not make a log entry when a remote host connects or
29401disconnects (either via the daemon or 'inetd'), unless the disconnection is
29402unexpected. It can be made to write such log entries by setting the
29403%smtp_connection% log selector.
29404
29405cindex:[carriage return]
29406cindex:[linefeed]
29407Commands from the remote host are supposed to be terminated by CR followed by
29408LF. However, there are known to be hosts that do not send CR characters. In
29409order to be able to interwork with such hosts, Exim treats LF on its own as a
29410line terminator.
29411Furthermore, because common code is used for receiving messages from all
29412sources, a CR on its own is also interpreted as a line terminator. However, the
29413sequence ``CR, dot, CR'' does not terminate incoming SMTP data.
29414
29415cindex:[EHLO,invalid data]
29416cindex:[HELO,invalid data]
29417One area that sometimes gives rise to problems concerns the EHLO or
29418HELO commands. Some clients send syntactically invalid versions of these
29419commands, which Exim rejects by default. (This is nothing to do with verifying
29420the data that is sent, so %helo_verify_hosts% is not relevant.) You can tell
29421Exim not to apply a syntax check by setting %helo_accept_junk_hosts% to
29422match the broken hosts that send invalid commands.
29423
29424cindex:[SIZE option on MAIL command]
29425cindex:[MAIL,SIZE option]
29426The amount of disk space available is checked whenever SIZE is received on
29427a MAIL command, independently of whether %message_size_limit% or
29428%check_spool_space% is configured, unless %smtp_check_spool_space% is set
29429false. A temporary error is given if there is not enough space. If
29430%check_spool_space% is set, the check is for that amount of space plus the
29431value given with SIZE, that is, it checks that the addition of the incoming
29432message will not reduce the space below the threshold.
29433
29434When a message is successfully received, Exim includes the local message id in
29435its response to the final ``.'' that terminates the data. If the remote host logs
29436this text it can help with tracing what has happened to a message.
29437
29438The Exim daemon can limit the number of simultaneous incoming connections it is
29439prepared to handle (see the %smtp_accept_max% option). It can also limit the
29440number of simultaneous incoming connections from a single remote host (see the
29441%smtp_accept_max_per_host% option). Additional connection attempts are
29442rejected using the SMTP temporary error code 421.
29443
29444The Exim daemon does not rely on the SIGCHLD signal to detect when a
29445subprocess has finished, as this can get lost at busy times. Instead, it looks
29446for completed subprocesses every time it wakes up. Provided there are other
29447things happening (new incoming calls, starts of queue runs), completed
29448processes will be noticed and tidied away. On very quiet systems you may
29449sometimes see a ``defunct'' Exim process hanging about. This is not a problem; it
29450will be noticed when the daemon next wakes up.
29451
29452When running as a daemon, Exim can reserve some SMTP slots for specific hosts,
29453and can also be set up to reject SMTP calls from non-reserved hosts at times of
29454high system load -- for details see the %smtp_accept_reserve%,
29455%smtp_load_reserve%, and %smtp_reserve_hosts% options. The load check
29456applies in both the daemon and 'inetd' cases.
29457
29458Exim normally starts a delivery process for each message received, though this
29459can be varied by means of the %-odq% command line option and the
29460%queue_only%, %queue_only_file%, and %queue_only_load% options. The number
29461of simultaneously running delivery processes started in this way from SMTP
29462input can be limited by the %smtp_accept_queue% and
29463%smtp_accept_queue_per_connection% options. When either limit is reached,
29464subsequently received messages are just put on the input queue without starting
29465a delivery process.
29466
29467The controls that involve counts of incoming SMTP calls (%smtp_accept_max%,
29468%smtp_accept_queue%, %smtp_accept_reserve%) are not available when Exim is
29469started up from the 'inetd' daemon, because in that case each connection is
29470handled by an entirely independent Exim process. Control by load average is,
29471however, available with 'inetd'.
29472
29473Exim can be configured to verify addresses in incoming SMTP commands as they
29474are received. See chapter <<CHAPACL>> for details. It can also be configured to
29475rewrite addresses at this time -- before any syntax checking is done. See
29476section <<SECTrewriteS>>.
29477
29478Exim can also be configured to limit the rate at which a client host submits
29479MAIL and RCPT commands in a single SMTP session. See the
29480%smtp_ratelimit_hosts% option.
29481
29482
29483
29484Unrecognized SMTP commands
29485~~~~~~~~~~~~~~~~~~~~~~~~~~
29486cindex:[SMTP,unrecognized commands]
29487If Exim receives more than %smtp_max_unknown_commands% unrecognized SMTP
29488commands during a single SMTP connection, it drops the connection after sending
29489the error response to the last command. The default value for
29490%smtp_max_unknown_commands% is 3. This is a defence against some kinds of
29491abuse that subvert web servers into making connections to SMTP ports; in these
29492circumstances, a number of non-SMTP lines are sent first.
29493
29494
29495Syntax and protocol errors in SMTP commands
29496~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29497cindex:[SMTP,syntax errors]
29498cindex:[SMTP,protocol errors]
29499A syntax error is detected if an SMTP command is recognized, but there is
29500something syntactically wrong with its data, for example, a malformed email
29501address in a RCPT command. Protocol errors include invalid command
29502sequencing such as RCPT before MAIL. If Exim receives more than
29503%smtp_max_synprot_errors% such commands during a single SMTP connection, it
29504drops the connection after sending the error response to the last command. The
29505default value for %smtp_max_synprot_errors% is 3. This is a defence against
29506broken clients that loop sending bad commands (yes, it has been seen).
29507
29508
29509
29510Use of non-mail SMTP commands
29511~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29512cindex:[SMTP,non-mail commands]
29513The ``non-mail'' SMTP commands are those other than MAIL, RCPT, and
29514DATA. Exim counts such commands, and drops the connection if there are too
29515many of them in a single SMTP session. This action catches some
29516denial-of-service attempts and things like repeated failing AUTHs, or a mad
29517client looping sending EHLO. The global option %smtp_accept_max_nonmail%
29518defines what ``too many'' means. Its default value is 10.
29519
29520When a new message is expected, one occurrence of RSET is not counted. This
29521allows a client to send one RSET between messages (this is not necessary,
29522but some clients do it). Exim also allows one uncounted occurence of HELO
29523or EHLO, and one occurrence of STARTTLS between messages. After
29524starting up a TLS session, another EHLO is expected, and so it too is not
29525counted.
29526
29527The first occurrence of AUTH in a connection, or immediately following
29528STARTTLS is also not counted. Otherwise, all commands other than MAIL,
29529RCPT, DATA, and QUIT are counted.
29530
29531You can control which hosts are subject to the limit set by
29532%smtp_accept_max_nonmail% by setting
29533%smtp_accept_max_nonmail_hosts%. The default value is `\*`, which makes
29534the limit apply to all hosts. This option means that you can exclude any
29535specific badly-behaved hosts that you have to live with.
29536
29537
29538
29539
29540The VRFY and EXPN commands
29541~~~~~~~~~~~~~~~~~~~~~~~~~~
29542When Exim receives a VRFY or EXPN command on a TCP/IP connection, it
29543runs the ACL specified by %acl_smtp_vrfy% or %acl_smtp_expn% (as
29544appropriate) in order to decide whether the command should be accepted or not.
29545If no ACL is defined, the command is rejected.
29546
29547cindex:[VRFY,processing]
29548When VRFY is accepted, it runs exactly the same code as when Exim is
29549called with the %-bv% option.
29550
29551cindex:[EXPN,processing]
29552When EXPN is accepted, a single-level expansion of the address is done.
29553EXPN is treated as an ``address test'' (similar to the %-bt% option) rather
29554than a verification (the %-bv% option). If an unqualified local part is given
29555as the argument to EXPN, it is qualified with %qualify_domain%. Rejections
29556of VRFY and EXPN commands are logged on the main and reject logs, and
29557VRFY verification failures are logged on the main log for consistency with
29558RCPT failures.
29559
29560
29561
29562[[SECTETRN]]
29563The ETRN command
29564~~~~~~~~~~~~~~~~
29565cindex:[ETRN,processing]
29566RFC 1985 describes an SMTP command called ETRN that is designed to
29567overcome the security problems of the TURN command (which has fallen into
29568disuse). When Exim receives an ETRN command on a TCP/IP connection, it runs
29569the ACL specified by %acl_smtp_etrn% in order to decide whether the command
29570should be accepted or not. If no ACL is defined, the command is rejected.
29571
29572The ETRN command is concerned with ``releasing'' messages that are awaiting
29573delivery to certain hosts. As Exim does not organize its message queue by host,
29574the only form of ETRN that is supported by default is the one where the
29575text starts with the ``#'' prefix, in which case the remainder of the text is
29576specific to the SMTP server. A valid ETRN command causes a run of Exim with
29577the %-R% option to happen, with the remainder of the ETRN text as its
29578argument. For example,
29579
29580 ETRN #brigadoon
29581
29582runs the command
29583
29584 exim -R brigadoon
29585
29586which causes a delivery attempt on all messages with undelivered addresses
29587containing the text ``brigadoon''. When %smtp_etrn_serialize% is set (the
29588default), Exim prevents the simultaneous execution of more than one queue run
29589for the same argument string as a result of an ETRN command. This stops
29590a misbehaving client from starting more than one queue runner at once.
29591
29592cindex:[hints database,ETRN serialization]
29593Exim implements the serialization by means of a hints database in which a
29594record is written whenever a process is started by ETRN, and deleted when
29595the process completes. However, Exim does not keep the SMTP session waiting for
29596the ETRN process to complete. Once ETRN is accepted, the client is sent
29597a ``success'' return code. Obviously there is scope for hints records to get left
29598lying around if there is a system or program crash. To guard against this, Exim
29599ignores any records that are more than six hours old.
29600
29601cindex:[%smtp_etrn_command%]
29602For more control over what ETRN does, the %smtp_etrn_command% option can
29603used. This specifies a command that is run whenever ETRN is received,
29604whatever the form of its argument. For
29605example:
29606
29607 smtp_etrn_command = /etc/etrn_command $domain $sender_host_address
29608
29609The string is split up into arguments which are independently expanded. The
29610expansion variable $domain$ is set to the argument of the ETRN command,
29611and no syntax checking is done on the contents of this argument. Exim does not
29612wait for the command to complete, so its status code is not checked. Exim runs
29613under its own uid and gid when receiving incoming SMTP, so it is not possible
29614for it to change them before running the command.
29615
29616
29617
29618Incoming local SMTP
29619~~~~~~~~~~~~~~~~~~~
29620cindex:[SMTP,local incoming]
29621Some user agents use SMTP to pass messages to their local MTA using the
29622standard input and output, as opposed to passing the envelope on the command
29623line and writing the message to the standard input. This is supported by the
29624%-bs% option. This form of SMTP is handled in the same way as incoming
29625messages over TCP/IP (including the use of ACLs), except that the envelope
29626sender given in a MAIL command is ignored unless the caller is trusted. In
29627an ACL you can detect this form of SMTP input by testing for an empty host
29628identification. It is common to have this as the first line in the ACL that
29629runs for RCPT commands:
29630
29631 accept hosts = :
29632
29633This accepts SMTP messages from local processes without doing any other tests.
29634
29635
29636
29637[[SECTbatchSMTP]]
29638Outgoing batched SMTP
29639~~~~~~~~~~~~~~~~~~~~~
29640cindex:[SMTP,batched outgoing]
29641cindex:[batched SMTP output]
29642Both the ^appendfile^ and ^pipe^ transports can be used for handling batched
29643SMTP. Each has an option called %use_bsmtp% which causes messages to be output
29644in BSMTP format. No SMTP responses are possible for this form of delivery. All
29645it is doing is using SMTP commands as a way of transmitting the envelope along
29646with the message.
29647
29648The message is written to the file or pipe preceded by the SMTP commands
29649MAIL and RCPT, and followed by a line containing a single dot. Lines in
29650the message that start with a dot have an extra dot added. The SMTP command
29651HELO is not normally used. If it is required, the %message_prefix% option
29652can be used to specify it.
29653
29654Because ^appendfile^ and ^pipe^ are both local transports, they accept only
29655one recipient address at a time by default. However, you can arrange for them
29656to handle several addresses at once by setting the %batch_max% option. When
29657this is done for BSMTP, messages may contain multiple RCPT commands. See
29658chapter <<CHAPbatching>> for more details.
29659
29660When one or more addresses are routed to a BSMTP transport by a router that
29661sets up a host list, the name of the first host on the list is available to the
29662transport in the variable $host$. Here is an example of such a transport and
29663router:
29664
29665 begin routers
29666 route_append:
29667 driver = manualroute
29668 transport = smtp_appendfile
29669 route_list = domain.example batch.host.example
29670
29671 begin transports
29672 smtp_appendfile:
29673 driver = appendfile
29674 directory = /var/bsmtp/$host
29675 batch_max = 1000
29676 use_bsmtp
29677 user = exim
29678
29679This causes messages addressed to 'domain.example' to be written in BSMTP
29680format to _/var/bsmtp/batch.host.example_, with only a single copy of each
29681message (unless there are more than 1000 recipients).
29682
29683
29684
29685[[SECTincomingbatchedSMTP]]
29686Incoming batched SMTP
29687~~~~~~~~~~~~~~~~~~~~~
29688cindex:[SMTP,batched incoming]
29689cindex:[batched SMTP input]
29690The %-bS% command line option causes Exim to accept one or more messages by
29691reading SMTP on the standard input, but to generate no responses. If the caller
29692is trusted, the senders in the MAIL commands are believed; otherwise the
29693sender is always the caller of Exim. Unqualified senders and receivers are not
29694rejected (there seems little point) but instead just get qualified. HELO
29695and EHLO act as RSET; VRFY, EXPN, ETRN and HELP, act
29696as NOOP; QUIT quits.
29697
29698No policy checking is done for BSMTP input. That is, no ACL is run at anytime.
29699In this respect it is like non-SMTP local input.
29700
29701If an error is detected while reading a message, including a missing ``.'' at
29702the end, Exim gives up immediately. It writes details of the error to the
29703standard output in a stylized way that the calling program should be able to
29704make some use of automatically, for example:
29705
29706 554 Unexpected end of file
29707 Transaction started in line 10
29708 Error detected in line 14
29709
29710It writes a more verbose version, for human consumption, to the standard error
29711file, for example:
29712
29713 An error was detected while processing a file of BSMTP input.
29714 The error message was:
29715
29716 501 '>' missing at end of address
29717
29718 The SMTP transaction started in line 10.
29719 The error was detected in line 12.
29720 The SMTP command at fault was:
29721
29722 rcpt to:<malformed@in.com.plete
29723
29724 1 previous message was successfully processed.
29725 The rest of the batch was abandoned.
29726
29727The return code from Exim is zero only if there were no errors. It is 1 if some
29728messages were accepted before an error was detected, and 2 if no messages were
29729accepted.
29730
29731
29732
29733////////////////////////////////////////////////////////////////////////////
29734////////////////////////////////////////////////////////////////////////////
29735
29736[[CHAPemsgcust]]
29737[titleabbrev="Customizing messages"]
29738Customizing bounce and warning messages
29739---------------------------------------
29740When a message fails to be delivered, or remains on the queue for more than a
29741configured amount of time, Exim sends a message to the original sender, or
29742to an alternative configured address. The text of these messages is built into
29743the code of Exim, but it is possible to change it, either by adding a single
29744string, or by replacing each of the paragraphs by text supplied in a file.
29745
29746The 'From:' and 'To:' header lines are automatically generated; you can cause
29747a 'Reply-To:' line to be added by setting the %errors_reply_to% option. Exim
29748also adds the line
29749
29750 Auto-Submitted: auto-generated
29751
29752to all warning and bounce messages,
29753
29754
29755Customizing bounce messages
29756~~~~~~~~~~~~~~~~~~~~~~~~~~~
29757cindex:[customizing,bounce message]
29758cindex:[bounce message,customizing]
29759If %bounce_message_text% is set, its contents are included in the default
29760message immediately after ``This message was created automatically by mail
29761delivery software.'' The string is not expanded. It is not used if
29762%bounce_message_file% is set.
29763
29764When %bounce_message_file% is set, it must point to a template file for
29765constructing error messages. The file consists of a series of text items,
29766separated by lines consisting of exactly four asterisks. If the file cannot be
29767opened, default text is used and a message is written to the main and panic
29768logs. If any text item in the file is empty, default text is used for that
29769item.
29770
29771Each item of text that is read from the file is expanded, and there are two
29772expansion variables which can be of use here: $bounce_recipient$ is set to
29773the recipient of an error message while it is being created, and
29774$return_size_limit$ contains the value of the %return_size_limit% option,
29775rounded to a whole number.
29776
29777The items must appear in the file in the following order:
29778
29779- The first item is included in the headers, and should include at least a
29780'Subject:' header. Exim does not check the syntax of these headers.
29781
29782- The second item forms the start of the error message. After it, Exim lists the
29783failing addresses with their error messages.
29784
29785- The third item is used to introduce any text from pipe transports that is to be
29786returned to the sender. It is omitted if there is no such text.
29787
29788- The fourth item is used to introduce the copy of the message that is returned
29789as part of the error report.
29790
29791- The fifth item is added after the fourth one if the returned message is
29792truncated because it is bigger than %return_size_limit%.
29793
29794- The sixth item is added after the copy of the original message.
29795
29796The default state (%bounce_message_file% unset) is equivalent to the
29797following file, in which the sixth item is empty. The 'Subject:' line has been
29798split into two here in order to fit it on the page:
29799
29800 Subject: Mail delivery failed
29801 ${if eq{$sender_address}{$bounce_recipient}{: returning message to sender}}
29802 ****
29803 This message was created automatically by mail delivery software.
29804
29805 A message ${if eq{$sender_address}{$bounce_recipient}{that you sent }{sent by
29806
29807 <$sender_address>
29808
29809 }}could not be delivered to all of its recipients.
29810 The following address(es) failed:
29811 ****
29812 The following text was generated during the delivery attempt(s):
29813 ****
29814 ------ This is a copy of the message, including all the headers. ------
29815 ****
29816 ------ The body of the message is $message_size characters long; only the first
29817 ------ $return_size_limit or so are included here.
29818 ****
29819
29820
29821[[SECTcustwarn]]
29822Customizing warning messages
29823~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29824cindex:[customizing,warning message]
29825cindex:[warning of delay,customizing the message]
29826The option %warn_message_file% can be pointed at a template file for use when
29827warnings about message delays are created. In this case there are only three
29828text sections:
29829
29830- The first item is included in the headers, and should include at least a
29831'Subject:' header. Exim does not check the syntax of these headers.
29832
29833- The second item forms the start of the warning message. After it, Exim lists
29834the delayed addresses.
29835
29836- The third item then ends the message.
29837
29838The default state is equivalent to the following file, except that the line
29839starting ``A message'' has been split here, in order to fit it on the page:
29840
29841 Subject: Warning: message $message_id delayed $warn_message_delay
29842 ****
29843 This message was created automatically by mail delivery software.
29844
29845 A message ${if eq{$sender_address}{$warn_message_recipients}
29846 {that you sent }{sent by
29847
29848 <$sender_address>
29849
29850 }}has not been delivered to all of its recipients after
29851 more than $warn_message_delay on the queue on $primary_hostname.
29852
29853 The message identifier is: $message_id
29854 The subject of the message is: $h_subject
29855 The date of the message is: $h_date
29856
29857 The following address(es) have not yet been delivered:
29858 ****
29859 No action is required on your part. Delivery attempts will continue for
29860 some time, and this warning may be repeated at intervals if the message
29861 remains undelivered. Eventually the mail delivery software will give up,
29862 and when that happens, the message will be returned to you.
29863
29864except that in the default state the subject and date lines are omitted if no
29865appropriate headers exist. During the expansion of this file,
29866$warn_message_delay$ is set to the delay time in one of the forms ``<''n'>
29867minutes' or ``<''n'> hours', and $warn_message_recipients$ contains a list of
29868recipients for the warning message. There may be more than one if there are
29869multiple addresses with different %errors_to% settings on the routers that
29870handled them.
29871
29872
29873
29874
29875////////////////////////////////////////////////////////////////////////////
29876////////////////////////////////////////////////////////////////////////////
29877
29878[[CHAPcomconreq]]
29879[titleabbrev="Common configuration settings"]
29880Some common configuration settings
29881----------------------------------
29882This chapter discusses some configuration settings that seem to be fairly
29883common. More examples and discussion can be found in the Exim book.
29884
29885
29886
29887Sending mail to a smart host
29888~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29889cindex:[smart host,example router]
29890If you want to send all mail for non-local domains to a ``smart host'', you
29891should replace the default ^dnslookup^ router with a router which does the
29892routing explicitly:
29893
29894 send_to_smart_host:
29895 driver = manualroute
29896 route_list = !+local_domains smart.host.name
29897 transport = remote_smtp
29898
29899You can use the smart host's IP address instead of the name if you wish.
29900
29901If you are using Exim only to submit messages to a smart host, and not for
29902receiving incoming messages, you can arrange for it to do the submission
29903synchronously by setting the %mua_wrapper% option (see chapter
29904<<CHAPnonqueueing>>).
29905
29906
29907
29908
29909[[SECTmailinglists]]
29910Using Exim to handle mailing lists
29911~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29912cindex:[mailing lists]
29913Exim can be used to run simple mailing lists, but for large and/or complicated
29914requirements, the use of additional specialized mailing list software such as
29915Majordomo or Mailman is recommended.
29916
29917The ^redirect^ router can be used to handle mailing lists where each list
29918is maintained in a separate file, which can therefore be managed by an
29919independent manager. The %domains% router option can be used to run these
29920lists in a separate domain from normal mail. For example:
29921
29922 lists:
29923 driver = redirect
29924 domains = lists.example
29925 file = /usr/lists/$local_part
29926 forbid_pipe
29927 forbid_file
29928 errors_to = $local_part-request@lists.example
29929 no_more
29930
29931This router is skipped for domains other than 'lists.example'. For addresses
29932in that domain, it looks for a file that matches the local part. If there is no
29933such file, the router declines, but because %no_more% is set, no subsequent
29934routers are tried, and so the whole delivery fails.
29935
29936The %forbid_pipe% and %forbid_file% options prevent a local part from being
29937expanded into a file name or a pipe delivery, which is usually inappropriate in
29938a mailing list.
29939
29940cindex:[%errors_to%]
29941The %errors_to% option specifies that any delivery errors caused by addresses
29942taken from a mailing list are to be sent to the given address rather than the
29943original sender of the message. However, before acting on this, Exim verifies
29944the error address, and ignores it if verification fails.
29945
29946For example, using the configuration above, mail sent to
29947'dicts@lists.example' is passed on to those addresses contained in
29948_/usr/lists/dicts_, with error reports directed to
29949'dicts-request@lists.example', provided that this address can be verified.
29950There could be a file called _/usr/lists/dicts-request_ containing
29951the address(es) of this particular list's manager(s), but other approaches,
29952such as setting up an earlier router (possibly using the %local_part_prefix%
29953or %local_part_suffix% options) to handle addresses of the form %owner-xxx%
29954or %xxx-request%, are also possible.
29955
29956
29957
29958Syntax errors in mailing lists
29959~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29960cindex:[mailing lists,syntax errors in]
29961If an entry in redirection data contains a syntax error, Exim normally defers
29962delivery of the original address. That means that a syntax error in a mailing
29963list holds up all deliveries to the list. This may not be appropriate when a
29964list is being maintained automatically from data supplied by users, and the
29965addresses are not rigorously checked.
29966
29967If the %skip_syntax_errors% option is set, the ^redirect^ router just skips
29968entries that fail to parse, noting the incident in the log. If in addition
29969%syntax_errors_to% is set to a verifiable address, a message is sent to it
29970whenever a broken address is skipped. It is usually appropriate to set
29971%syntax_errors_to% to the same address as %errors_to%.
29972
29973
29974
29975Re-expansion of mailing lists
29976~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29977cindex:[mailing lists,re-expansion of]
29978Exim remembers every individual address to which a message has been delivered,
29979in order to avoid duplication, but it normally stores only the original
29980recipient addresses with a message. If all the deliveries to a mailing list
29981cannot be done at the first attempt, the mailing list is re-expanded when the
29982delivery is next tried. This means that alterations to the list are taken into
29983account at each delivery attempt, so addresses that have been added to
29984the list since the message arrived will therefore receive a copy of the
29985message, even though it pre-dates their subscription.
29986
29987If this behaviour is felt to be undesirable, the %one_time% option can be set
29988on the ^redirect^ router. If this is done, any addresses generated by the
29989router that fail to deliver at the first attempt are added to the message as
29990``top level'' addresses, and the parent address that generated them is marked
29991``delivered''. Thus, expansion of the mailing list does not happen again at the
29992subsequent delivery attempts. The disadvantage of this is that if any of the
29993failing addresses are incorrect, correcting them in the file has no effect on
29994pre-existing messages.
29995
29996The original top-level address is remembered with each of the generated
29997addresses, and is output in any log messages. However, any intermediate parent
29998addresses are not recorded. This makes a difference to the log only if the
29999%all_parents% selector is set, but for mailing lists there is normally only
30000one level of expansion anyway.
30001
30002
30003
30004Closed mailing lists
30005~~~~~~~~~~~~~~~~~~~~
30006cindex:[mailing lists,closed]
30007The examples so far have assumed open mailing lists, to which anybody may
30008send mail. It is also possible to set up closed lists, where mail is accepted
30009from specified senders only. This is done by making use of the generic
30010%senders% option to restrict the router that handles the list.
30011
30012The following example uses the same file as a list of recipients and as a list
30013of permitted senders. It requires three routers:
30014
30015....
30016lists_request:
30017 driver = redirect
30018 domains = lists.example
30019 local_part_suffix = -request
30020 file = /usr/lists/$local_part$local_part_suffix
30021 no_more
30022
30023lists_post:
30024 driver = redirect
30025 domains = lists.example
30026 senders = ${if exists {/usr/lists/$local_part}\
30027 {lsearch;/usr/lists/$local_part}{*}}
30028 file = /usr/lists/$local_part
30029 forbid_pipe
30030 forbid_file
30031 errors_to = $local_part-request@lists.example
30032 no_more
30033
30034lists_closed:
30035 driver = redirect
30036 domains = lists.example
30037 allow_fail
30038 data = :fail: $local_part@lists.example is a closed mailing list
30039....
30040
30041All three routers have the same %domains% setting, so for any other domains,
30042they are all skipped. The first router runs only if the local part ends in
30043%-request%. It handles messages to the list manager(s) by means of an open
30044mailing list.
30045
30046The second router runs only if the %senders% precondition is satisfied. It
30047checks for the existence of a list that corresponds to the local part, and then
30048checks that the sender is on the list by means of a linear search. It is
30049necessary to check for the existence of the file before trying to search it,
30050because otherwise Exim thinks there is a configuration error. If the file does
30051not exist, the expansion of %senders% is \*, which matches all senders. This
30052means that the router runs, but because there is no list, declines, and
30053%no_more% ensures that no further routers are run. The address fails with an
30054``unrouteable address'' error.
30055
30056The third router runs only if the second router is skipped, which happens when
30057a mailing list exists, but the sender is not on it. This router forcibly fails
30058the address, giving a suitable error message.
30059
30060
30061
30062
30063[[SECTvirtualdomains]]
30064Virtual domains
30065~~~~~~~~~~~~~~~
30066cindex:[virtual domains]
30067cindex:[domain,virtual]
30068The phrase 'virtual domain' is unfortunately used with two rather different
30069meanings:
30070
30071- A domain for which there are no real mailboxes; all valid local parts are
30072aliases for other email addresses. Common examples are organizational
30073top-level domains and ``vanity'' domains.
30074
30075- One of a number of independent domains that are all handled by the same host,
30076with mailboxes on that host, but where the mailbox owners do not necessarily
30077have login accounts on that host.
30078
30079The first usage is probably more common, and does seem more ``virtual'' than the
30080second. This kind of domain can be handled in Exim with a straightforward
30081aliasing router. One approach is to create a separate alias file for each
30082virtual domain. Exim can test for the existence of the alias file to determine
30083whether the domain exists. The ^dsearch^ lookup type is useful here, leading
30084to a router of this form:
30085
30086 virtual:
30087 driver = redirect
30088 domains = dsearch;/etc/mail/virtual
30089 data = ${lookup{$local_part}lsearch{/etc/mail/virtual/$domain}}
30090 no_more
30091
30092The %domains% option specifies that the router is to be skipped, unless there
30093is a file in the _/etc/mail/virtual_ directory whose name is the same as the
30094domain that is being processed. When the router runs, it looks up the local
30095part in the file to find a new address (or list of addresses). The %no_more%
30096setting ensures that if the lookup fails (leading to %data% being an empty
30097string), Exim gives up on the address without trying any subsequent routers.
30098
30099This one router can handle all the virtual domains because the alias file names
30100follow a fixed pattern. Permissions can be arranged so that appropriate people
30101can edit the different alias files. A successful aliasing operation results in
30102a new envelope recipient address, which is then routed from scratch.
30103
30104The other kind of ``virtual'' domain can also be handled in a straightforward
30105way. One approach is to create a file for each domain containing a list of
30106valid local parts, and use it in a router like this:
30107
30108 my_domains:
30109 driver = accept
30110 domains = dsearch;/etc/mail/domains
30111 local_parts = lsearch;/etc/mail/domains/$domain
30112 transport = my_mailboxes
30113
30114The address is accepted if there is a file for the domain, and the local part
30115can be found in the file. The %domains% option is used to check for the file's
30116existence because %domains% is tested before the %local_parts% option (see
30117section <<SECTrouprecon>>). You can't use %require_files%, because that option
30118is tested after %local_parts%. The transport is as follows:
30119
30120 my_mailboxes:
30121 driver = appendfile
30122 file = /var/mail/$domain/$local_part
30123 user = mail
30124
30125This uses a directory of mailboxes for each domain. The %user% setting is
30126required, to specify which uid is to be used for writing to the mailboxes.
30127
30128The configuration shown here is just one example of how you might support this
30129requirement. There are many other ways this kind of configuration can be set
30130up, for example, by using a database instead of separate files to hold all the
30131information about the domains.
30132
30133
30134
30135[[SECTmulbox]]
30136Multiple user mailboxes
30137~~~~~~~~~~~~~~~~~~~~~~~
30138cindex:[multiple mailboxes]
30139cindex:[mailbox,multiple]
30140cindex:[local part,prefix]
30141cindex:[local part,suffix]
30142Heavy email users often want to operate with multiple mailboxes, into which
30143incoming mail is automatically sorted. A popular way of handling this is to
30144allow users to use multiple sender addresses, so that replies can easily be
30145identified. Users are permitted to add prefixes or suffixes to their local
30146parts for this purpose. The wildcard facility of the generic router options
30147%local_part_prefix% and %local_part_suffix% can be used for this. For
30148example, consider this router:
30149
30150 userforward:
30151 driver = redirect
30152 check_local_user
30153 file = $home/.forward
30154 local_part_suffix = -*
30155 local_part_suffix_optional
30156 allow_filter
30157
30158It runs a user's _.forward_ file for all local parts of the form
30159'username-\*'. Within the filter file the user can distinguish different
30160cases by testing the variable $local_part_suffix$. For example:
30161
30162 if $local_part_suffix contains -special then
30163 save /home/$local_part/Mail/special
30164 endif
30165
30166If the filter file does not exist, or does not deal with such addresses, they
30167fall through to subsequent routers, and, assuming no subsequent use of the
30168%local_part_suffix% option is made, they presumably fail. Thus, users have
30169control over which suffixes are valid.
30170
30171Alternatively, a suffix can be used to trigger the use of a different
30172_.forward_ file -- which is the way a similar facility is implemented in
30173another MTA:
30174
30175 userforward:
30176 driver = redirect
30177 check_local_user
30178 file = $home/.forward$local_part_suffix
30179 local_part_suffix = -*
30180 local_part_suffix_optional
30181 allow_filter
30182
30183If there is no suffix, _.forward_ is used; if the suffix is '-special', for
30184example, _.forward-special_ is used. Once again, if the appropriate file
30185does not exist, or does not deal with the address, it is passed on to
30186subsequent routers, which could, if required, look for an unqualified
30187_.forward_ file to use as a default.
30188
30189
30190
30191Simplified vacation processing
30192~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30193cindex:[vacation processing]
30194The traditional way of running the 'vacation' program is for a user to set up
30195a pipe command in a _.forward_ file
30196(see section <<SECTspecitredli>> for syntax details).
30197This is prone to error by inexperienced users. There are two features of Exim
30198that can be used to make this process simpler for users:
30199
30200- A local part prefix such as ``vacation-'' can be specified on a router which
30201can cause the message to be delivered directly to the 'vacation' program, or
30202alternatively can use Exim's ^autoreply^ transport. The contents of a user's
30203_.forward_ file are then much simpler. For example:
30204
30205 spqr, vacation-spqr
30206
30207- The %require_files% generic router option can be used to trigger a
30208vacation delivery by checking for the existence of a certain file in the
30209user's home directory. The %unseen% generic option should also be used, to
30210ensure that the original delivery also proceeds. In this case, all the user has
30211to do is to create a file called, say, _.vacation_, containing a vacation
30212message.
30213
30214Another advantage of both these methods is that they both work even when the
30215use of arbitrary pipes by users is locked out.
30216
30217
30218
30219Taking copies of mail
30220~~~~~~~~~~~~~~~~~~~~~
30221cindex:[message,copying every]
30222Some installations have policies that require archive copies of all messages to
30223be made. A single copy of each message can easily be taken by an appropriate
30224command in a system filter, which could, for example, use a different file for
30225each day's messages.
30226
30227There is also a shadow transport mechanism that can be used to take copies of
30228messages that are successfully delivered by local transports, one copy per
30229delivery. This could be used, 'inter alia', to implement automatic
30230notification of delivery by sites that insist on doing such things.
30231
30232
30233
30234Intermittently connected hosts
30235~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30236cindex:[intermittently connected hosts]
30237It has become quite common (because it is cheaper) for hosts to connect to the
30238Internet periodically rather than remain connected all the time. The normal
30239arrangement is that mail for such hosts accumulates on a system that is
30240permanently connected.
30241
30242Exim was designed for use on permanently connected hosts, and so it is not
30243particularly well-suited to use in an intermittently connected environment.
30244Nevertheless there are some features that can be used.
30245
30246
30247Exim on the upstream server host
30248~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30249It is tempting to arrange for incoming mail for the intermittently connected
30250host to remain on Exim's queue until the client connects. However, this
30251approach does not scale very well. Two different kinds of waiting message are
30252being mixed up in the same queue -- those that cannot be delivered because of
30253some temporary problem, and those that are waiting for their destination host
30254to connect. This makes it hard to manage the queue, as well as wasting
30255resources, because each queue runner scans the entire queue.
30256
30257A better approach is to separate off those messages that are waiting for an
30258intermittently connected host. This can be done by delivering these messages
30259into local files in batch SMTP, ``mailstore'', or other envelope-preserving
30260format, from where they are transmitted by other software when their
30261destination connects. This makes it easy to collect all the mail for one host
30262in a single directory, and to apply local timeout rules on a per-message basis
30263if required.
30264
30265On a very small scale, leaving the mail on Exim's queue can be made to work. If
30266you are doing this, you should configure Exim with a long retry period for the
30267intermittent host. For example:
30268
30269 cheshire.wonderland.fict.example * F,5d,24h
30270
30271This stops a lot of failed delivery attempts from occurring, but Exim remembers
30272which messages it has queued up for that host. Once the intermittent host comes
30273online, forcing delivery of one message (either by using the %-M% or %-R%
30274options, or by using the ETRN SMTP command (see section <<SECTETRN>>)
30275causes all the queued up messages to be delivered, often down a single SMTP
30276connection. While the host remains connected, any new messages get delivered
30277immediately.
30278
30279If the connecting hosts do not have fixed IP addresses, that is, if a host is
30280issued with a different IP address each time it connects, Exim's retry
30281mechanisms on the holding host get confused, because the IP address is normally
30282used as part of the key string for holding retry information. This can be
30283avoided by unsetting %retry_include_ip_address% on the ^smtp^ transport.
30284Since this has disadvantages for permanently connected hosts, it is best to
30285arrange a separate transport for the intermittently connected ones.
30286
30287
30288
30289Exim on the intermittently connected client host
30290~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30291The value of %smtp_accept_queue_per_connection% should probably be
30292increased, or even set to zero (that is, disabled) on the intermittently
30293connected host, so that all incoming messages down a single connection get
30294delivered immediately.
30295
30296cindex:[SMTP,passed connection]
30297cindex:[SMTP,multiple deliveries]
30298cindex:[multiple SMTP deliveries]
30299Mail waiting to be sent from an intermittently connected host will probably
30300not have been routed, because without a connection DNS lookups are not
30301possible. This means that if a normal queue run is done at connection time,
30302each message is likely to be sent in a separate SMTP session. This can be
30303avoided by starting the queue run with a command line option beginning with
30304%-qq% instead of %-q%. In this case, the queue is scanned twice. In the first
30305pass, routing is done but no deliveries take place. The second pass is a normal
30306queue run; since all the messages have been previously routed, those destined
30307for the same host are likely to get sent as multiple deliveries in a single
30308SMTP connection.
30309
30310
30311
30312////////////////////////////////////////////////////////////////////////////
30313////////////////////////////////////////////////////////////////////////////
30314
30315[[CHAPnonqueueing]]
30316[titleabbrev="Exim as a non-queueing client"]
30317Using Exim as a non-queueing client
30318-----------------------------------
30319cindex:[client, non-queueing]
30320cindex:[smart host,queueing; suppressing]
30321On a personal computer, it is a common requirement for all
30322email to be sent to a ``smart host''. There are plenty of MUAs that can be
30323configured to operate that way, for all the popular operating systems.
30324However, there are some MUAs for Unix-like systems that cannot be so
30325configured: they submit messages using the command line interface of
30326_/usr/sbin/sendmail_. Furthermore, utility programs such as 'cron' submit
30327messages this way.
30328
30329If the personal computer runs continuously, there is no problem, because it can
30330run a conventional MTA that handles delivery to the smart host, and deal with
30331any delays via its queueing mechanism. However, if the computer does not run
30332continuously or runs different operating systems at different times, queueing
30333email is not desirable.
30334
30335There is therefore a requirement for something that can provide the
30336_/usr/sbin/sendmail_ interface but deliver messages to a smart host without
30337any queueing or retrying facilities. Furthermore, the delivery to the smart
30338host should be synchronous, so that if it fails, the sending MUA is immediately
30339informed. In other words, we want something that extends an MUA that submits
30340to a local MTA via the command line so that it behaves like one that submits
30341to a remote smart host using TCP/SMTP.
30342
30343There are a number of applications (for example, there is one called 'ssmtp')
30344that do this job. However, people have found them to be lacking in various
30345ways. For instance, you might want to allow aliasing and forwarding to be done
30346before sending a message to the smart host.
30347
30348Exim already had the necessary infrastructure for doing this job. Just a few
30349tweaks were needed to make it behave as required, though it is somewhat of an
30350overkill to use a fully-featured MTA for this purpose.
30351
30352cindex:[%mua_wrapper%]
30353There is a Boolean global option called %mua_wrapper%, defaulting false.
30354Setting %mua_wrapper% true causes Exim to run in a special mode where it
30355assumes that it is being used to ``wrap'' a command-line MUA in the manner
30356just described. As well as setting %mua_wrapper%, you also need to provide a
30357compatible router and transport configuration. Typically there will be just one
30358router and one transport, sending everything to a smart host.
30359
30360When run in MUA wrapping mode, the behaviour of Exim changes in the
30361following ways:
30362
30363- A daemon cannot be run, nor will Exim accept incoming messages from 'inetd'.
30364In other words, the only way to submit messages is via the command line.
30365
30366- Each message is synchonously delivered as soon as it is received (%-odi% is
30367assumed). All queueing options (%queue_only%, %queue_smtp_domains%,
30368%control% in an ACL, etc.) are quietly ignored. The Exim reception process does
30369not finish until the delivery attempt is complete. If the delivery is
30370successful, a zero return code is given.
30371
30372- Address redirection is permitted, but the final routing for all addresses must
30373be to the same remote transport, and to the same list of hosts. Furthermore,
30374the return address (envelope sender) must be the same for all recipients, as
30375must any added or deleted header lines. In other words, it must be possible to
30376deliver the message in a single SMTP transaction, however many recipients there
30377are.
30378
30379- If these conditions are not met, or if routing any address results in a
30380failure or defer status, or if Exim is unable to deliver all the recipients
30381successfully to one of the smart hosts, delivery of the entire message fails.
30382
30383- Because no queueing is allowed, all failures are treated as permanent; there
30384is no distinction between 4##'xx' and 5##'xx' SMTP response codes from the
30385smart host. Furthermore, because only a single yes/no response can be given to
30386the caller, it is not possible to deliver to some recipients and not others. If
30387there is an error (temporary or permanent) for any recipient, all are failed.
30388
30389- If more than one smart host is listed, Exim will try another host after a
30390connection failure or a timeout, in the normal way. However, if this kind of
30391failure happens for all the hosts, the delivery fails.
30392
30393- When delivery fails, an error message is written to the standard error stream
30394(as well as to Exim's log), and Exim exits to the caller with a return code
30395value 1. The message is expunged from Exim's spool files. No bounce messages
30396are ever generated.
30397
30398- No retry data is maintained, and any retry rules are ignored.
30399
30400- A number of Exim options are overridden: %deliver_drop_privilege% is forced
30401true, %max_rcpt% in the smtp transport is forced to ``unlimited'',
30402%remote_max_parallel% is forced to one, and fallback hosts are ignored.
30403
30404The overall effect is that Exim makes a single synchronous attempt to deliver
30405the message, failing if there is any kind of problem. Because no local
30406deliveries are done and no daemon can be run, Exim does not need root
30407privilege. It should be possible to run it setuid to 'exim' instead of setuid
30408to 'root'. See section <<SECTrunexiwitpri>> for a general discussion about the
30409advantages and disadvantages of running without root privilege.
30410
30411
30412
30413
30414////////////////////////////////////////////////////////////////////////////
30415////////////////////////////////////////////////////////////////////////////
30416
30417[[CHAPlog]]
30418Log files
30419---------
30420cindex:[log,types of]
30421cindex:[log,general description]
30422Exim writes three different logs, referred to as the main log, the reject log,
30423and the panic log:
30424
30425- cindex:[main log]
30426The main log records the arrival of each message and each delivery in a single
30427line in each case. The format is as compact as possible, in an attempt to keep
30428down the size of log files. Two-character flag sequences make it easy to pick
30429out these lines. A number of other events are recorded in the main log. Some of
30430them are optional, in which case the %log_selector% option controls whether
30431they are included or not. A Perl script called 'eximstats', which does simple
30432analysis of main log files, is provided in the Exim distribution (see section
30433<<SECTmailstat>>).
30434
30435- cindex:[reject log]
30436The reject log records information from messages that are rejected as a result
30437of a configuration option (that is, for policy reasons).
30438The first line of each rejection is a copy of the line that is also written to
30439the main log. Then, if the message's header has been read at the time the log
30440is written, its contents are written to this log. Only the original header
30441lines are available; header lines added by ACLs are not logged. You can use the
30442reject log to check that your policy controls are working correctly; on a busy
30443host this may be easier than scanning the main log for rejection messages. You
30444can suppress the writing of the reject log by setting %write_rejectlog% false.
30445
30446- cindex:[panic log]
30447cindex:[system log]
30448When certain serious errors occur, Exim writes entries to its panic log. If the
30449error is sufficiently disastrous, Exim bombs out afterwards. Panic log entries
30450are usually written to the main log as well, but can get lost amid the mass of
30451other entries. The panic log should be empty under normal circumstances. It is
30452therefore a good idea to check it (or to have a 'cron' script check it)
30453regularly, in order to become aware of any problems. When Exim cannot open its
30454panic log, it tries as a last resort to write to the system log (syslog). This
30455is opened with LOG_PID+LOG_CONS and the facility code of LOG_MAIL. The
30456message itself is written at priority LOG_CRIT.
30457
30458Every log line starts with a timestamp, in the format shown in this example:
30459
30460 2001-09-16 16:09:47 SMTP connection from [127.0.0.1] closed by QUIT
30461
30462By default, the timestamps are in the local timezone. There are two
30463ways of changing this:
30464
30465- You can set the %timezone% option to a different time zone; in particular, if
30466you set
30467+
30468 timezone = UTC
30469+
30470the timestamps will be in UTC (aka GMT).
30471
30472- If you set %log_timezone% true, the time zone is added to the timestamp, for
30473example:
30474+
30475 2003-04-25 11:17:07 +0100 Start queue run: pid=12762
30476
30477
30478
30479
30480
30481[[SECTwhelogwri]]
30482Where the logs are written
30483~~~~~~~~~~~~~~~~~~~~~~~~~~
30484cindex:[log,destination]
30485cindex:[log,to file]
30486cindex:[log,to syslog]
30487cindex:[syslog]
30488The logs may be written to local files, or to syslog, or both. However, it
30489should be noted that many syslog implementations use UDP as a transport, and
30490are therefore unreliable in the sense that messages are not guaranteed to
30491arrive at the loghost, nor is the ordering of messages necessarily maintained.
30492It has also been reported that on large log files (tens of megabytes) you may
30493need to tweak syslog to prevent it syncing the file with each write -- on Linux
30494this has been seen to make syslog take 90% plus of CPU time.
30495
30496The destination for Exim's logs is configured by setting LOG_FILE_PATH in
30497_Local/Makefile_ or by setting %log_file_path% in the run time
30498configuration. This latter string is expanded, so it can contain, for example,
30499references to the host name:
30500
30501 log_file_path = /var/log/$primary_hostname/exim_%slog
30502
30503It is generally advisable, however, to set the string in _Local/Makefile_
30504rather than at run time, because then the setting is available right from the
30505start of Exim's execution. Otherwise, if there's something it wants to log
30506before it has read the configuration file (for example, an error in the
30507configuration file) it will not use the path you want, and may not be able to
30508log at all.
30509
30510The value of LOG_FILE_PATH or %log_file_path% is a colon-separated
30511list, currently limited to at most two items. This is one option where the
30512facility for changing a list separator may not be used. The list must always be
30513colon-separated. If an item in the list is ``syslog'' then syslog is used;
30514otherwise the item must either be an absolute path, containing `%s` at the
30515point where ``main'', ``reject'', or ``panic'' is to be inserted, or be empty,
30516implying the use of a default path.
30517
30518When Exim encounters an empty item in the list, it searches the list defined by
30519LOG_FILE_PATH, and uses the first item it finds that is neither empty nor
30520``syslog''. This means that an empty item in %log_file_path% can be used to
30521mean ``use the path specified at build time''. It no such item exists, log files
30522are written in the _log_ subdirectory of the spool directory. This is
30523equivalent to the setting:
30524
30525 log_file_path = $spool_directory/log/%slog
30526
30527If you do not specify anything at build time or run time, that is where the
30528logs are written.
30529
30530A log file path may also contain `%D` if datestamped log file names are in
30531use -- see section <<SECTdatlogfil>> below.
30532
30533Here are some examples of possible settings:
30534
30535&&&
30536`LOG_FILE_PATH=syslog ` syslog only
30537`LOG_FILE_PATH=:syslog ` syslog and default path
30538`LOG_FILE_PATH=syslog : /usr/log/exim_%s ` syslog and specified path
30539`LOG_FILE_PATH=/usr/log/exim_%s ` specified path only
30540&&&
30541
30542If there are more than two paths in the list, the first is used and a panic
30543error is logged.
30544
30545
30546
30547Logging to local files that are periodically ``cycled''
30548~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30549cindex:[log,cycling local files]
30550cindex:[cycling logs]
30551cindex:['exicyclog']
30552cindex:[log,local files; writing to]
30553Some operating systems provide centralized and standardised methods for cycling
30554log files. For those that do not, a utility script called 'exicyclog' is
30555provided (see section <<SECTcyclogfil>>). This renames and compresses the main
30556and reject logs each time it is called. The maximum number of old logs to keep
30557can be set. It is suggested this script is run as a daily 'cron' job.
30558
30559An Exim delivery process opens the main log when it first needs to write to it,
30560and it keeps the file open in case subsequent entries are required -- for
30561example, if a number of different deliveries are being done for the same
30562message. However, remote SMTP deliveries can take a long time, and this means
30563that the file may be kept open long after it is renamed if 'exicyclog' or
30564something similar is being used to rename log files on a regular basis. To
30565ensure that a switch of log files is noticed as soon as possible, Exim calls
30566'stat()' on the main log's name before reusing an open file, and if the file
30567does not exist, or its inode has changed, the old file is closed and Exim
30568tries to open the main log from scratch. Thus, an old log file may remain open
30569for quite some time, but no Exim processes should write to it once it has been
30570renamed.
30571
30572
30573
30574[[SECTdatlogfil]]
30575Datestamped log files
30576~~~~~~~~~~~~~~~~~~~~~
30577cindex:[log,datestamped files]
30578Instead of cycling the main and reject log files by renaming them
30579periodically, some sites like to use files whose names contain a datestamp,
30580for example, _mainlog-20031225_. The datestamp is in the form _yyyymmdd_.
30581Exim has support for this way of working. It is enabled by setting the
30582%log_file_path% option to a path that includes `%D` at the point where the
30583datestamp is required. For example:
30584
30585 log_file_path = /var/spool/exim/log/%slog-%D
30586 log_file_path = /var/log/exim-%s-%D.log
30587 log_file_path = /var/spool/exim/log/%D-%slog
30588
30589As before, `%s` is replaced by ``main'' or ``reject''; the following are examples
30590of names generated by the above examples:
30591
30592 /var/spool/exim/log/mainlog-20021225
30593 /var/log/exim-reject-20021225.log
30594 /var/spool/exim/log/20021225-mainlog
30595
30596When this form of log file is specified, Exim automatically switches to new
30597files at midnight. It does not make any attempt to compress old logs; you
30598will need to write your own script if you require this. You should not
30599run 'exicyclog' with this form of logging.
30600
30601The location of the panic log is also determined by %log_file_path%, but it
30602is not datestamped, because rotation of the panic log does not make sense.
30603When generating the name of the panic log, `%D` is removed from the string.
30604In addition, if it immediately follows a slash, a following non-alphanumeric
30605character is removed; otherwise a preceding non-alphanumeric character is
30606removed. Thus, the three examples above would give these panic log names:
30607
30608 /var/spool/exim/log/paniclog
30609 /var/log/exim-panic.log
30610 /var/spool/exim/log/paniclog
30611
30612
30613
30614
30615Logging to syslog
30616~~~~~~~~~~~~~~~~~
30617cindex:[log,syslog; writing to]
30618The use of syslog does not change what Exim logs or the format of its messages,
30619except in one respect. If %syslog_timestamp% is set false, the timestamps on
30620Exim's log lines are omitted when these lines are sent to syslog. Apart from
30621that, the same strings are written to syslog as to log files. The syslog
30622``facility'' is set to LOG_MAIL, and the program name to ``exim''
30623by default, but you can change these by setting the %syslog_facility% and
30624%syslog_processname% options, respectively. If Exim was compiled with
30625SYSLOG_LOG_PID set in _Local/Makefile_ (this is the default in
30626_src/EDITME_), then, on systems that permit it (all except ULTRIX), the
30627LOG_PID flag is set so that the 'syslog()' call adds the pid as well as
30628the time and host name to each line.
30629The three log streams are mapped onto syslog priorities as follows:
30630
30631- 'mainlog' is mapped to LOG_INFO
30632
30633- 'rejectlog' is mapped to LOG_NOTICE
30634
30635- 'paniclog' is mapped to LOG_ALERT
30636
30637Many log lines are written to both 'mainlog' and 'rejectlog', and some are
30638written to both 'mainlog' and 'paniclog', so there will be duplicates if
30639these are routed by syslog to the same place. You can suppress this duplication
30640by setting %syslog_duplication% false.
30641
30642Exim's log lines can sometimes be very long, and some of its 'rejectlog'
30643entries contain multiple lines when headers are included. To cope with both
30644these cases, entries written to syslog are split into separate 'syslog()'
30645calls at each internal newline, and also after a maximum of
30646870 data characters. (This allows for a total syslog line length of 1024, when
30647additions such as timestamps are added.) If you are running a syslog
30648replacement that can handle lines longer than the 1024 characters allowed by
30649RFC 3164, you should set
30650
30651 SYSLOG_LONG_LINES=yes
30652
30653in _Local/Makefile_ before building Exim. That stops Exim from splitting long
30654lines, but it still splits at internal newlines in 'reject' log entries.
30655
30656To make it easy to re-assemble split lines later, each component of a split
30657entry starts with a string of the form ``[<''n'>/<'m'>]' or ``[<''n'>\<'m'>]'
30658where <'n'> is the component number and <'m'> is the total number of components
30659in the entry. The / delimiter is used when the line was split because it was
30660too long; if it was split because of an internal newline, the \ delimiter is
30661used. For example, supposing the length limit to be 70 instead of 1000, the
30662following would be the result of a typical rejection message to 'mainlog'
30663(LOG_INFO), each line in addition being preceded by the time, host name, and
30664pid as added by syslog:
30665
30666 $smc\{[1/3] 2002-09-16 16:09:43 16RdAL-0006pc-00 rejected from [127.0.0.1] (ph10):
30667 [2/3] syntax error in 'From' header when scanning for sender: missing or ma
30668 [3/3] lformed local part in "<>" (envelope sender is <ph10@cam.example>)\}
30669
30670The same error might cause the following lines to be written to ``rejectlog''
30671(LOG_NOTICE):
30672
30673 $smc\{[1/14] 2002-09-16 16:09:43 16RdAL-0006pc-00 rejected from [127.0.0.1] (ph10):
30674 [2/14] syntax error in 'From' header when scanning for sender: missing or ma
30675 [3\14] lformed local part in "<>" (envelope sender is <ph10@cam.example>)
30676 [4\14] Recipients: ph10@some.domain.cam.example
30677 [5\14] P Received: from [127.0.0.1] (ident=ph10)
30678 [6\14] by xxxxx.cam.example with smtp (Exim 4.00)
30679 [7\14] id 16RdAL-0006pc-00
30680 [8\14] for ph10@cam.example; Mon, 16 Sep 2002 16:09:43 +0100
30681 [9\14] F From: <>
30682 [10\14] Subject: this is a test header
30683 [11\14] X-something: this is another header
30684 [12\14] I Message-Id: <E16RdAL-0006pc-00@xxxxx.cam.example>
30685 [13\14] B Bcc:
30686 [14/14] Date: Mon, 16 Sep 2002 16:09:43 +0100\}
30687
30688Log lines that are neither too long nor contain newlines are written to syslog
30689without modification.
30690
30691If only syslog is being used, the Exim monitor is unable to provide a log tail
30692display, unless syslog is routing 'mainlog' to a file on the local host and
30693the environment variable EXIMON_LOG_FILE_PATH is set to tell the monitor
30694where it is.
30695
30696
30697
30698Log line flags
30699~~~~~~~~~~~~~~
30700One line is written to the main log for each message received, and for each
30701successful, unsuccessful, and delayed delivery. These lines can readily be
30702picked out by the distinctive two-character flags that immediately follow the
30703timestamp. The flags are:
30704
30705&&&
30706`<=` message arrival
30707`=>` normal message delivery
30708`->` additional address in same delivery
30709`\*>` delivery suppressed by %-N%
30710`\*\*` delivery failed; address bounced
30711`==` delivery deferred; temporary problem
30712&&&
30713
30714
30715
30716Logging message reception
30717~~~~~~~~~~~~~~~~~~~~~~~~~
30718cindex:[log,reception line]
30719The format of the single-line entry in the main log that is written for every
30720message received is shown in the basic example below, which is split over
30721several lines in order to fit it on the page:
30722
30723 2002-10-31 08:57:53 16ZCW1-0005MB-00 <= kryten@dwarf.fict.example
30724 H=mailer.fict.example [192.168.123.123] U=exim
30725 P=smtp S=5678 id=<incoming message id>
30726
30727The address immediately following ``<='' is the envelope sender address. A bounce
30728message is shown with the sender address ``<>'', and if it is locally generated,
30729this is followed by an item of the form
30730
30731 R=<message id>
30732
30733which is a reference to the message that caused the bounce to be sent.
30734
30735cindex:[HELO]
30736cindex:[EHLO]
30737For messages from other hosts, the H and U fields identify the remote host and
30738record the RFC 1413 identity of the user that sent the message, if one was
30739received. The number given in square brackets is the IP address of the sending
30740host. If there is a single, unparenthesized host name in the H field, as
30741above, it has been verified to correspond to the IP address (see the
30742%host_lookup% option). If the name is in parentheses, it was the name quoted
30743by the remote host in the SMTP HELO or EHLO command, and has not been
30744verified. If verification yields a different name to that given for HELO or
30745EHLO, the verified name appears first, followed by the HELO or EHLO
30746name in parentheses.
30747
30748Misconfigured hosts (and mail forgers) sometimes put an IP address, with or
30749without brackets, in the HELO or EHLO command, leading to entries in
30750the log containing text like these examples:
30751
30752 H=(10.21.32.43) [192.168.8.34]
30753 H=([10.21.32.43]) [192.168.8.34]
30754
30755This can be confusing. Only the final address in square brackets can be relied
30756on.
30757
30758For locally generated messages (that is, messages not received over TCP/IP),
30759the H field is omitted, and the U field contains the login name of the caller
30760of Exim.
30761
30762cindex:[authentication,logging]
30763cindex:[AUTH,logging]
30764For all messages, the P field specifies the protocol used to receive the
30765message. This is set to ``esmtpa'' for messages received from hosts that have
30766authenticated themselves using the SMTP AUTH command. In this case there is an
30767additional item A= followed by the name of the authenticator that was used. If
30768an authenticated identification was set up by the authenticator's
30769%server_set_id% option, this is logged too, separated by a colon from the
30770authenticator name.
30771
30772The id field records the existing message id, if present.
30773cindex:[size,of message]
30774The size of the received message is given by the S field. When the message is
30775delivered, headers may get removed or added, so that the size of delivered
30776copies of the message may not correspond with this value (and indeed may be
30777different to each other).
30778
30779The %log_selector% option can be used to request the logging of additional
30780data when a message is received. See section <<SECTlogselector>> below.
30781
30782
30783
30784Logging deliveries
30785~~~~~~~~~~~~~~~~~~
30786cindex:[log,delivery line]
30787The format of the single-line entry in the main log that is written for every
30788delivery is shown in one of the examples below, for local and remote deliveries,
30789respectively. Each example has been split into two lines in order to fit
30790it on the page:
30791
30792 2002-10-31 08:59:13 16ZCW1-0005MB-00 => marv <marv@hitch.fict.example>
30793 R=localuser T=local_delivery
30794 2002-10-31 09:00:10 16ZCW1-0005MB-00 => monk@holistic.fict.example
30795 R=dnslookup T=remote_smtp H=holistic.fict.example [192.168.234.234]
30796
30797For ordinary local deliveries, the original address is given in angle brackets
30798after the final delivery address, which might be a pipe or a file. If
30799intermediate address(es) exist between the original and the final address, the
30800last of these is given in parentheses after the final address. The R and T
30801fields record the router and transport that were used to process the address.
30802
30803If a shadow transport was run after a successful local delivery, the log line
30804for the successful delivery has an item added on the end, of the form
30805
30806 ST=<shadow transport name>
30807
30808If the shadow transport did not succeed, the error message is put in
30809parentheses afterwards.
30810
30811When more than one address is included in a single delivery (for example, two
30812SMTP RCPT commands in one transaction) the second and subsequent
30813addresses are flagged with `->` instead of `=>`. When two or more
30814messages are delivered down a single SMTP connection, an asterisk follows the
30815IP address in the log lines for the second and subsequent messages.
30816
30817The generation of a reply message by a filter file gets logged as a ``delivery''
30818to the addressee, preceded by ``>''.
30819
30820The %log_selector% option can be used to request the logging of additional
30821data when a message is delivered. See section <<SECTlogselector>> below.
30822
30823
30824
30825Discarded deliveries
30826~~~~~~~~~~~~~~~~~~~~
30827cindex:[discarded messages]
30828cindex:[message,discarded]
30829cindex:[delivery,discarded; logging]
30830When a message is discarded as a result of the command ``seen finish'' being
30831obeyed in a filter file which generates no deliveries, a log entry of the form
30832
30833 2002-12-10 00:50:49 16auJc-0001UB-00 => discarded
30834 <low.club@bridge.example> R=userforward
30835
30836is written, to record why no deliveries are logged. When a message is discarded
30837because it is aliased to ``:blackhole:'' the log line is like this:
30838
30839 1999-03-02 09:44:33 10HmaX-0005vi-00 => :blackhole:
30840 <hole@nowhere.example> R=blackhole_router
30841
30842
30843
30844
30845Deferred deliveries
30846~~~~~~~~~~~~~~~~~~~
30847When a delivery is deferred, a line of the following form is logged:
30848
30849 2002-12-19 16:20:23 16aiQz-0002Q5-00 == marvin@endrest.example
30850 R=dnslookup T=smtp defer (146): Connection refused
30851
30852In the case of remote deliveries, the error is the one that was given for the
30853last IP address that was tried. Details of individual SMTP failures are also
30854written to the log, so the above line would be preceded by something like
30855
30856 2002-12-19 16:20:23 16aiQz-0002Q5-00 Failed to connect to
30857 mail1.endrest.example [192.168.239.239]: Connection refused
30858
30859When a deferred address is skipped because its retry time has not been reached,
30860a message is written to the log, but this can be suppressed by setting an
30861appropriate value in %log_selector%.
30862
30863
30864
30865Delivery failures
30866~~~~~~~~~~~~~~~~~
30867cindex:[delivery,failure; logging]
30868If a delivery fails because an address cannot be routed, a line of the
30869following form is logged:
30870
30871 1995-12-19 16:20:23 0tRiQz-0002Q5-00 ** jim@trek99.example
30872 <jim@trek99.example>: unknown mail domain
30873
30874If a delivery fails at transport time, the router and transport are shown, and
30875the response from the remote host is included, as in this example:
30876
30877 2002-07-11 07:14:17 17SXDU-000189-00 ** ace400@pb.example R=dnslookup
30878 T=remote_smtp: SMTP error from remote mailer after pipelined
30879 RCPT TO:<ace400@pb.example>: host pbmail3.py.example
30880 [192.168.63.111]: 553 5.3.0 <ace400@pb.example>...
30881 Addressee unknown
30882
30883The word ``pipelined'' indicates that the SMTP PIPELINING extension was being
30884used. See %hosts_avoid_esmtp% in the ^smtp^ transport for a way of
30885disabling PIPELINING.
30886
30887The log lines for all forms of delivery failure are flagged with `\*\*`.
30888
30889
30890
30891Fake deliveries
30892~~~~~~~~~~~~~~~
30893cindex:[delivery,fake; logging]
30894If a delivery does not actually take place because the %-N% option has been
30895used to suppress it, a normal delivery line is written to the log, except that
30896``=>'' is replaced by ``\*>''.
30897
30898
30899
30900Completion
30901~~~~~~~~~~
30902A line of the form
30903
30904 2002-10-31 09:00:11 16ZCW1-0005MB-00 Completed
30905
30906is written to the main log when a message is about to be removed from the spool
30907at the end of its processing.
30908
30909
30910
30911
30912Summary of Fields in Log Lines
30913~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30914cindex:[log,summary of fields]
30915A summary of the field identifiers that are used in log lines is shown in
30916the following table:
30917
30918&&&
30919`A ` authenticator name (and optional id)
30920`C ` SMTP confirmation on delivery
30921`CV ` certificate verification status
30922`DN ` distinguished name from peer certificate
30923`DT ` on `=>` lines: time taken for a delivery
30924`F ` sender address (on delivery lines)
30925`H ` host name and IP address
30926`I ` local interface used
30927`id ` message id for incoming message
30928`P ` on `<=` lines: protocol used
30929` ` on `=>` and `\*\*` lines: return path
30930`QT ` on `=>` lines: time spent on queue so far
30931` ` on ``Completed'' lines: time spent on queue
30932`R ` on `<=` lines: reference for local bounce
30933` ` on `=>` `\*\*` and `==` lines: router name
30934`S ` size of message
30935`ST ` shadow transport name
30936`T ` on `<=` lines: message subject (topic)
30937` ` on `=>` `\*\*` and `==` lines: transport name
30938`U ` local user or RFC 1413 identity
30939`X ` TLS cipher suite
30940&&&
30941
30942
30943
30944Other log entries
30945~~~~~~~~~~~~~~~~~
30946Various other types of log entry are written from time to time. Most should be
30947self-explanatory. Among the more common are:
30948
30949- cindex:[retry,time not reached]
30950'retry time not reached'~~An address previously suffered a temporary error
30951during routing or local delivery, and the time to retry has not yet arrived.
30952This message is not written to an individual message log file unless it happens
30953during the first delivery attempt.
30954
30955- 'retry time not reached for any host'~~An address previously suffered
30956temporary errors during remote delivery, and the retry time has not yet arrived
30957for any of the hosts to which it is routed.
30958
30959- cindex:[spool directory,file locked]
30960'spool file locked'~~An attempt to deliver a message cannot proceed because
30961some other Exim process is already working on the message. This can be quite
30962common if queue running processes are started at frequent intervals. The
30963'exiwhat' utility script can be used to find out what Exim processes are
30964doing.
30965
30966- cindex:[error,ignored]
30967'error ignored'~~There are several circumstances that give rise to this
30968message:
30969
30970. Exim failed to deliver a bounce message whose age was greater than
30971%ignore_bounce_errors_after%. The bounce was discarded.
30972
30973. A filter file set up a delivery using the ``noerror'' option, and the delivery
30974failed. The delivery was discarded.
30975
30976. A delivery set up by a router configured with
30977+
30978 errors_to = <>
30979+
30980failed. The delivery was discarded.
30981
30982
30983
30984
30985
30986[[SECTlogselector]]
30987Reducing or increasing what is logged
30988~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30989cindex:[log,selectors]
30990By setting the %log_selector% global option, you can disable some of Exim's
30991default logging, or you can request additional logging. The value of
30992%log_selector% is made up of names preceded by plus or minus characters. For
30993example:
30994
30995 log_selector = +arguments -retry_defer
30996
30997The list of optional log items is in the following table, with the default
30998selection marked by asterisks:
30999
31000&&&
31001` address_rewrite ` address rewriting
31002` all_parents ` all parents in => lines
31003` arguments ` command line arguments
31004`\*connection_reject ` connection rejections
31005`\*delay_delivery ` immediate delivery delayed
31006` deliver_time ` time taken to perform delivery
31007` delivery_size ` add S=nnn to => lines
31008`\*dnslist_defer ` defers of DNS list (aka RBL) lookups
31009`\*etrn ` ETRN commands
31010`\*host_lookup_failed ` as it says
31011` ident_timeout ` timeout for ident connection
31012` incoming_interface ` incoming interface on <= lines
31013` incoming_port ` incoming port on <= lines
31014`\*lost_incoming_connection ` as it says (includes timeouts)
31015` outgoing_port ` add remote port to => lines
31016`\*queue_run ` start and end queue runs
31017` queue_time ` time on queue for one recipient
31018` queue_time_overall ` time on queue for whole message
31019` received_recipients ` recipients on <= lines
31020` received_sender ` sender on <= lines
31021`\*rejected_header ` header contents on reject log
31022`\*retry_defer ` ``retry time not reached''
31023` return_path_on_delivery ` put return path on => and \*\ lines
31024` sender_on_delivery ` add sender to => lines
31025`\*size_reject ` rejection because too big
31026`\*skip_delivery ` delivery skipped in a queue run
31027` smtp_confirmation ` SMTP confirmation on => lines
31028` smtp_connection ` SMTP connections
31029` smtp_incomplete_transaction` incomplete SMTP transactions
31030` smtp_protocol_error ` SMTP protocol errors
31031` smtp_syntax_error ` SMTP syntax errors
31032` subject ` contents of 'Subject:' on <= lines
31033` tls_certificate_verified ` certificate verification status
31034`\*tls_cipher ` TLS cipher suite on <= and => lines
31035` tls_peerdn ` TLS peer DN on <= and => lines
31036
31037` all ` all of the above
31038&&&
31039
31040More details on each of these items follows:
31041
31042- cindex:[log,rewriting]
31043cindex:[rewriting,logging]
31044%address_rewrite%: This applies both to global rewrites and per-transport
31045rewrites,
31046but not to rewrites in filters run as an unprivileged user (because such users
31047cannot access the log).
31048
31049- cindex:[log,full parentage]
31050%all_parents%: Normally only the original and final addresses are logged on
31051delivery lines; with this selector, intermediate parents are given in
31052parentheses between them.
31053
31054- cindex:[log,Exim arguments]
31055cindex:[Exim arguments, logging]
31056%arguments%: This causes Exim to write the arguments with which it was called
31057to the main log, preceded by the current working directory. This is a debugging
31058feature, added to make it easier to find out how certain MUAs call
31059_/usr/sbin/sendmail_. The logging does not happen if Exim has given up root
31060privilege because it was called with the %-C% or %-D% options. Arguments that
31061are empty or that contain whitespace are quoted. Non-printing characters are
31062shown as escape sequences. This facility cannot log unrecognized arguments,
31063because the arguments are checked before the configuration file is read. The
31064only way to log such cases is to interpose a script such as _util/logargs.sh_
31065between the caller and Exim.
31066
31067- cindex:[log,connection rejections]
31068%connection_reject%: A log entry is written whenever an incoming SMTP
31069connection is rejected, for whatever reason.
31070
31071- cindex:[log,delayed delivery]
31072cindex:[delayed delivery, logging]
31073%delay_delivery%: A log entry is written whenever a delivery process is not
31074started for an incoming message because the load is too high or too many
31075messages were received on one connection. Logging does not occur if no delivery
31076process is started because %queue_only% is set or %-odq% was used.
31077
31078- cindex:[log,delivery duration]
31079%deliver_time%: For each delivery, the amount of real time it has taken to
31080perform the actual delivery is logged as DT=<'time'>, for example, `DT=1s`.
31081
31082- cindex:[log,message size on delivery]
31083cindex:[size,of message]
31084%delivery_size%: For each delivery, the size of message delivered is added to
31085the ``=>'' line, tagged with S=.
31086
31087- cindex:[log,dnslist defer]
31088cindex:[DNS list,logging defer]
31089cindex:[black list (DNS)]
31090%dnslist_defer%: A log entry is written if an attempt to look up a host in a
31091DNS black list suffers a temporary error.
31092
31093- cindex:[log,ETRN commands]
31094cindex:[ETRN,logging]
31095%etrn%: Every legal ETRN command that is received is logged, before the ACL is
31096run to determine whether or not it is actually accepted. An invalid ETRN
31097command, or one received within a message transaction is not logged by this
31098selector (see %smtp_syntax_error% and %smtp_protocol_error%).
31099
31100- cindex:[log,host lookup failure]
31101%host_lookup_failed%: When a lookup of a host's IP addresses fails to find
31102any addresses, or when a lookup of an IP address fails to find a host name, a
31103log line is written. This logging does not apply to direct DNS lookups when
31104routing email addresses, but it does apply to ``byname'' lookups.
31105
31106- cindex:[log,ident timeout]
31107cindex:[RFC 1413,logging timeout]
31108%ident_timeout%: A log line is written whenever an attempt to connect to a
31109client's ident port times out.
31110
31111- cindex:[log,incoming interface]
31112cindex:[interface,logging]
31113%incoming_interface%: The interface on which a message was received is added to
31114the ``<='' line as an IP address in square brackets, tagged by I= and followed
31115by a colon and the port number. The local interface and port are also added to
31116other SMTP log lines, for example ``SMTP connection from'', and to rejection
31117lines.
31118
31119- cindex:[log,incoming remote port]
31120cindex:[port,logging remote]
31121cindex:[TCP/IP,logging incoming remote port]
31122%incoming_port%: The remote port number from which a message was received is
31123added to log entries and 'Received:' header lines, following the IP address in
31124square brackets, and separated from it by a colon. This is implemented by
31125changing the value that is put in the $sender_fullhost$ and
31126$sender_rcvhost$ variables. Recording the remote port number has become more
31127important with the widening use of NAT (see RFC 2505).
31128
31129- cindex:[log,dropped connection]
31130%lost_incoming_connection%: A log line is written when an incoming SMTP
31131connection is unexpectedly dropped.
31132
31133- cindex:[log,outgoing remote port]
31134cindex:[port,logging outgoint remote]
31135cindex:[TCP/IP,logging ougtoing remote port]
31136%outgoing_port%: The remote port number is added to delivery log lines (those
31137containing => tags) following the IP address. This option is not included in
31138the default setting, because for most ordinary configurations, the remote port
31139number is always 25 (the SMTP port).
31140
31141- cindex:[log,queue run]
31142cindex:[queue runner,logging]
31143%queue_run%: The start and end of every queue run are logged.
31144
31145- cindex:[log,queue time]
31146%queue_time%: The amount of time the message has been in the queue on the local
31147host is logged as QT=<'time'> on delivery (`=>`) lines, for example,
31148`QT=3m45s`. The clock starts when Exim starts to receive the message, so it
31149includes reception time as well as the delivery time for the current address.
31150This means that it may be longer than the difference between the arrival and
31151delivery log line times, because the arrival log line is not written until the
31152message has been successfully received.
31153
31154- %queue_time_overall%: The amount of time the message has been in the queue on
31155the local host is logged as QT=<'time'> on ``Completed'' lines, for
31156example, `QT=3m45s`. The clock starts when Exim starts to receive the
31157message, so it includes reception time as well as the total delivery time.
31158
31159- cindex:[log,recipients]
31160%received_recipients%: The recipients of a message are listed in the main log
31161as soon as the message is received. The list appears at the end of the log line
31162that is written when a message is received, preceded by the word ``for''. The
31163addresses are listed after they have been qualified, but before any rewriting
31164has taken place.
31165Recipients that were discarded by an ACL for MAIL or RCPT do not appear
31166in the list.
31167
31168- cindex:[log,sender reception]
31169%received_sender%: The unrewritten original sender of a message is added to
31170the end of the log line that records the message's arrival, after the word
31171``from'' (before the recipients if %received_recipients% is also set).
31172
31173- cindex:[log,header lines for rejection]
31174%rejected_header%: If a message's header has been received at the time a
31175rejection is written to the reject log, the complete header is added to the
31176log. Header logging can be turned off individually for messages that are
31177rejected by the 'local_scan()' function (see section <<SECTapiforloc>>).
31178
31179- cindex:[log,retry defer]
31180%retry_defer%: A log line is written if a delivery is deferred because a retry
31181time has not yet been reached. However, this ``retry time not reached'' message
31182is always omitted from individual message logs after the first delivery
31183attempt.
31184
31185- cindex:[log,return path]
31186%return_path_on_delivery%: The return path that is being transmitted with
31187the message is included in delivery and bounce lines, using the tag P=.
31188This is omitted if no delivery actually happens, for example, if routing fails,
31189or if delivery is to _/dev/null_ or to `:blackhole:`.
31190
31191- cindex:[log,sender on delivery]
31192%sender_on_delivery%: The message's sender address is added to every delivery
31193and bounce line, tagged by F= (for ``from'').
31194This is the original sender that was received with the message; it is not
31195necessarily the same as the outgoing return path.
31196
31197- cindex:[log,size rejection]
31198%size_reject%: A log line is written whenever a message is rejected because it
31199is too big.
31200
31201- cindex:[log,frozen messages; skipped]
31202cindex:[frozen messages,logging skipping]
31203%skip_delivery%: A log line is written whenever a message is skipped during a
31204queue run because it is frozen or because another process is already delivering
31205it.
31206cindex:[``spool file is locked'']
31207The message that is written is ``spool file is locked''.
31208
31209- cindex:[log,smtp confirmation]
31210cindex:[SMTP,logging confirmation]
31211%smtp_confirmation%: The response to the final ``.'' in the SMTP dialogue for
31212outgoing messages is added to delivery log lines in the form ``C="<''text'>"'. A
31213number of MTAs (including Exim) return an identifying string in this response.
31214
31215- cindex:[log,SMTP connections]
31216cindex:[SMTP,logging connections]
31217%smtp_connection%: A log line is written whenever an SMTP connection is
31218established or closed, unless the connection is from a host that matches
31219%hosts_connection_nolog%. (In contrast, %lost_incoming_connection% applies only
31220when the closure is unexpected.) This applies to connections from local
31221processes that use %-bs% as well as to TCP/IP connections. If a connection is
31222dropped in the middle of a message, a log line is always written, whether or
31223not this selector is set, but otherwise nothing is written at the start and end
31224of connections unless this selector is enabled.
31225+
31226For TCP/IP connections to an Exim daemon, the current number of connections is
31227included in the log message for each new connection, but note that the count is
31228reset if the daemon is restarted.
31229Also, because connections are closed (and the closure is logged) in
31230subprocesses, the count may not include connections that have been closed but
31231whose termination the daemon has not yet noticed. Thus, while it is possible to
31232match up the opening and closing of connections in the log, the value of the
31233logged counts may not be entirely accurate.
31234
31235- cindex:[log,SMTP transaction; incomplete]
31236cindex:[SMTP,logging incomplete transactions]
31237%smtp_incomplete_transaction%: When a mail transaction is aborted by
31238RSET, QUIT, loss of connection, or otherwise, the incident is logged,
31239and the message sender plus any accepted recipients are included in the log
31240line. This can provide evidence of dictionary attacks.
31241
31242- cindex:[log,SMTP protocol error]
31243cindex:[SMTP,logging protocol error]
31244%smtp_protocol_error%: A log line is written for every SMTP protocol error
31245encountered. Exim does not have perfect detection of all protocol errors
31246because of transmission delays and the use of pipelining. If PIPELINING has
31247been advertised to a client, an Exim server assumes that the client will use
31248it, and therefore it does not count ``expected'' errors (for example, RCPT
31249received after rejecting MAIL) as protocol errors.
31250
31251- cindex:[SMTP,logging syntax errors]
31252cindex:[SMTP,syntax errors; logging]
31253cindex:[SMTP,unknown command; logging]
31254cindex:[log,unknown SMTP command]
31255cindex:[log,SMTP syntax error]
31256%smtp_syntax_error%: A log line is written for every SMTP syntax error
31257encountered. An unrecognized command is treated as a syntax error. For an
31258external connection, the host identity is given; for an internal connection
31259using %-bs% the sender identification (normally the calling user) is given.
31260
31261- cindex:[log,subject]
31262cindex:[subject, logging]
31263%subject%: The subject of the message is added to the arrival log line,
31264preceded by ``T='' (T for ``topic'', since S is already used for ``size'').
31265Any MIME ``words'' in the subject are decoded. The %print_topbitchars% option
31266specifies whether characters with values greater than 127 should be logged
31267unchanged, or whether they should be rendered as escape sequences.
31268
31269- cindex:[log,certificate verification]
31270%tls_certificate_verified%: An extra item is added to <= and => log lines
31271when TLS is in use. The item is `CV=yes` if the peer's certificate was
31272verified, and `CV=no` if not.
31273
31274- cindex:[log,TLS cipher]
31275cindex:[TLS,logging cipher]
31276%tls_cipher%: When a message is sent or received over an encrypted connection,
31277the cipher suite used is added to the log line, preceded by X=.
31278
31279- cindex:[log,TLS peer DN]
31280cindex:[TLS,logging peer DN]
31281%tls_peerdn%: When a message is sent or received over an encrypted connection,
31282and a certificate is supplied by the remote host, the peer DN is added to the
31283log line, preceded by DN=.
31284
31285
31286
31287Message log
31288~~~~~~~~~~~
31289cindex:[message,log file for]
31290cindex:[log,message log; description of]
31291In addition to the general log files, Exim writes a log file for each message
31292that it handles. The names of these per-message logs are the message ids, and
31293
31294cindex:[_msglog_ directory]
31295they are kept in the _msglog_ sub-directory of the spool directory. Each
31296message log contains copies of the log lines that apply to the message. This
31297makes it easier to inspect the status of an individual message without having
31298to search the main log. A message log is deleted when processing of the message
31299is complete,
31300
31301cindex:[%preserve_message_logs%]
31302unless %preserve_message_logs% is set, but this should be used only with
31303great care because they can fill up your disk very quickly.
31304
31305On a heavily loaded system, it may be desirable to disable the use of
31306per-message logs, in order to reduce disk I/O. This can be done by setting the
31307%message_logs% option false.
31308
31309
31310
31311////////////////////////////////////////////////////////////////////////////
31312////////////////////////////////////////////////////////////////////////////
31313
31314[[CHAPutils]]
31315Exim utilities
31316--------------
31317cindex:[utilities]
31318A number of utility scripts and programs are supplied with Exim and are
31319described in this chapter. There is also the Exim Monitor, which is covered in
31320the next chapter. The utilities described here are:
31321
31322[frame="none"]
31323`2`8`30`40~
31324,<<SECTfinoutwha>> , 'exiwhat' , list what Exim processes are doing
31325,<<SECTgreptheque>> , 'exiqgrep' , grep the queue
31326,<<SECTsumtheque>> , 'exiqsumm' , summarize the queue
31327,<<SECTextspeinf>> , 'exigrep' , search the main log
31328,<<SECTexipick>> , 'exipick' , select messages on various criteria
31329,<<SECTcyclogfil>> , 'exicyclog' , cycle (rotate) log files
31330,<<SECTmailstat>> , 'eximstats' , extract statistics from the log
31331,<<SECTcheckaccess>> , 'exim_checkaccess', check address acceptance from given IP
31332,<<SECTdbmbuild>> , 'exim_dbmbuild' , build a DBM file
31333,<<SECTfinindret>> , 'exinext' , extract retry information
31334,<<SECThindatmai>> , 'exim_dumpdb' , dump a hints database
31335,<<SECThindatmai>> , 'exim_tidydb' , clean up a hints database
31336,<<SECThindatmai>> , 'exim_fixdb' , patch a hints database
31337,<<SECTmailboxmaint>>, 'exim_lock' , lock a mailbox file
31338~~~~~
31339
31340
31341[[SECTfinoutwha]]
31342Finding out what Exim processes are doing (exiwhat)
31343~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31344cindex:['exiwhat']
31345cindex:[process, querying]
31346cindex:[SIGUSR1]
31347On operating systems that can restart a system call after receiving a signal
31348(most modern OS), an Exim process responds to the SIGUSR1 signal by writing
31349a line describing what it is doing to the file _exim-process.info_ in the
31350Exim spool directory. The 'exiwhat' script sends the signal to all Exim
31351processes it can find, having first emptied the file. It then waits for one
31352second to allow the Exim processes to react before displaying the results. In
31353order to run 'exiwhat' successfully you have to have sufficient privilege to
31354send the signal to the Exim processes, so it is normally run as root.
31355
31356*Warning*: This is not an efficient process. It is intended for occasional
31357use by system administrators. It is not sensible, for example, to set up a
31358script that sends SIGUSR1 signals to Exim processes at short intervals.
31359
31360
31361Unfortunately, the 'ps' command that 'exiwhat' uses to find Exim processes
31362varies in different operating systems. Not only are different options used,
31363but the format of the output is different. For this reason, there are some
31364system configuration options that configure exactly how 'exiwhat' works. If it
31365doesn't seem to be working for you, check the following compile-time options:
31366
31367&&&
31368`EXIWHAT_PS_CMD ` the command for running 'ps'
31369`EXIWHAT_PS_ARG ` the argument for 'ps'
31370`EXIWHAT_EGREP_ARG ` the argument for 'egrep' to select from 'ps' output
31371`EXIWHAT_KILL_ARG ` the argument for the 'kill' command
31372&&&
31373
31374An example of typical output from 'exiwhat' is
31375
31376 164 daemon: -q1h, listening on port 25
31377 10483 running queue: waiting for 0tAycK-0002ij-00 (10492)
31378 10492 delivering 0tAycK-0002ij-00 to mail.ref.example [10.19.42.42]
31379 (editor@ref.example)
31380 10592 handling incoming call from [192.168.243.242]
31381 10628 accepting a local non-SMTP message
31382
31383The first number in the output line is the process number. The third line has
31384been split here, in order to fit it on the page.
31385
31386
31387
31388[[SECTgreptheque]]
31389Selective queue listing (exiqgrep)
31390~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31391cindex:['exiqgrep']
31392cindex:[queue,grepping]
31393This utility is a Perl script contributed by Matt Hubbard. It runs
31394
31395 exim -bpu
31396
31397to obtain a queue listing with undelivered recipients only, and then greps the
31398output to select messages that match given criteria. The following selection
31399options are available:
31400
31401*-f*~<'regex'>::
31402Match the sender address. The field that is tested is enclosed in angle
31403brackets, so you can test for bounce messages with
31404
31405 exiqgrep -f '^<>$'
31406
31407*-r*~<'regex'>::
31408Match a recipient address. The field that is tested is not enclosed in angle
31409brackets.
31410
31411*-s*~<'regex'>::
31412Match against the size field.
31413
31414*-y*~<'seconds'>::
31415Match messages that are younger than the given time.
31416
31417*-o*~<'seconds'>::
31418Match messages that are older than the given time.
31419
31420*-z*::
31421Match only frozen messages.
31422
31423*-x*::
31424Match only non-frozen messages.
31425
31426///
31427End of list
31428///
31429
31430The following options control the format of the output:
31431
31432*-c*::
31433Display only the count of matching messages.
31434
31435*-l*::
31436Long format -- display the full message information as output by Exim. This is
31437the default.
31438
31439*-i*::
31440Display message ids only.
31441
31442*-b*::
31443Brief format -- one line per message.
31444
31445*-R*::
31446Display messages in reverse order.
31447
31448///
31449End of list
31450///
31451
31452There is one more option, %-h%, which outputs a list of options.
31453
31454
31455
31456[[SECTsumtheque]]
31457Summarising the queue (exiqsumm)
31458~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31459cindex:['exiqsumm']
31460cindex:[queue,summary]
31461The 'exiqsumm' utility is a Perl script which reads the output of 'exim
31462-bp' and produces a summary of the messages on the queue. Thus, you use it by
31463running a command such as
31464
31465 exim -bp | exiqsumm
31466
31467The output consists of one line for each domain that has messages waiting for
31468it, as in the following example:
31469
31470 3 2322 74m 66m msn.com.example
31471
31472Each line lists the number of
31473pending deliveries for a domain, their total volume, and the length of time
31474that the oldest and the newest messages have been waiting. Note that the number
31475of pending deliveries is greater than the number of messages when messages
31476have more than one recipient.
31477
31478A summary line is output at the end. By default the output is sorted on the
31479domain name, but 'exiqsumm' has the options %-a% and %-c%, which cause the
31480output to be sorted by oldest message and by count of messages, respectively.
31481
31482The output of 'exim -bp' contains the original addresses in the message, so
31483this also applies to the output from 'exiqsumm'. No domains from addresses
31484generated by aliasing or forwarding are included (unless the %one_time% option
31485of the ^redirect^ router has been used to convert them into ``top level''
31486addresses).
31487
31488
31489
31490
31491[[SECTextspeinf]]
31492Extracting specific information from the log (exigrep)
31493~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31494cindex:['exigrep']
31495cindex:[log,extracts; grepping for]
31496The 'exigrep' utility is a Perl script that searches one or more main log
31497files for entries that match a given pattern. When it finds a match, it
31498extracts all the log entries for the relevant message, not just those that
31499match the pattern. Thus, 'exigrep' can extract complete log entries for a
31500given message, or all mail for a given user, or for a given host, for example.
31501
31502If a matching log line is not associated with a specific message, it is always
31503included in 'exigrep''s output.
31504The usage is:
31505
31506 exigrep [-l] [-t<n>] <pattern> [<log file>] ...
31507
31508The %-t% argument specifies a number of seconds. It adds an additional
31509condition for message selection. Messages that are complete are shown only if
31510they spent more than <'n'> seconds on the queue.
31511
31512The %-l% flag means ``literal'', that is, treat all characters in the
31513pattern as standing for themselves. Otherwise the pattern must be a Perl
31514regular expression. The pattern match is case-insensitive. If no file names are
31515given on the command line, the standard input is read.
31516
31517If the location of a 'zcat' command is known from the definition of
31518ZCAT_COMMAND in _Local/Makefile_, 'exigrep' automatically passes any
31519file whose name ends in COMPRESS_SUFFIX through 'zcat' as it searches
31520it.
31521
31522
31523[[SECTexipick]]
31524Selecting messages by various criteria (exipick)
31525~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31526cindex:['exipick']
31527John Jetmore's 'exipick' utility is included in the Exim distribution. It
31528lists messages from the queue according to a variety of criteria. For details,
31529run:
31530
31531 exipick --help
31532
31533
31534
31535
31536[[SECTcyclogfil]]
31537Cycling log files (exicyclog)
31538~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31539cindex:[log,cycling local files]
31540cindex:[cycling logs]
31541cindex:['exicyclog']
31542The 'exicyclog' script can be used to cycle (rotate) 'mainlog' and
31543'rejectlog' files. This is not necessary if only syslog is being used, or if
31544you are using log files with datestamps in their names (see section
31545<<SECTdatlogfil>>). Some operating systems have their own standard mechanisms for
31546log cycling, and these can be used instead of 'exicyclog' if preferred.
31547
31548Each time 'exicyclog' is run the file names get ``shuffled down'' by one. If
31549the main log file name is _mainlog_ (the default) then when 'exicyclog' is
31550run _mainlog_ becomes _mainlog.01_, the previous _mainlog.01_ becomes
31551_mainlog.02_ and so on, up to a limit which is set in the script, and which
31552defaults to 10. Log files whose numbers exceed the limit are discarded. Reject
31553logs are handled similarly.
31554
31555If the limit is greater than 99, the script uses 3-digit numbers such as
31556_mainlog.001_, _mainlog.002_, etc. If you change from a number less than 99
31557to one that is greater, or 'vice versa', you will have to fix the names of
31558any existing log files.
31559
31560
31561If no _mainlog_ file exists, the script does nothing. Files that ``drop off''
31562the end are deleted. All files with numbers greater than 01 are compressed,
31563using a compression command which is configured by the COMPRESS_COMMAND
31564setting in _Local/Makefile_. It is usual to run 'exicyclog' daily from a
31565root %crontab% entry of the form
31566
31567 1 0 * * * su exim -c /usr/exim/bin/exicyclog
31568
31569assuming you have used the name ``exim'' for the Exim user. You can run
31570'exicyclog' as root if you wish, but there is no need.
31571
31572
31573
31574[[SECTmailstat]]
31575Mail statistics (eximstats)
31576~~~~~~~~~~~~~~~~~~~~~~~~~~~
31577cindex:[statistics]
31578cindex:['eximstats']
31579A Perl script called 'eximstats' is provided for extracting statistical
31580information from log files. The output is either plain text, or HTML.
31581Exim log files are also suported by the 'Lire' system produced by the
31582LogReport Foundation (*http://www.logreport.org[]*).
31583
31584The 'eximstats' script has been hacked about quite a bit over time. The
31585latest version is the result of some extensive revision by Steve Campbell. A
31586lot of information is given by default, but there are options for suppressing
31587various parts of it. Following any options, the arguments to the script are a
31588list of files, which should be main log files. For example:
31589
31590 eximstats -nr /var/spool/exim/log/mainlog.01
31591
31592By default, 'eximstats' extracts information about the number and volume of
31593messages received from or delivered to various hosts. The information is sorted
31594both by message count and by volume, and the top fifty hosts in each category
31595are listed on the standard output. Similar information, based on email
31596addresses or domains instead of hosts can be requested by means of various
31597options. For messages delivered and received locally, similar statistics are
31598also produced per user.
31599
31600The output also includes total counts and statistics about delivery errors, and
31601histograms showing the number of messages received and deliveries made in each
31602hour of the day. A delivery with more than one address in its envelope (for
31603example, an SMTP transaction with more than one RCPT command) is counted
31604as a single delivery by 'eximstats'.
31605
31606Though normally more deliveries than receipts are reported (as messages may
31607have multiple recipients), it is possible for 'eximstats' to report more
31608messages received than delivered, even though the queue is empty at the start
31609and end of the period in question. If an incoming message contains no valid
31610recipients, no deliveries are recorded for it. A bounce message is handled as
31611an entirely separate message.
31612
31613'eximstats' always outputs a grand total summary giving the volume and number
31614of messages received and deliveries made, and the number of hosts involved in
31615each case. It also outputs the number of messages that were delayed (that is,
31616not completely delivered at the first attempt), and the number that had at
31617least one address that failed.
31618
31619The remainder of the output is in sections that can be independently disabled
31620or modified by various options. It consists of a summary of deliveries by
31621transport, histograms of messages received and delivered per time interval
31622(default per hour), information about the time messages spent on the queue,
31623a list of relayed messages, lists of the top fifty sending hosts, local
31624senders, destination hosts, and destination local users by count and by volume,
31625and a list of delivery errors that occurred.
31626
31627The relay information lists messages that were actually relayed, that is, they
31628came from a remote host and were directly delivered to some other remote host,
31629without being processed (for example, for aliasing or forwarding) locally.
31630
31631There are quite a few options for 'eximstats' to control exactly what it
31632outputs. These are documented in the Perl script itself, and can be extracted
31633by running the command ^perldoc^ on the script. For example:
31634
31635 perldoc /usr/exim/bin/eximstats
31636
31637
31638
31639[[SECTcheckaccess]]
31640Checking access policy (exim_checkaccess)
31641~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31642cindex:['exim_checkaccess']
31643cindex:[policy control,checking access]
31644cindex:[checking access]
31645The %-bh% command line argument allows you to run a fake SMTP session with
31646debugging output, in order to check what Exim is doing when it is applying
31647policy controls to incoming SMTP mail. However, not everybody is sufficiently
31648familiar with the SMTP protocol to be able to make full use of %-bh%, and
31649sometimes you just want to answer the question 'Does this address have
31650access?' without bothering with any further details.
31651
31652The 'exim_checkaccess' utility is a ``packaged'' version of %-bh%. It takes
31653two arguments, an IP address and an email address:
31654
31655 exim_checkaccess 10.9.8.7 A.User@a.domain.example
31656
31657The utility runs a call to Exim with the %-bh% option, to test whether the
31658given email address would be accepted in a RCPT command in a TCP/IP
31659connection from the host with the given IP address. The output of the utility
31660is either the word ``accepted'', or the SMTP error response, for example:
31661
31662 Rejected:
31663 550 Relay not permitted
31664
31665When running this test, the utility uses `<>` as the envelope sender address
31666for the MAIL command, but you can change this by providing additional
31667options. These are passed directly to the Exim command. For example, to specify
31668that the test is to be run with the sender address 'himself@there.example'
31669you can use:
31670
31671....
31672exim_checkaccess 10.9.8.7 A.User@a.domain.example \
31673 -f himself@there.example
31674....
31675
31676Note that these additional Exim command line items must be given after the two
31677mandatory arguments.
31678
31679Because the %exim_checkaccess% uses %-bh%, it does not perform callouts while
31680running its checks. You can run checks that include callouts by using %-bhc%,
31681but this is not yet available in a ``packaged'' form.
31682
31683
31684
31685[[SECTdbmbuild]]
31686Making DBM files (exim_dbmbuild)
31687~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31688cindex:[DBM,building dbm files]
31689cindex:[building DBM files]
31690cindex:['exim_dbmbuild']
31691cindex:[lower casing]
31692cindex:[binary zero,in lookup key]
31693The 'exim_dbmbuild' program reads an input file containing keys and data in
31694the format used by the ^lsearch^ lookup (see section <<SECTsinglekeylookups>>).
31695It writes a DBM file using the lower-cased alias names as keys and the
31696remainder of the information as data. The lower-casing can be prevented by
31697calling the program with the %-nolc% option.
31698
31699A terminating zero is included as part of the key string. This is expected by
31700the ^dbm^ lookup type. However, if the option %-nozero% is given,
31701'exim_dbmbuild' creates files without terminating zeroes in either the key
31702strings or the data strings. The ^dbmnz^ lookup type can be used with such
31703files.
31704
31705The program requires two arguments: the name of the input file (which can be a
31706single hyphen to indicate the standard input), and the name of the output file.
31707It creates the output under a temporary name, and then renames it if all went
31708well.
31709
31710cindex:[USE_DB]
31711If the native DB interface is in use (USE_DB is set in a compile-time
31712configuration file -- this is common in free versions of Unix) the two file
31713names must be different, because in this mode the Berkeley DB functions create
31714a single output file using exactly the name given. For example,
31715
31716 exim_dbmbuild /etc/aliases /etc/aliases.db
31717
31718reads the system alias file and creates a DBM version of it in
31719_/etc/aliases.db_.
31720
31721In systems that use the 'ndbm' routines (mostly proprietary versions of Unix),
31722two files are used, with the suffixes _.dir_ and _.pag_. In this
31723environment, the suffixes are added to the second argument of
31724'exim_dbmbuild', so it can be the same as the first. This is also the case
31725when the Berkeley functions are used in compatibility mode (though this is not
31726recommended), because in that case it adds a _.db_ suffix to the file name.
31727
31728If a duplicate key is encountered, the program outputs a warning, and when it
31729finishes, its return code is 1 rather than zero, unless the %-noduperr% option
31730is used. By default, only the first of a set of duplicates is used -- this
31731makes it compatible with ^lsearch^ lookups. There is an option %-lastdup%
31732which causes it to use the data for the last duplicate instead. There is also
31733an option %-nowarn%, which stops it listing duplicate keys to %stderr%. For
31734other errors, where it doesn't actually make a new file, the return code is 2.
31735
31736
31737
31738
31739[[SECTfinindret]]
31740Finding individual retry times (exinext)
31741~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31742cindex:[retry,times]
31743cindex:['exinext']
31744A utility called 'exinext' (mostly a Perl script) provides the ability to fish
31745specific information out of the retry database. Given a mail domain (or a
31746complete address), it looks up the hosts for that domain, and outputs any retry
31747information for the hosts or for the domain. At present, the retry information
31748is obtained by running 'exim_dumpdb' (see below) and post-processing the
31749output. For example:
31750
31751 $ exinext piglet@milne.fict.example
31752 kanga.milne.fict.example:192.168.8.1 error 146: Connection refused
31753 first failed: 21-Feb-1996 14:57:34
31754 last tried: 21-Feb-1996 14:57:34
31755 next try at: 21-Feb-1996 15:02:34
31756 roo.milne.fict.example:192.168.8.3 error 146: Connection refused
31757 first failed: 20-Jan-1996 13:12:08
31758 last tried: 21-Feb-1996 11:42:03
31759 next try at: 21-Feb-1996 19:42:03
31760 past final cutoff time
31761
31762You can also give 'exinext' a local part, without a domain, and it
31763will give any retry information for that local part in your default domain.
31764A message id can be used to obtain retry information pertaining to a specific
31765message. This exists only when an attempt to deliver a message to a remote host
31766suffers a message-specific error (see section <<SECToutSMTPerr>>). 'exinext' is
31767not particularly efficient, but then it isn't expected to be run very often.
31768
31769The 'exinext' utility calls Exim to find out information such as the location
31770of the spool directory. The utility has %-C% and %-D% options, which are
31771passed on to the 'exim' commands. The first specifies an alternate Exim
31772configuration file, and the second sets macros for use within the configuration
31773file. These features are mainly to help in testing, but might also be useful in
31774environments where more than one configuration file is in use.
31775
31776
31777
31778
31779[[SECThindatmai]]
31780Hints database maintenance (exim_dumpdb, exim_fixdb, exim_tidydb)
31781~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31782cindex:[hints database,maintenance]
31783cindex:[maintaining Exim's hints database]
31784Three utility programs are provided for maintaining the DBM files that Exim
31785uses to contain its delivery hint information. Each program requires two
31786arguments. The first specifies the name of Exim's spool directory, and the
31787second is the name of the database it is to operate on. These are as
31788follows:
31789
31790- 'retry': the database of retry information
31791
31792- 'wait-'<'transport name'>: databases of information about messages waiting
31793for remote hosts
31794
31795- 'callout': the callout cache
31796
31797- 'misc': other hints data
31798
31799The 'misc' database is used for
31800
31801- Serializing ETRN runs (when %smtp_etrn_serialize% is set)
31802
31803- Serializing delivery to a specific host (when %serialize_hosts% is set in an
31804^smtp^ transport)
31805
31806
31807
31808exim_dumpdb
31809~~~~~~~~~~~
31810cindex:['exim_dumpdb']
31811The entire contents of a database are written to the standard output by the
31812'exim_dumpdb' program, which has no options or arguments other than the
31813spool and database names. For example, to dump the retry database:
31814
31815 exim_dumpdb /var/spool/exim retry
31816
31817Two lines of output are produced for each entry:
31818
31819 T:mail.ref.example:192.168.242.242 146 77 Connection refused
31820 31-Oct-1995 12:00:12 02-Nov-1995 12:21:39 02-Nov-1995 20:21:39 *
31821
31822The first item on the first line is the key of the record. It starts with one
31823of the letters R, or T, depending on whether it refers to a routing or
31824transport retry. For a local delivery, the next part is the local address; for
31825a remote delivery it is the name of the remote host, followed by its failing IP
31826address (unless %no_retry_include_ip_address% is set on the ^smtp^
31827transport). If the remote port is not the standard one (port 25), it is added
31828to the IP address. Then there follows an error code, an additional error code,
31829and a textual description of the error.
31830
31831The three times on the second line are the time of first failure, the time of
31832the last delivery attempt, and the computed time for the next attempt. The line
31833ends with an asterisk if the cutoff time for the last retry rule has been
31834exceeded.
31835
31836Each output line from 'exim_dumpdb' for the 'wait-''xxx' databases
31837consists of a host name followed by a list of ids for messages that are or were
31838waiting to be delivered to that host. If there are a very large number for any
31839one host, continuation records, with a sequence number added to the host name,
31840may be seen. The data in these records is often out of date, because a message
31841may be routed to several alternative hosts, and Exim makes no effort to keep
31842cross-references.
31843
31844
31845
31846exim_tidydb
31847~~~~~~~~~~~
31848cindex:['exim_tidydb']
31849The 'exim_tidydb' utility program is used to tidy up the contents of the
31850hints databases. If run with no options, it removes all records from a database
31851that are more than 30 days old. The cutoff date can be altered by means of the
31852%-t% option, which must be followed by a time. For example, to remove all
31853records older than a week from the retry database:
31854
31855 exim_tidydb -t 7d /var/spool/exim retry
31856
31857Both the 'wait-''xxx' and 'retry' databases contain items that involve
31858message ids. In the former these appear as data in records keyed by host --
31859they were messages that were waiting for that host -- and in the latter they
31860are the keys for retry information for messages that have suffered certain
31861types of error. When 'exim_tidydb' is run, a check is made to ensure that
31862message ids in database records are those of messages that are still on the
31863queue. Message ids for messages that no longer exist are removed from
31864'wait-''xxx' records, and if this leaves any records empty, they are
31865deleted. For the 'retry' database, records whose keys are non-existent
31866message ids are removed. The 'exim_tidydb' utility outputs comments on the
31867standard output whenever it removes information from the database.
31868
31869Certain records are automatically removed by Exim when they are no longer
31870needed, but others are not. For example, if all the MX hosts for a domain are
31871down, a retry record is created for each one. If the primary MX host comes back
31872first, its record is removed when Exim successfully delivers to it, but the
31873records for the others remain because Exim has not tried to use those hosts.
31874
31875It is important, therefore, to run 'exim_tidydb' periodically on all the
31876hints databases. You should do this at a quiet time of day, because it requires
31877a database to be locked (and therefore inaccessible to Exim) while it does its
31878work. Removing records from a DBM file does not normally make the file smaller,
31879but all the common DBM libraries are able to re-use the space that is released.
31880After an initial phase of increasing in size, the databases normally reach a
31881point at which they no longer get any bigger, as long as they are regularly
31882tidied.
31883
31884*Warning*: If you never run 'exim_tidydb', the space used by the hints
31885databases is likely to keep on increasing.
31886
31887
31888
31889
31890exim_fixdb
31891~~~~~~~~~~
31892cindex:['exim_fixdb']
31893The 'exim_fixdb' program is a utility for interactively modifying databases.
31894Its main use is for testing Exim, but it might also be occasionally useful for
31895getting round problems in a live system. It has no options, and its interface
31896is somewhat crude. On entry, it prompts for input with a right angle-bracket. A
31897key of a database record can then be entered, and the data for that record is
31898displayed.
31899
31900If ``d'' is typed at the next prompt, the entire record is deleted. For all
31901except the 'retry' database, that is the only operation that can be carried
31902out. For the 'retry' database, each field is output preceded by a number, and
31903data for individual fields can be changed by typing the field number followed
31904by new data, for example:
31905
31906 > 4 951102:1000
31907
31908resets the time of the next delivery attempt. Time values are given as a
31909sequence of digit pairs for year, month, day, hour, and minute. Colons can be
31910used as optional separators.
31911
31912
31913
31914
31915[[SECTmailboxmaint]]
31916Mailbox maintenance (exim_lock)
31917~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31918cindex:[mailbox,maintenance]
31919cindex:['exim_lock']
31920cindex:[locking mailboxes]
31921The 'exim_lock' utility locks a mailbox file using the same algorithm as
31922Exim. For a discussion of locking issues, see section <<SECTopappend>>.
31923'Exim_lock' can be used to prevent any modification of a mailbox by Exim or
31924a user agent while investigating a problem. The utility requires the name of
31925the file as its first argument. If the locking is successful, the second
31926argument is run as a command (using C's 'system()' function); if there is no
31927second argument, the value of the SHELL environment variable is used; if this
31928is unset or empty, _/bin/sh_ is run. When the command finishes, the mailbox
31929is unlocked and the utility ends. The following options are available:
31930
31931*-fcntl*:: Use 'fcntl()' locking on the open mailbox.
31932
31933*-flock*:: Use 'flock()' locking on the open mailbox, provided the operating
31934system supports it.
31935
31936*-interval*:: This must be followed by a number, which is a number of seconds;
31937it sets the interval to sleep between retries (default 3).
31938
31939*-lockfile*:: Create a lock file before opening the mailbox.
31940
31941*-mbx*:: Lock the mailbox using MBX rules.
31942
31943*-q*:: Suppress verification output.
31944
31945*-retries*:: This must be followed by a number; it sets the number of times to
31946try to get the lock (default 10).
31947
31948*-restore_time*:: This option causes %exim_lock% to restore the modified and
31949read times to the locked file before exiting. This allows you to access a
31950locked mailbox (for example, to take a backup copy) without disturbing the
31951times that the user subsequently sees.
31952
31953*-timeout*:: This must be followed by a number, which is a number of seconds;
31954it sets a timeout to be used with a blocking 'fcntl()' lock. If it is not set
31955(the default), a non-blocking call is used.
31956
31957*-v*:: Generate verbose output.
31958
31959If none of %-fcntl%, %-flock%, %-lockfile% or %-mbx% are given, the default is
31960to create a lock file and also to use 'fcntl()' locking on the mailbox, which
31961is the same as Exim's default. The use of %-flock% or %-fcntl% requires that
31962the file be writeable; the use of %-lockfile% requires that the directory
31963containing the file be writeable. Locking by lock file does not last for ever;
31964Exim assumes that a lock file is expired if it is more than 30 minutes old.
31965
31966The %-mbx% option can be used with either or both of %-fcntl% or %-flock%.
31967It assumes %-fcntl% by default.
31968MBX locking causes a shared lock to be taken out on the open mailbox, and an
31969exclusive lock on the file _/tmp/._'n'.'m' where 'n' and 'm' are
31970the device number and inode number of the mailbox file. When the locking is
31971released, if an exclusive lock can be obtained for the mailbox, the file in
31972_/tmp_ is deleted.
31973
31974The default output contains verification of the locking that takes place. The
31975%-v% option causes some additional information to be given. The %-q% option
31976suppresses all output except error messages.
31977
31978A command such as
31979
31980 exim_lock /var/spool/mail/spqr
31981
31982runs an interactive shell while the file is locked, whereas
31983
31984 exim_lock -q /var/spool/mail/spqr <<End
31985 <some commands>
31986 End
31987
31988runs a specific non-interactive sequence of commands while the file is locked,
31989suppressing all verification output. A single command can be run by a command
31990such as
31991
31992....
31993exim_lock -q /var/spool/mail/spqr \
31994 "cp /var/spool/mail/spqr /some/where"
31995....
31996
31997Note that if a command is supplied, it must be entirely contained within the
31998second argument -- hence the quotes.
31999
32000
32001
32002////////////////////////////////////////////////////////////////////////////
32003////////////////////////////////////////////////////////////////////////////
32004
32005[[CHAPeximon]]
32006The Exim monitor
32007----------------
32008cindex:[monitor]
32009cindex:[Exim monitor]
32010cindex:[X-windows]
32011cindex:['eximon']
32012cindex:[Local/eximon.conf]
32013cindex:[_exim_monitor/EDITME_]
32014The Exim monitor is an application which displays in an X window information
32015about the state of Exim's queue and what Exim is doing. An admin user can
32016perform certain operations on messages from this GUI interface; however all
32017such facilities are also available from the command line, and indeed, the
32018monitor itself makes use of the command line to perform any actions requested.
32019
32020
32021
32022Running the monitor
32023~~~~~~~~~~~~~~~~~~~
32024The monitor is started by running the script called 'eximon'. This is a shell
32025script that sets up a number of environment variables, and then runs the
32026binary called _eximon.bin_. The default appearance of the monitor window can
32027be changed by editing the _Local/eximon.conf_ file created by editing
32028_exim_monitor/EDITME_. Comments in that file describe what the various
32029parameters are for.
32030
32031The parameters that get built into the 'eximon' script can be overridden for a
32032particular invocation by setting up environment variables of the same names,
32033preceded by `EXIMON_`. For example, a shell command such as
32034
32035 EXIMON_LOG_DEPTH=400 eximon
32036
32037(in a Bourne-compatible shell) runs 'eximon' with an overriding setting of the
32038LOG_DEPTH parameter. If EXIMON_LOG_FILE_PATH is set in the
32039environment, it overrides the Exim log file configuration. This makes it
32040possible to have 'eximon' tailing log data that is written to syslog, provided
32041that MAIL.INFO syslog messages are routed to a file on the local host.
32042
32043X resources can be used to change the appearance of the window in the normal
32044way. For example, a resource setting of the form
32045
32046 Eximon*background: gray94
32047
32048changes the colour of the background to light grey rather than white. The
32049stripcharts are drawn with both the data lines and the reference lines in
32050black. This means that the reference lines are not visible when on top of the
32051data. However, their colour can be changed by setting a resource called
32052``highlight'' (an odd name, but that's what the Athena stripchart widget uses).
32053For example, if your X server is running Unix, you could set up lighter
32054reference lines in the stripcharts by obeying
32055
32056 xrdb -merge <<End
32057 Eximon*highlight: gray
32058 End
32059
32060
32061cindex:[admin user]
32062In order to see the contents of messages on the queue, and to operate on them,
32063'eximon' must either be run as root or by an admin user.
32064
32065The monitor's window is divided into three parts. The first contains one or
32066more stripcharts and two action buttons, the second contains a ``tail'' of the
32067main log file, and the third is a display of the queue of messages awaiting
32068delivery, with two more action buttons. The following sections describe these
32069different parts of the display.
32070
32071
32072
32073
32074The stripcharts
32075~~~~~~~~~~~~~~~
32076cindex:[stripchart]
32077The first stripchart is always a count of messages on the queue. Its name can
32078be configured by setting QUEUE_STRIPCHART_NAME in the
32079_Local/eximon.conf_ file. The remaining stripcharts are defined in the
32080configuration script by regular expression matches on log file entries, making
32081it possible to display, for example, counts of messages delivered to certain
32082hosts or using certain transports. The supplied defaults display counts of
32083received and delivered messages, and of local and SMTP deliveries. The default
32084period between stripchart updates is one minute; this can be adjusted by a
32085parameter in the _Local/eximon.conf_ file.
32086
32087The stripchart displays rescale themselves automatically as the value they are
32088displaying changes. There are always 10 horizontal lines in each chart; the
32089title string indicates the value of each division when it is greater than one.
32090For example, ``x2'' means that each division represents a value of 2.
32091
32092It is also possible to have a stripchart which shows the percentage fullness of
32093a particular disk partition, which is useful when local deliveries are confined
32094to a single partition.
32095
32096cindex:[%statvfs% function]
32097This relies on the availability of the 'statvfs()' function or equivalent in
32098the operating system. Most, but not all versions of Unix that support Exim have
32099this. For this particular stripchart, the top of the chart always represents
32100100%, and the scale is given as ``x10%''. This chart is configured by setting
32101SIZE_STRIPCHART and (optionally) SIZE_STRIPCHART_NAME in the
32102_Local/eximon.conf_ file.
32103
32104
32105
32106
32107Main action buttons
32108~~~~~~~~~~~~~~~~~~~
32109cindex:[size,of monitor window]
32110cindex:[monitor window size]
32111cindex:[window size]
32112Below the stripcharts there is an action button for quitting the monitor. Next
32113to this is another button marked ``Size''. They are placed here so that shrinking
32114the window to its default minimum size leaves just the queue count stripchart
32115and these two buttons visible. Pressing the ``Size'' button causes the window to
32116expand to its maximum size, unless it is already at the maximum, in which case
32117it is reduced to its minimum.
32118
32119When expanding to the maximum, if the window cannot be fully seen where it
32120currently is, it is moved back to where it was the last time it was at full
32121size. When it is expanding from its minimum size, the old position is
32122remembered, and next time it is reduced to the minimum it is moved back there.
32123
32124The idea is that you can keep a reduced window just showing one or two
32125stripcharts at a convenient place on your screen, easily expand it to show
32126the full window when required, and just as easily put it back to what it was.
32127The idea is copied from what the 'twm' window manager does for its
32128'f.fullzoom' action. The minimum size of the window can be changed by setting
32129the MIN_HEIGHT and MIN_WIDTH values in _Local/eximon.conf_.
32130
32131Normally, the monitor starts up with the window at its full size, but it can be
32132built so that it starts up with the window at its smallest size, by setting
32133START_SMALL=yes in _Local/eximon.conf_.
32134
32135
32136
32137The log display
32138~~~~~~~~~~~~~~~
32139cindex:[log,tail of; in monitor]
32140The second section of the window is an area in which a display of the tail of
32141the main log is maintained.
32142To save space on the screen, the timestamp on each log line is shortened by
32143removing the date and, if %log_timezone% is set, the timezone.
32144The log tail is not available when the only destination for logging data is
32145syslog, unless the syslog lines are routed to a local file whose name is passed
32146to 'eximon' via the EXIMON_LOG_FILE_PATH environment variable.
32147
32148The log sub-window has a scroll bar at its lefthand side which can be used to
32149move back to look at earlier text, and the up and down arrow keys also have a
32150scrolling effect. The amount of log that is kept depends on the setting of
32151LOG_BUFFER in _Local/eximon.conf_, which specifies the amount of memory
32152to use. When this is full, the earlier 50% of data is discarded -- this is much
32153more efficient than throwing it away line by line. The sub-window also has a
32154horizontal scroll bar for accessing the ends of long log lines. This is the
32155only means of horizontal scrolling; the right and left arrow keys are not
32156available. Text can be cut from this part of the window using the mouse in the
32157normal way. The size of this subwindow is controlled by parameters in the
32158configuration file _Local/eximon.conf_.
32159
32160Searches of the text in the log window can be carried out by means of the ^R
32161and ^S keystrokes, which default to a reverse and a forward search,
32162respectively. The search covers only the text that is displayed in the window.
32163It cannot go further back up the log.
32164
32165The point from which the search starts is indicated by a caret marker. This is
32166normally at the end of the text in the window, but can be positioned explicitly
32167by pointing and clicking with the left mouse button, and is moved automatically
32168by a successful search. If new text arrives in the window when it is scrolled
32169back, the caret remains where it is, but if the window is not scrolled back,
32170the caret is moved to the end of the new text.
32171
32172Pressing ^R or ^S pops up a window into which the search text can be typed.
32173There are buttons for selecting forward or reverse searching, for carrying out
32174the search, and for cancelling. If the ``Search'' button is pressed, the search
32175happens and the window remains so that further searches can be done. If the
32176``Return'' key is pressed, a single search is done and the window is closed. If
32177^C is typed the search is cancelled.
32178
32179The searching facility is implemented using the facilities of the Athena text
32180widget. By default this pops up a window containing both ``search'' and ``replace''
32181options. In order to suppress the unwanted ``replace'' portion for eximon, a
32182modified version of the %TextPop% widget is distributed with Exim. However, the
32183linkers in BSDI and HP-UX seem unable to handle an externally provided version
32184of %TextPop% when the remaining parts of the text widget come from the standard
32185libraries. The compile-time option EXIMON_TEXTPOP can be unset to cut out
32186the modified %TextPop%, making it possible to build Eximon on these systems, at
32187the expense of having unwanted items in the search popup window.
32188
32189
32190
32191The queue display
32192~~~~~~~~~~~~~~~~~
32193cindex:[queue,display in monitor]
32194The bottom section of the monitor window contains a list of all messages that
32195are on the queue, which includes those currently being received or delivered,
32196as well as those awaiting delivery. The size of this subwindow is controlled by
32197parameters in the configuration file _Local/eximon.conf_, and the frequency
32198at which it is updated is controlled by another parameter in the same file --
32199the default is 5 minutes, since queue scans can be quite expensive. However,
32200there is an ``Update'' action button just above the display which can be used to
32201force an update of the queue display at any time.
32202
32203When a host is down for some time, a lot of pending mail can build up for it,
32204and this can make it hard to deal with other messages on the queue. To help
32205with this situation there is a button next to ``Update'' called ``Hide''. If
32206pressed, a dialogue box called ``Hide addresses ending with'' is put up. If you
32207type anything in here and press ``Return'', the text is added to a chain of such
32208texts, and if every undelivered address in a message matches at least one
32209of the texts, the message is not displayed.
32210
32211If there is an address that does not match any of the texts, all the addresses
32212are displayed as normal. The matching happens on the ends of addresses so, for
32213example, 'cam.ac.uk' specifies all addresses in Cambridge, while
32214'xxx@foo.com.example' specifies just one specific address. When any hiding
32215has been set up, a button called ``Unhide'' is displayed. If pressed, it cancels
32216all hiding. Also, to ensure that hidden messages do not get forgotten, a hide
32217request is automatically cancelled after one hour.
32218
32219While the dialogue box is displayed, you can't press any buttons or do anything
32220else to the monitor window. For this reason, if you want to cut text from the
32221queue display to use in the dialogue box, you have to do the cutting before
32222pressing the ``Hide'' button.
32223
32224The queue display contains, for each unhidden queued message, the length of
32225time it has been on the queue, the size of the message, the message id, the
32226message sender, and the first undelivered recipient, all on one line. If it is
32227a bounce message, the sender is shown as ``<>''. If there is more than one
32228recipient to which the message has not yet been delivered, subsequent ones are
32229listed on additional lines, up to a maximum configured number, following which
32230an ellipsis is displayed. Recipients that have already received the message are
32231not shown.
32232
32233cindex:[frozen messages,display]
32234If a message is frozen, an asterisk is displayed at the left-hand side.
32235
32236The queue display has a vertical scroll bar, and can also be scrolled by means
32237of the arrow keys. Text can be cut from it using the mouse in the normal way.
32238The text searching facilities, as described above for the log window, are also
32239available, but the caret is always moved to the end of the text when the queue
32240display is updated.
32241
32242
32243
32244The queue menu
32245~~~~~~~~~~~~~~
32246cindex:[queue,menu in monitor]
32247If the %shift% key is held down and the left button is clicked when the mouse
32248pointer is over the text for any message, an action menu pops up, and the first
32249line of the queue display for the message is highlighted. This does not affect
32250any selected text.
32251
32252If you want to use some other event for popping up the menu, you can set the
32253MENU_EVENT parameter in _Local/eximon.conf_ to change the default, or
32254set EXIMON_MENU_EVENT in the environment before starting the monitor. The
32255value set in this parameter is a standard X event description. For example, to
32256run eximon using %ctrl% rather than %shift% you could use
32257
32258 EXIMON_MENU_EVENT='Ctrl<Btn1Down>' eximon
32259
32260The title of the menu is the message id, and it contains entries which act as
32261follows:
32262
32263- 'message log': The contents of the message log for the message are displayed in
32264a new text window.
32265
32266- 'headers': Information from the spool file that contains the envelope
32267information and headers is displayed in a new text window. See chapter
32268<<CHAPspool>> for a description of the format of spool files.
32269
32270- 'body': The contents of the spool file containing the body of the message are
32271displayed in a new text window. There is a default limit of 20,000 bytes to the
32272amount of data displayed. This can be changed by setting the BODY_MAX
32273option at compile time, or the EXIMON_BODY_MAX option at run time.
32274
32275- 'deliver message': A call to Exim is made using the %-M% option to request
32276delivery of the message. This causes an automatic thaw if the message is
32277frozen. The %-v% option is also set, and the output from Exim is displayed in
32278a new text window. The delivery is run in a separate process, to avoid holding
32279up the monitor while the delivery proceeds.
32280
32281- 'freeze message': A call to Exim is made using the %-Mf% option to request
32282that the message be frozen.
32283
32284- cindex:[thawing messages]
32285cindex:[unfreezing messages]
32286cindex:[frozen messages,thawing]
32287'thaw message': A call to Exim is made using the %-Mt% option to request that
32288the message be thawed.
32289
32290- cindex:[delivery,forcing failure]
32291'give up on msg': A call to Exim is made using the %-Mg% option to request
32292that Exim gives up trying to deliver the message. A bounce message is generated
32293for any remaining undelivered addresses.
32294
32295- 'remove message': A call to Exim is made using the %-Mrm% option to request
32296that the message be deleted from the system without generating a bounce
32297message.
32298
32299- 'add recipient': A dialog box is displayed into which a recipient address can
32300be typed. If the address is not qualified and the QUALIFY_DOMAIN parameter
32301is set in _Local/eximon.conf_, the address is qualified with that domain.
32302Otherwise it must be entered as a fully qualified address. Pressing RETURN
32303causes a call to Exim to be made using the %-Mar% option to request that an
32304additional recipient be added to the message, unless the entry box is empty, in
32305which case no action is taken.
32306
32307- 'mark delivered': A dialog box is displayed into which a recipient address can
32308be typed. If the address is not qualified and the QUALIFY_DOMAIN parameter
32309is set in _Local/eximon.conf_, the address is qualified with that domain.
32310Otherwise it must be entered as a fully qualified address. Pressing RETURN
32311causes a call to Exim to be made using the %-Mmd% option to mark the given
32312recipient address as already delivered, unless the entry box is empty, in which
32313case no action is taken.
32314
32315- 'mark all delivered': A call to Exim is made using the %-Mmad% option to mark
32316all recipient addresses as already delivered.
32317
32318- 'edit sender': A dialog box is displayed initialized with the current sender's
32319address. Pressing RETURN causes a call to Exim to be made using the %-Mes%
32320option to replace the sender address, unless the entry box is empty, in which
32321case no action is taken. If you want to set an empty sender (as in bounce
32322messages), you must specify it as ``<>''. Otherwise, if the address is not
32323qualified and the QUALIFY_DOMAIN parameter is set in
32324_Local/eximon.conf_, the address is qualified with that domain.
32325
32326When a delivery is forced, a window showing the %-v% output is displayed. In
32327other cases when a call to Exim is made, if there is any output from Exim (in
32328particular, if the command fails) a window containing the command and the
32329output is displayed. Otherwise, the results of the action are normally apparent
32330from the log and queue displays. However, if you set ACTION_OUTPUT=yes in
32331_Local/eximon.conf_, a window showing the Exim command is always opened, even
32332if no output is generated.
32333
32334The queue display is automatically updated for actions such as freezing and
32335thawing, unless ACTION_QUEUE_UPDATE=no has been set in
32336_Local/eximon.conf_. In this case the ``Update'' button has to be used to force
32337an update of the display after one of these actions.
32338
32339In any text window that is displayed as result of a menu action, the normal
32340cut-and-paste facility is available, and searching can be carried out using ^R
32341and ^S, as described above for the log tail window.
32342
32343
32344
32345
32346
32347
32348////////////////////////////////////////////////////////////////////////////
32349////////////////////////////////////////////////////////////////////////////
32350
32351[[CHAPsecurity]]
32352Security considerations
32353-----------------------
32354cindex:[security]
32355This chapter discusses a number of issues concerned with security, some of
32356which are also covered in other parts of this manual.
32357
32358For reasons that this author does not understand, some people have promoted
32359Exim as a ``particularly secure'' mailer. Perhaps it is because of the existence
32360of this chapter in the documentation. However, the intent of the chapter is
32361simply to describe the way Exim works in relation to certain security concerns,
32362not to make any specific claims about the effectiveness of its security as
32363compared with other MTAs.
32364
32365What follows is a description of the way Exim is supposed to be. Best efforts
32366have been made to try to ensure that the code agrees with the theory, but an
32367absence of bugs can never be guaranteed. Any that are reported will get fixed
32368as soon as possible.
32369
32370
32371Building a more ``hardened'' Exim
32372~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
32373cindex:[security,build-time features]
32374There are a number of build-time options that can be set in _Local/Makefile_
32375to create Exim binaries that are ``harder'' to attack, in particular by a rogue
32376Exim administrator who does not have the root password, or by someone who has
32377penetrated the Exim (but not the root) account. These options are as follows:
32378
32379- ALT_CONFIG_PREFIX can be set to a string that is required to match the
32380start of any file names used with the %-C% option. When it is set, these file
32381names are also not allowed to contain the sequence ``/../''. (However, if the
32382value of the %-C% option is identical to the value of CONFIGURE_FILE in
32383_Local/Makefile_, Exim ignores %-C% and proceeds as usual.) There is no
32384default setting for %ALT_CONFIG_PREFIX%.
32385+
32386If the permitted configuration files are confined to a directory to
32387which only root has access, this guards against someone who has broken
32388into the Exim account from running a privileged Exim with an arbitrary
32389configuration file, and using it to break into other accounts.
32390
32391- If ALT_CONFIG_ROOT_ONLY is defined, root privilege is retained for %-C%
32392and %-D% only if the caller of Exim is root. Without it, the Exim user may
32393also use %-C% and %-D% and retain privilege. Setting this option locks out
32394the possibility of testing a configuration using %-C% right through message
32395reception and delivery, even if the caller is root. The reception works, but by
32396that time, Exim is running as the Exim user, so when it re-execs to regain
32397privilege for the delivery, the use of %-C% causes privilege to be lost.
32398However, root can test reception and delivery using two separate commands.
32399ALT_CONFIG_ROOT_ONLY is not set by default.
32400
32401- If DISABLE_D_OPTION is defined, the use of the %-D% command line option
32402is disabled.
32403
32404- FIXED_NEVER_USERS can be set to a colon-separated list of users that are
32405never to be used for any deliveries. This is like the %never_users% runtime
32406option, but it cannot be overridden; the runtime option adds additional users
32407to the list. The default setting is ``root''; this prevents a non-root user who
32408is permitted to modify the runtime file from using Exim as a way to get root.
32409
32410
32411
32412
32413Root privilege
32414~~~~~~~~~~~~~~
32415cindex:[setuid]
32416cindex:[root privilege]
32417The Exim binary is normally setuid to root, which means that it gains root
32418privilege (runs as root) when it starts execution. In some special cases (for
32419example, when the daemon is not in use and there are no local deliveries), it
32420may be possible to run Exim setuid to some user other than root. This is
32421discussed in the next section. However, in most installations, root privilege
32422is required for two things:
32423
32424- To set up a socket connected to the standard SMTP port (25) when initialising
32425the listening daemon. If Exim is run from 'inetd', this privileged action is
32426not required.
32427
32428- To be able to change uid and gid in order to read users' _.forward_ files and
32429perform local deliveries as the receiving user or as specified in the
32430configuration.
32431
32432It is not necessary to be root to do any of the other things Exim does, such as
32433receiving messages and delivering them externally over SMTP, and it is
32434obviously more secure if Exim does not run as root except when necessary.
32435For this reason, a user and group for Exim to use must be defined in
32436_Local/Makefile_. These are known as ``the Exim user'' and ``the Exim group''.
32437Their values can be changed by the run time configuration, though this is not
32438recommended. Often a user called 'exim' is used, but some sites use 'mail'
32439or another user name altogether.
32440
32441Exim uses 'setuid()' whenever it gives up root privilege. This is a permanent
32442abdication; the process cannot regain root afterwards. Prior to release 4.00,
32443'seteuid()' was used in some circumstances, but this is no longer the case.
32444
32445After a new Exim process has interpreted its command line options, it changes
32446uid and gid in the following cases:
32447
32448- cindex:[%-C% option]
32449cindex:[%-D% option]
32450If the %-C% option is used to specify an alternate configuration file, or if
32451the %-D% option is used to define macro values for the configuration, and the
32452calling process is not running as root or the Exim user, the uid and gid are
32453changed to those of the calling process.
32454However, if ALT_CONFIG_ROOT_ONLY is defined in _Local/Makefile_, only
32455root callers may use %-C% and %-D% without losing privilege, and if
32456DISABLE_D_OPTION is set, the %-D% option may not be used at all.
32457
32458- cindex:[%-be% option]
32459cindex:[%-bf% option]
32460cindex:[%-bF% option]
32461If the expansion test option (%-be%) or one of the filter testing options
32462(%-bf% or %-bF%) are used, the uid and gid are changed to those of the
32463calling process.
32464
32465- If the process is not a daemon process or a queue runner process or a delivery
32466process or a process for testing address routing (started with %-bt%), the uid
32467and gid are changed to the Exim user and group. This means that Exim always
32468runs under its own uid and gid when receiving messages. This also applies when
32469testing address verification
32470cindex:[%-bv% option]
32471cindex:[%-bh% option]
32472(the %-bv% option) and testing incoming message policy controls (the %-bh%
32473option).
32474
32475- For a daemon, queue runner, delivery, or address testing process, the uid
32476remains as root at this stage, but the gid is changed to the Exim group.
32477
32478///
32479End of list
32480///
32481
32482The processes that initially retain root privilege behave as follows:
32483
32484- A daemon process changes the gid to the Exim group and the uid to the Exim
32485user after setting up one or more listening sockets. The 'initgroups()'
32486function is called, so that if the Exim user is in any additional groups, they
32487will be used during message reception.
32488
32489- A queue runner process retains root privilege throughout its execution. Its
32490job is to fork a controlled sequence of delivery processes.
32491
32492- A delivery process retains root privilege throughout most of its execution,
32493but any actual deliveries (that is, the transports themselves) are run in
32494subprocesses which always change to a non-root uid and gid. For local
32495deliveries this is typically the uid and gid of the owner of the mailbox; for
32496remote deliveries, the Exim uid and gid are used. Once all the delivery
32497subprocesses have been run, a delivery process changes to the Exim uid and gid
32498while doing post-delivery tidying up such as updating the retry database and
32499generating bounce and warning messages.
32500+
32501While the recipient addresses in a message are being routed, the delivery
32502process runs as root. However, if a user's filter file has to be processed,
32503this is done in a subprocess that runs under the individual user's uid and
32504gid. A system filter is run as root unless %system_filter_user% is set.
32505
32506- A process that is testing addresses (the %-bt% option) runs as root so that
32507the routing is done in the same environment as a message delivery.
32508
32509
32510
32511
32512[[SECTrunexiwitpri]]
32513Running Exim without privilege
32514~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
32515cindex:[privilege, running without]
32516cindex:[unprivileged running]
32517cindex:[root privilege,running without]
32518Some installations like to run Exim in an unprivileged state for more of its
32519operation, for added security. Support for this mode of operation is provided
32520by the global option %deliver_drop_privilege%. When this is set, the uid and
32521gid are changed to the Exim user and group at the start of a delivery process
32522(and also queue runner and address testing processes). This means that address
32523routing is no longer run as root, and the deliveries themselves cannot change
32524to any other uid.
32525
32526Leaving the binary setuid to root, but setting %deliver_drop_privilege% means
32527that the daemon can still be started in the usual way, and it can respond
32528correctly to SIGHUP because the re-invocation regains root privilege.
32529
32530An alternative approach is to make Exim setuid to the Exim user and also setgid
32531to the Exim group.
32532If you do this, the daemon must be started from a root process. (Calling
32533Exim from a root process makes it behave in the way it does when it is setuid
32534root.) However, the daemon cannot restart itself after a SIGHUP signal because
32535it cannot regain privilege.
32536
32537It is still useful to set %deliver_drop_privilege% in this case, because it
32538stops Exim from trying to re-invoke itself to do a delivery after a message has
32539been received. Such a re-invocation is a waste of resources because it has no
32540effect.
32541
32542If restarting the daemon is not an issue (for example, if %mua_wrapper% is set,
32543or 'inetd' is being used instead of a daemon), having the binary setuid to the
32544Exim user seems a clean approach, but there is one complication:
32545
32546In this style of operation, Exim is running with the real uid and gid set to
32547those of the calling process, and the effective uid/gid set to Exim's values.
32548Ideally, any association with the calling process' uid/gid should be dropped,
32549that is, the real uid/gid should be reset to the effective values so as to
32550discard any privileges that the caller may have. While some operating systems
32551have a function that permits this action for a non-root effective uid, quite a
32552number of them do not. Because of this lack of standardization, Exim does not
32553address this problem at this time.
32554
32555For this reason, the recommended approach for ``mostly unprivileged'' running is
32556to keep the Exim binary setuid to root, and to set %deliver_drop_privilege%.
32557This also has the advantage of allowing a daemon to be used in the most
32558straightforward way.
32559
32560If you configure Exim not to run delivery processes as root, there are a
32561number of restrictions on what you can do:
32562
32563- You can deliver only as the Exim user/group. You should explicitly use the
32564%user% and %group% options to override routers or local transports that
32565normally deliver as the recipient. This makes sure that configurations that
32566work in this mode function the same way in normal mode. Any implicit or
32567explicit specification of another user causes an error.
32568
32569- Use of _.forward_ files is severely restricted, such that it is usually
32570not worthwhile to include them in the configuration.
32571
32572- Users who wish to use _.forward_ would have to make their home directory and
32573the file itself accessible to the Exim user. Pipe and append-to-file entries,
32574and their equivalents in Exim filters, cannot be used. While they could be
32575enabled in the Exim user's name, that would be insecure and not very useful.
32576
32577- Unless the local user mailboxes are all owned by the Exim user (possible in
32578some POP3 or IMAP-only environments):
32579
32580* They must be owned by the Exim group and be writable by that group. This
32581implies you must set %mode% in the appendfile configuration, as well as the
32582mode of the mailbox files themselves.
32583
32584* You must set %no_check_owner%, since most or all of the files will not be
32585owned by the Exim user.
32586
32587* You must set %file_must_exist%, because Exim cannot set the owner correctly
32588on a newly created mailbox when unprivileged. This also implies that new
32589mailboxes need to be created manually.
32590
32591These restrictions severely restrict what can be done in local deliveries.
32592However, there are no restrictions on remote deliveries. If you are running a
32593gateway host that does no local deliveries, setting %deliver_drop_privilege%
32594gives more security at essentially no cost.
32595
32596If you are using the %mua_wrapper% facility (see chapter <<CHAPnonqueueing>>),
32597%deliver_drop_privilege% is forced to be true.
32598
32599
32600
32601
32602Delivering to local files
32603~~~~~~~~~~~~~~~~~~~~~~~~~
32604Full details of the checks applied by ^appendfile^ before it writes to a file
32605are given in chapter <<CHAPappendfile>>.
32606
32607
32608
32609IPv4 source routing
32610~~~~~~~~~~~~~~~~~~~
32611cindex:[source routing,in IP packets]
32612cindex:[IP source routing]
32613Many operating systems suppress IP source-routed packets in the kernel, but
32614some cannot be made to do this, so Exim does its own check. It logs incoming
32615IPv4 source-routed TCP calls, and then drops them. Things are all different in
32616IPv6. No special checking is currently done.
32617
32618
32619
32620The VRFY, EXPN, and ETRN commands in SMTP
32621~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
32622Support for these SMTP commands is disabled by default. If required, they can
32623be enabled by defining suitable ACLs.
32624
32625
32626
32627
32628Privileged users
32629~~~~~~~~~~~~~~~~
32630cindex:[trusted user]
32631cindex:[admin user]
32632cindex:[privileged user]
32633cindex:[user,trusted]
32634cindex:[user,admin]
32635Exim recognises two sets of users with special privileges. Trusted users are
32636able to submit new messages to Exim locally, but supply their own sender
32637addresses and information about a sending host. For other users submitting
32638local messages, Exim sets up the sender address from the uid, and doesn't
32639permit a remote host to be specified.
32640
32641cindex:[%-f% option]
32642However, an untrusted user is permitted to use the %-f% command line option in
32643the special form %-f <>% to indicate that a delivery failure for the message
32644should not cause an error report. This affects the message's envelope, but it
32645does not affect the 'Sender:' header. Untrusted users may also be permitted to
32646use specific forms of address with the %-f% option by setting the
32647%untrusted_set_sender% option.
32648
32649Trusted users are used to run processes that receive mail messages from some
32650other mail domain and pass them on to Exim for delivery either locally, or over
32651the Internet. Exim trusts a caller that is running as root, as the Exim user,
32652as any user listed in the %trusted_users% configuration option, or under any
32653group listed in the %trusted_groups% option.
32654
32655Admin users are permitted to do things to the messages on Exim's queue. They
32656can freeze or thaw messages, cause them to be returned to their senders, remove
32657them entirely, or modify them in various ways. In addition, admin users can run
32658the Exim monitor and see all the information it is capable of providing, which
32659includes the contents of files on the spool.
32660
32661cindex:[%-M% option]
32662cindex:[%-q% option]
32663By default, the use of the %-M% and %-q% options to cause Exim to attempt
32664delivery of messages on its queue is restricted to admin users. This
32665restriction can be relaxed by setting the %no_prod_requires_admin% option.
32666Similarly, the use of %-bp% (and its variants) to list the contents of the
32667queue is also restricted to admin users. This restriction can be relaxed by
32668setting %no_queue_list_requires_admin%.
32669
32670Exim recognises an admin user if the calling process is running as root or as
32671the Exim user or if any of the groups associated with the calling process is
32672the Exim group. It is not necessary actually to be running under the Exim
32673group. However, if admin users who are not root or the Exim user are to access
32674the contents of files on the spool via the Exim monitor (which runs
32675unprivileged), Exim must be built to allow group read access to its spool
32676files.
32677
32678
32679
32680Spool files
32681~~~~~~~~~~~
32682cindex:[spool directory,files]
32683Exim's spool directory and everything it contains is owned by the Exim user and
32684set to the Exim group. The mode for spool files is defined in the
32685_Local/Makefile_ configuration file, and defaults to 0640. This means that
32686any user who is a member of the Exim group can access these files.
32687
32688
32689
32690Use of argv[0]
32691~~~~~~~~~~~~~~
32692Exim examines the last component of %argv[0]%, and if it matches one of a set
32693of specific strings, Exim assumes certain options. For example, calling Exim
32694with the last component of %argv[0]% set to ``rsmtp'' is exactly equivalent to
32695calling it with the option %-bS%. There are no security implications in this.
32696
32697
32698
32699Use of %f formatting
32700~~~~~~~~~~~~~~~~~~~~
32701The only use made of ``%f'' by Exim is in formatting load average values. These
32702are actually stored in integer variables as 1000 times the load average.
32703Consequently, their range is limited and so therefore is the length of the
32704converted output.
32705
32706
32707
32708Embedded Exim path
32709~~~~~~~~~~~~~~~~~~
32710Exim uses its own path name, which is embedded in the code, only when it needs
32711to re-exec in order to regain root privilege. Therefore, it is not root when it
32712does so. If some bug allowed the path to get overwritten, it would lead to an
32713arbitrary program's being run as exim, not as root.
32714
32715
32716
32717Use of sprintf()
32718~~~~~~~~~~~~~~~~
32719cindex:['sprintf()']
32720A large number of occurrences of ``sprintf'' in the code are actually calls to
32721'string_sprintf()', a function that returns the result in malloc'd store.
32722The intermediate formatting is done into a large fixed buffer by a function
32723that runs through the format string itself, and checks the length of each
32724conversion before performing it, thus preventing buffer overruns.
32725
32726The remaining uses of 'sprintf()' happen in controlled circumstances where
32727the output buffer is known to be sufficiently long to contain the converted
32728string.
32729
32730
32731
32732Use of debug_printf() and log_write()
32733~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
32734Arbitrary strings are passed to both these functions, but they do their
32735formatting by calling the function 'string_vformat()', which runs through
32736the format string itself, and checks the length of each conversion.
32737
32738
32739
32740Use of strcat() and strcpy()
32741~~~~~~~~~~~~~~~~~~~~~~~~~~~~
32742These are used only in cases where the output buffer is known to be large
32743enough to hold the result.
32744
32745
32746
32747
32748////////////////////////////////////////////////////////////////////////////
32749////////////////////////////////////////////////////////////////////////////
32750
32751[[CHAPspool]]
32752Format of spool files
32753---------------------
32754cindex:[format,spool files]
32755cindex:[spool directory,format of files]
32756cindex:[spool files, format of]
32757cindex:[spool files, editing]
32758A message on Exim's queue consists of two files, whose names are the message id
32759followed by -D and -H, respectively. The data portion of the message is kept in
32760the -D file on its own. The message's envelope, status, and headers are all
32761kept in the -H file, whose format is described in this chapter. Each of these
32762two files contains the final component of its own name as its first line. This
32763is insurance against disk crashes where the directory is lost but the files
32764themselves are recoverable.
32765
32766Some people are tempted into editing -D files in order to modify messages. You
32767need to be extremely careful if you do this; it is not recommended and you are
32768on your own if you do it. Here are some of the pitfalls:
32769
32770- You must use the 'exim_lock' utility to ensure that Exim does not try to
32771deliver the message while you are fiddling with it. The lock is implemented
32772by opening the -D file and taking out a write lock on it. If you update the
32773file in place, the lock will be retained. If you write a new file and rename
32774it, the lock will be lost at the instant of rename.
32775
32776- If you change the number of lines in the file, the value of
32777$body_linecount$, which is stored in the -H file, will be incorrect.
32778
32779- If the message is in MIME format, you must take care not to break it.
32780
32781- If the message is cryptographically signed, any change will invalidate the
32782signature.
32783
32784
32785Files whose names end with -J may also be seen in the _input_ directory (or
32786its subdirectories when %split_spool_directory% is set). These are journal
32787files, used to record addresses to which the message has been delivered during
32788the course of a delivery run. At the end of the run, the -H file is updated,
32789and the -J file is deleted.
32790
32791
32792Format of the -H file
32793~~~~~~~~~~~~~~~~~~~~~
32794cindex:[uid (user id),in spool file]
32795cindex:[gid (group id),in spool file]
32796The second line of the -H file contains the login name for the uid of the
32797process that called Exim to read the message, followed by the numerical uid and
32798gid. For a locally generated message, this is normally the user who sent the
32799message. For a message received over TCP/IP, it is normally the Exim user.
32800
32801The third line of the file contains the address of the message's sender as
32802transmitted in the envelope, contained in angle brackets. The sender address is
32803empty for bounce messages. For incoming SMTP mail, the sender address is given
32804in the MAIL command. For locally generated mail, the sender address is
32805created by Exim from the login name of the current user and the configured
32806%qualify_domain%. However, this can be overridden by the %-f% option or a
32807leading ``From'' line if the caller is trusted, or if the supplied address is
32808``<>'' or an address that matches %untrusted_set_senders%.
32809
32810The fourth line contains two numbers. The first is the time that the message
32811was received, in the conventional Unix form -- the number of seconds since the
32812start of the epoch. The second number is a count of the number of messages
32813warning of delayed delivery that have been sent to the sender.
32814
32815There follow a number of lines starting with a hyphen. These can appear in any
32816order, and are omitted when not relevant:
32817
32818%-acl% <'number'> <'length'>::
32819A line of this form is present for every ACL variable that is not empty. The
32820number identifies the variable; the %acl_c%*x* variables are numbered 0--9 and
32821the %acl_m%*x* variables are numbered 10--19. The length is the length of the
32822data string for the variable. The string itself starts at the beginning of the
32823next line, and is followed by a newline character. It may contain internal
32824newlines.
32825
32826%-active_hostname% <'hostname'>::
32827This is present if, when the message was received over SMTP, the value of
32828$smtp_active_hostname$ was different to the value of $primary_hostname$.
32829
32830%-allow_unqualified_recipient%::
32831This is present if unqualified recipient addresses are permitted in header
32832lines (to stop such addresses from being qualified if rewriting occurs at
32833transport time). Local messages that were input using %-bnq% and remote
32834messages from hosts that match %recipient_unqualified_hosts% set this flag.
32835
32836%-allow_unqualified_sender%::
32837This is present if unqualified sender addresses are permitted in header lines
32838(to stop such addresses from being qualified if rewriting occurs at transport
32839time). Local messages that were input using %-bnq% and remote messages from
32840hosts that match %sender_unqualified_hosts% set this flag.
32841
32842%-auth_id% <'text'>::
32843The id information for a message received on an authenticated SMTP connection
32844-- the value of the $authenticated_id$ variable.
32845
32846%-auth_sender% <'address'>::
32847The address of an authenticated sender -- the value of the
32848$authenticated_sender$ variable.
32849
32850%-body_linecount% <'number'>::
32851This records the number of lines in the body of the message, and is always
32852present.
32853
32854%-body_zerocount% <'number'>::
32855This records the number of binary zero bytes in the body of the message, and is
32856present if the number is greater than zero.
32857
32858%-deliver_firsttime%::
32859This is written when a new message is first added to the spool. When the spool
32860file is updated after a deferral, it is omitted.
32861
32862%-frozen% <'time'>::
32863cindex:[frozen messages,spool data]
32864The message is frozen, and the freezing happened at <'time'>.
32865
32866%-helo_name% <'text'>::
32867This records the host name as specified by a remote host in a HELO or EHLO
32868command.
32869
32870%-host_address% <'address'>.<'port'>::
32871This records the IP address of the host from which the message was received and
32872the remote port number that was used. It is omitted for locally generated
32873messages.
32874
32875%-host_auth% <'text'>::
32876If the message was received on an authenticated SMTP connection, this records
32877the name of the authenticator -- the value of the $sender_host_authenticated$
32878variable.
32879
32880%-host_lookup_failed%::
32881This is present if an attempt to look up the sending host's name from its IP
32882address failed. It corresponds to the $host_lookup_failed$ variable.
32883
32884%-host_name% <'text'>::
32885cindex:[reverse DNS lookup]
32886cindex:[DNS,reverse lookup]
32887This records the name of the remote host from which the message was received,
32888if the host name was looked up from the IP address when the message was being
32889received. It is not present if no reverse lookup was done.
32890
32891%-ident% <'text'>::
32892For locally submitted messages, this records the login of the originating user,
32893unless it was a trusted user and the %-oMt% option was used to specify an ident
32894value. For messages received over TCP/IP, this records the ident string
32895supplied by the remote host, if any.
32896
32897%-interface_address% <'address'>.<'port'>::
32898This records the IP address of the local interface and the port number through
32899which a message was received from a remote host. It is omitted for locally
32900generated messages.
32901
32902%-local%::
32903The message is from a local sender.
32904
32905%-localerror%::
32906The message is a locally-generated bounce message.
32907
32908%-local_scan% <'string'>::
32909This records the data string that was returned by the 'local_scan()' function
32910when the message was received -- the value of the $local_scan_data$ variable.
32911It is omitted if no data was returned.
32912
32913%-manual_thaw%::
32914The message was frozen but has been thawed manually, that is, by an explicit
32915Exim command rather than via the auto-thaw process.
32916
32917%-N%::
32918A testing delivery process was started using the %-N% option to suppress any
32919actual deliveries, but delivery was deferred. At any further delivery attempts,
32920%-N% is assumed.
32921
32922%-received_protocol%::
32923This records the value of the $received_protocol$ variable, which contains the
32924name of the protocol by which the message was received.
32925
32926%-sender_set_untrusted%::
32927The envelope sender of this message was set by an untrusted local caller (used
32928to ensure that the caller is displayed in queue listings).
32929
32930%-spam_score_int% <'number'>::
32931If a message was scanned by SpamAssassin, this is present. It records the value
32932of $spam_score_int$.
32933
32934%-tls_certificate_verified%::
32935A TLS certificate was received from the client that sent this message, and the
32936certificate was verified by the server.
32937
32938%-tls_cipher% <'cipher name'>::
32939When the message was received over an encrypted connection, this records the
32940name of the cipher suite that was used.
32941
32942%-tls_peerdn% <'peer DN'>::
32943When the message was received over an encrypted connection, and a certificate
32944was received from the client, this records the Distinguished Name from that
32945certificate.
32946
32947///
32948End of list
32949///
32950
32951Following the options there is a list of those addresses to which the message
32952is not to be delivered. This set of addresses is initialized from the command
32953line when the %-t% option is used and %extract_addresses_remove_arguments%
32954is set; otherwise it starts out empty. Whenever a successful delivery is made,
32955the address is added to this set. The addresses are kept internally as a
32956balanced binary tree, and it is a representation of that tree which is written
32957to the spool file. If an address is expanded via an alias or forward file, the
32958original address is added to the tree when deliveries to all its child
32959addresses are complete.
32960
32961If the tree is empty, there is a single line in the spool file containing just
32962the text ``XX''. Otherwise, each line consists of two letters, which are either
32963Y or N, followed by an address. The address is the value for the node of the
32964tree, and the letters indicate whether the node has a left branch and/or a
32965right branch attached to it, respectively. If branches exist, they immediately
32966follow. Here is an example of a three-node tree:
32967
32968 YY darcy@austen.fict.example
32969 NN alice@wonderland.fict.example
32970 NN editor@thesaurus.ref.example
32971
32972After the non-recipients tree, there is a list of the message's recipients.
32973This is a simple list, preceded by a count. It includes all the original
32974recipients of the message, including those to whom the message has already been
32975delivered. In the simplest case, the list contains one address per line. For
32976example:
32977
32978 4
32979 editor@thesaurus.ref.example
32980 darcy@austen.fict.example
32981 rdo@foundation
32982 alice@wonderland.fict.example
32983
32984However, when a child address has been added to the top-level addresses as a
32985result of the use of the %one_time% option on a ^redirect^ router, each line
32986is of the following form:
32987
32988&&&
32989<'top-level address'> <'errors_to address'> <'length'>,<'parent number'>#<'flag bits'>
32990&&&
32991
32992The 01 flag bit indicates the presence of the three other fields that follow
32993the top-level address. Other bits may be used in future to support additional
32994fields. The <'parent number'> is the offset in the recipients list of the
32995original parent of the ``one time'' address. The first two fields are the
32996envelope sender that is associated with this address and its length. If the
32997length is zero, there is no special envelope sender (there are then two space
32998characters in the line). A non-empty field can arise from a ^redirect^ router
32999that has an %errors_to% setting.
33000
33001
33002A blank line separates the envelope and status information from the headers
33003which follow. A header may occupy several lines of the file, and to save effort
33004when reading it in, each header is preceded by a number and an identifying
33005character. The number is the number of characters in the header, including any
33006embedded newlines and the terminating newline. The character is one of the
33007following:
33008
33009[frame="none"]
33010`-`--------`----------------------------------------------
33011 <'blank'>header in which Exim has no special interest
33012 `B` 'Bcc:' header
33013 `C` 'Cc:' header
33014 `F` 'From:' header
33015 `I` 'Message-id:' header
33016 `P` 'Received:' header -- P for ``postmark''
33017 `R` 'Reply-To:' header
33018 `S` 'Sender:' header
33019 `T` 'To:' header
33020 `*` replaced or deleted header
33021----------------------------------------------------------
33022
33023Deleted or replaced (rewritten) headers remain in the spool file for debugging
33024purposes. They are not transmitted when the message is delivered. Here is a
33025typical set of headers:
33026
33027 111P Received: by hobbit.fict.example with local (Exim 4.00)
33028 id 14y9EI-00026G-00; Fri, 11 May 2001 10:28:59 +0100
33029 049 Message-Id: <E14y9EI-00026G-00@hobbit.fict.example>
33030 038* X-rewrote-sender: bb@hobbit.fict.example
33031 042* From: Bilbo Baggins <bb@hobbit.fict.example>
33032 049F From: Bilbo Baggins <B.Baggins@hobbit.fict.example>
33033 099* To: alice@wonderland.fict.example, rdo@foundation,
33034 darcy@austen.fict.example, editor@thesaurus.ref.example
33035 109T To: alice@wonderland.fict.example, rdo@foundation.fict.example,
33036 darcy@austen.fict.example, editor@thesaurus.ref.example
33037 038 Date: Fri, 11 May 2001 10:28:59 +0100
33038
33039The asterisked headers indicate that the envelope sender, 'From:' header, and
33040'To:' header have been rewritten, the last one because routing expanded the
33041unqualified domain 'foundation'.
33042
33043
33044
33045
33046////////////////////////////////////////////////////////////////////////////
33047////////////////////////////////////////////////////////////////////////////
33048
33049[titleabbrev="Adding drivers or lookups"]
33050Adding new drivers or lookup types
33051----------------------------------
33052cindex:[adding drivers]
33053cindex:[new drivers, adding]
33054cindex:[drivers,adding new]
33055The following actions have to be taken in order to add a new router, transport,
33056authenticator, or lookup type to Exim:
33057
33058. Choose a name for the driver or lookup type that does not conflict with any
33059existing name; I will use ``newdriver'' in what follows.
33060
33061. Add to _src/EDITME_ the line
33062+
33063 <type>_NEWDRIVER=yes
33064+
33065where <'type'> is ROUTER, TRANSPORT, AUTH, or LOOKUP. If the
33066code is not to be included in the binary by default, comment this line out. You
33067should also add any relevant comments about the driver or lookup type.
33068
33069. Add to _src/config.h.defaults_ the line
33070+
33071 #define <type>_NEWDRIVER
33072
33073. Edit _src/drtables.c_, adding conditional code to pull in the private header
33074and create a table entry as is done for all the other drivers and lookup types.
33075
33076. Edit _Makefile_ in the appropriate sub-directory (_src/routers_,
33077_src/transports_, _src/auths_, or _src/lookups_); add a line for the new
33078driver or lookup type and add it to the definition of OBJ.
33079
33080. Create _newdriver.h_ and _newdriver.c_ in the appropriate sub-directory of
33081_src_.
33082
33083. Edit _scripts/MakeLinks_ and add commands to link the _.h_ and _.c_ files
33084as for other drivers and lookups.
33085
33086Then all you need to do is write the code! A good way to start is to make a
33087proforma by copying an existing module of the same type, globally changing all
33088occurrences of the name, and cutting out most of the code. Note that any
33089options you create must be listed in alphabetical order, because the tables are
33090searched using a binary chop procedure.
33091
33092There is a _README_ file in each of the sub-directories of _src_ describing
33093the interface that is expected.
33094
33095
33096
33097
33098////////////////////////////////////////////////////////////////////////////
33099////////////////////////////////////////////////////////////////////////////
33100
33101[title="Option index",role="option"]
33102Index
33103-----
33104
33105[title="Concept index",role="concept"]
33106Index
33107-----
33108
33109///////////////////////////////////////////////////////////////////////////////
33110Nothing needs to be included here except "Index" as pseudo chapter headings.
33111///////////////////////////////////////////////////////////////////////////////