X-Git-Url: https://vcs.fsf.org/?a=blobdiff_plain;f=src%2Fsrc%2Fdane-openssl.c;h=e48b0cb79cb39e178a5d535a6c2606b173c419a1;hb=8f07c250406da2612e1546e153b4a61a51262692;hp=790b4f079e1469783411c91431efa46df3237cd4;hpb=e682570f275e60cf75f013c234a0561a451ab559;p=exim.git diff --git a/src/src/dane-openssl.c b/src/src/dane-openssl.c index 790b4f079..e48b0cb79 100644 --- a/src/src/dane-openssl.c +++ b/src/src/dane-openssl.c @@ -1,3 +1,9 @@ +/* + * Author: Viktor Dukhovni + * License: THIS CODE IS IN THE PUBLIC DOMAIN. + * + * Copyright (c) The Exim Maintainers 2014 - 2017 + */ #include #include #include @@ -10,75 +16,107 @@ #include #include #include +#include #if OPENSSL_VERSION_NUMBER < 0x1000000fL -#error "OpenSSL 1.0.0 or higher required" +# error "OpenSSL 1.0.0 or higher required" +#endif + +#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER) +# define X509_up_ref(x) CRYPTO_add(&((x)->references), 1, CRYPTO_LOCK_X509) +#endif +#if OPENSSL_VERSION_NUMBER >= 0x10100000L && !defined(LIBRESSL_VERSION_NUMBER) +# define EXIM_HAVE_ASN1_MACROS +# define EXIM_OPAQUE_X509 #else +# define X509_STORE_CTX_get_verify(ctx) (ctx)->verify +# define X509_STORE_CTX_get_verify_cb(ctx) (ctx)->verify_cb +# define X509_STORE_CTX_get0_cert(ctx) (ctx)->cert +# define X509_STORE_CTX_get0_chain(ctx) (ctx)->chain +# define X509_STORE_CTX_get0_untrusted(ctx) (ctx)->untrusted + +# define X509_STORE_CTX_set_verify(ctx, verify_chain) (ctx)->verify = (verify_chain) +# define X509_STORE_CTX_set0_verified_chain(ctx, sk) (ctx)->chain = (sk) +# define X509_STORE_CTX_set_error_depth(ctx, val) (ctx)->error_depth = (val) +# define X509_STORE_CTX_set_current_cert(ctx, cert) (ctx)->current_cert = (cert) + +# define ASN1_STRING_get0_data ASN1_STRING_data +# define X509_getm_notBefore X509_get_notBefore +# define X509_getm_notAfter X509_get_notAfter + +# define CRYPTO_ONCE_STATIC_INIT 0 +# define CRYPTO_THREAD_run_once run_once +typedef int CRYPTO_ONCE; +#endif + #include "danessl.h" -#define DANE_F_ADD_SKID 100 -#define DANE_F_CHECK_END_ENTITY 101 -#define DANE_F_GROW_CHAIN 102 -#define DANE_F_LIST_ALLOC 103 -#define DANE_F_MATCH 104 -#define DANE_F_PUSH_EXT 105 -#define DANE_F_SET_TRUST_ANCHOR 106 -#define DANE_F_SSL_CTX_DANE_INIT 107 -#define DANE_F_SSL_DANE_ADD_TLSA 108 -#define DANE_F_SSL_DANE_INIT 109 -#define DANE_F_SSL_DANE_LIBRARY_INIT 110 -#define DANE_F_VERIFY_CERT 111 -#define DANE_F_WRAP_CERT 112 - -#define DANE_R_BAD_CERT 100 -#define DANE_R_BAD_CERT_PKEY 101 -#define DANE_R_BAD_DATA_LENGTH 102 -#define DANE_R_BAD_DIGEST 103 -#define DANE_R_BAD_NULL_DATA 104 -#define DANE_R_BAD_PKEY 105 -#define DANE_R_BAD_SELECTOR 106 -#define DANE_R_BAD_USAGE 107 -#define DANE_R_DANE_INIT 108 -#define DANE_R_DANE_SUPPORT 109 -#define DANE_R_LIBRARY_INIT 110 -#define DANE_R_NOSIGN_KEY 111 -#define DANE_R_SCTX_INIT 112 +#define DANESSL_F_ADD_SKID 100 +#define DANESSL_F_ADD_TLSA 101 +#define DANESSL_F_CHECK_END_ENTITY 102 +#define DANESSL_F_CTX_INIT 103 +#define DANESSL_F_GROW_CHAIN 104 +#define DANESSL_F_INIT 105 +#define DANESSL_F_LIBRARY_INIT 106 +#define DANESSL_F_LIST_ALLOC 107 +#define DANESSL_F_MATCH 108 +#define DANESSL_F_PUSH_EXT 109 +#define DANESSL_F_SET_TRUST_ANCHOR 110 +#define DANESSL_F_VERIFY_CERT 111 +#define DANESSL_F_WRAP_CERT 112 +#define DANESSL_F_DANESSL_VERIFY_CHAIN 113 + +#define DANESSL_R_BAD_CERT 100 +#define DANESSL_R_BAD_CERT_PKEY 101 +#define DANESSL_R_BAD_DATA_LENGTH 102 +#define DANESSL_R_BAD_DIGEST 103 +#define DANESSL_R_BAD_NULL_DATA 104 +#define DANESSL_R_BAD_PKEY 105 +#define DANESSL_R_BAD_SELECTOR 106 +#define DANESSL_R_BAD_USAGE 107 +#define DANESSL_R_INIT 108 +#define DANESSL_R_LIBRARY_INIT 109 +#define DANESSL_R_NOSIGN_KEY 110 +#define DANESSL_R_SCTX_INIT 111 +#define DANESSL_R_SUPPORT 112 #ifndef OPENSSL_NO_ERR -#define DANE_F_PLACEHOLDER 0 /* FIRST! Value TBD */ +#define DANESSL_F_PLACEHOLDER 0 /* FIRST! Value TBD */ static ERR_STRING_DATA dane_str_functs[] = { - {DANE_F_PLACEHOLDER, "DANE library"}, /* FIRST!!! */ - {DANE_F_ADD_SKID, "add_skid"}, - {DANE_F_CHECK_END_ENTITY, "check_end_entity"}, - {DANE_F_GROW_CHAIN, "grow_chain"}, - {DANE_F_LIST_ALLOC, "list_alloc"}, - {DANE_F_MATCH, "match"}, - {DANE_F_PUSH_EXT, "push_ext"}, - {DANE_F_SET_TRUST_ANCHOR, "set_trust_anchor"}, - {DANE_F_SSL_CTX_DANE_INIT, "SSL_CTX_dane_init"}, - {DANE_F_SSL_DANE_ADD_TLSA, "SSL_dane_add_tlsa"}, - {DANE_F_SSL_DANE_INIT, "SSL_dane_init"}, - {DANE_F_SSL_DANE_LIBRARY_INIT, "SSL_dane_library_init"}, - {DANE_F_VERIFY_CERT, "verify_cert"}, - {DANE_F_WRAP_CERT, "wrap_cert"}, - {0, NULL} + /* error string */ + {DANESSL_F_PLACEHOLDER, "DANE library"}, /* FIRST!!! */ + {DANESSL_F_ADD_SKID, "add_skid"}, + {DANESSL_F_ADD_TLSA, "DANESSL_add_tlsa"}, + {DANESSL_F_CHECK_END_ENTITY, "check_end_entity"}, + {DANESSL_F_CTX_INIT, "DANESSL_CTX_init"}, + {DANESSL_F_GROW_CHAIN, "grow_chain"}, + {DANESSL_F_INIT, "DANESSL_init"}, + {DANESSL_F_LIBRARY_INIT, "DANESSL_library_init"}, + {DANESSL_F_LIST_ALLOC, "list_alloc"}, + {DANESSL_F_MATCH, "match"}, + {DANESSL_F_PUSH_EXT, "push_ext"}, + {DANESSL_F_SET_TRUST_ANCHOR, "set_trust_anchor"}, + {DANESSL_F_VERIFY_CERT, "verify_cert"}, + {DANESSL_F_WRAP_CERT, "wrap_cert"}, + {0, NULL} }; static ERR_STRING_DATA dane_str_reasons[] = { - {DANE_R_BAD_CERT, "Bad TLSA record certificate"}, - {DANE_R_BAD_CERT_PKEY, "Bad TLSA record certificate public key"}, - {DANE_R_BAD_DATA_LENGTH, "Bad TLSA record digest length"}, - {DANE_R_BAD_DIGEST, "Bad TLSA record digest"}, - {DANE_R_BAD_NULL_DATA, "Bad TLSA record null data"}, - {DANE_R_BAD_PKEY, "Bad TLSA record public key"}, - {DANE_R_BAD_SELECTOR, "Bad TLSA record selector"}, - {DANE_R_BAD_USAGE, "Bad TLSA record usage"}, - {DANE_R_DANE_INIT, "SSL_dane_init() required"}, - {DANE_R_DANE_SUPPORT, "DANE library features not supported"}, - {DANE_R_LIBRARY_INIT, "SSL_dane_library_init() required"}, - {DANE_R_SCTX_INIT, "SSL_CTX_dane_init() required"}, - {DANE_R_NOSIGN_KEY, "Certificate usage 2 requires EC support"}, - {0, NULL} + /* error string */ + {DANESSL_R_BAD_CERT, "Bad TLSA record certificate"}, + {DANESSL_R_BAD_CERT_PKEY, "Bad TLSA record certificate public key"}, + {DANESSL_R_BAD_DATA_LENGTH, "Bad TLSA record digest length"}, + {DANESSL_R_BAD_DIGEST, "Bad TLSA record digest"}, + {DANESSL_R_BAD_NULL_DATA, "Bad TLSA record null data"}, + {DANESSL_R_BAD_PKEY, "Bad TLSA record public key"}, + {DANESSL_R_BAD_SELECTOR, "Bad TLSA record selector"}, + {DANESSL_R_BAD_USAGE, "Bad TLSA record usage"}, + {DANESSL_R_INIT, "DANESSL_init() required"}, + {DANESSL_R_LIBRARY_INIT, "DANESSL_library_init() required"}, + {DANESSL_R_NOSIGN_KEY, "Certificate usage 2 requires EC support"}, + {DANESSL_R_SCTX_INIT, "DANESSL_CTX_init() required"}, + {DANESSL_R_SUPPORT, "DANE library features not supported"}, + {0, NULL} }; #endif @@ -96,1211 +134,1588 @@ static int wrap_to_root = 1; static void (*cert_free)(void *) = (void (*)(void *)) X509_free; static void (*pkey_free)(void *) = (void (*)(void *)) EVP_PKEY_free; -typedef struct dane_list { +typedef struct dane_list +{ struct dane_list *next; void *value; } *dane_list; #define LINSERT(h, e) do { (e)->next = (h); (h) = (e); } while (0) -typedef struct DANE_HOST_LIST { - struct DANE_HOST_LIST *next; +typedef struct dane_host_list +{ + struct dane_host_list *next; char *value; -} *DANE_HOST_LIST; +} *dane_host_list; -typedef struct dane_data { +typedef struct dane_data +{ size_t datalen; unsigned char data[0]; } *dane_data; -typedef struct DANE_DATA_LIST { - struct DANE_DATA_LIST *next; +typedef struct dane_data_list +{ + struct dane_data_list *next; dane_data value; -} *DANE_DATA_LIST; +} *dane_data_list; -typedef struct dane_mtype { +typedef struct dane_mtype +{ int mdlen; const EVP_MD *md; - DANE_DATA_LIST data; + dane_data_list data; } *dane_mtype; -typedef struct DANE_MTYPE_LIST { - struct DANE_MTYPE_LIST *next; +typedef struct dane_mtype_list +{ + struct dane_mtype_list *next; dane_mtype value; -} *DANE_MTYPE_LIST; +} *dane_mtype_list; -typedef struct dane_selector { +typedef struct dane_selector +{ uint8_t selector; - DANE_MTYPE_LIST mtype; + dane_mtype_list mtype; } *dane_selector; -typedef struct DANE_SELECTOR_LIST { - struct DANE_SELECTOR_LIST *next; +typedef struct dane_selector_list +{ + struct dane_selector_list *next; dane_selector value; -} *DANE_SELECTOR_LIST; +} *dane_selector_list; -typedef struct DANE_PKEY_LIST { - struct DANE_PKEY_LIST *next; +typedef struct dane_pkey_list +{ + struct dane_pkey_list *next; EVP_PKEY *value; -} *DANE_PKEY_LIST; +} *dane_pkey_list; -typedef struct DANE_CERT_LIST { - struct DANE_CERT_LIST *next; +typedef struct dane_cert_list +{ + struct dane_cert_list *next; X509 *value; -} *DANE_CERT_LIST; +} *dane_cert_list; -typedef struct SSL_DANE { +typedef struct ssl_dane +{ int (*verify)(X509_STORE_CTX *); STACK_OF(X509) *roots; STACK_OF(X509) *chain; - const char *thost; /* TLSA base domain */ - char *mhost; /* Matched, peer name */ - DANE_PKEY_LIST pkeys; - DANE_CERT_LIST certs; - DANE_HOST_LIST hosts; - DANE_SELECTOR_LIST selectors[SSL_DANE_USAGE_LAST + 1]; + X509 *match; /* Matched cert */ + const char *thost; /* TLSA base domain */ + char *mhost; /* Matched peer name */ + dane_pkey_list pkeys; + dane_cert_list certs; + dane_host_list hosts; + dane_selector_list selectors[DANESSL_USAGE_LAST + 1]; int depth; - int multi; /* Multi-label wildcards? */ - int count; /* Number of TLSA records */ -} SSL_DANE; + int mdpth; /* Depth of matched cert */ + int multi; /* Multi-label wildcards? */ + int count; /* Number of TLSA records */ +} ssl_dane; #ifndef X509_V_ERR_HOSTNAME_MISMATCH -#define X509_V_ERR_HOSTNAME_MISMATCH X509_V_ERR_APPLICATION_VERIFICATION +# define X509_V_ERR_HOSTNAME_MISMATCH X509_V_ERR_APPLICATION_VERIFICATION #endif -static int match(DANE_SELECTOR_LIST slist, X509 *cert, int depth) + + +static int +match(dane_selector_list slist, X509 *cert, int depth) { - int matched; +int matched; + +/* + * Note, set_trust_anchor() needs to know whether the match was for a + * pkey digest or a certificate digest. We return MATCHED_PKEY or + * MATCHED_CERT accordingly. + */ +#define MATCHED_CERT (DANESSL_SELECTOR_CERT + 1) +#define MATCHED_PKEY (DANESSL_SELECTOR_SPKI + 1) + +/* + * Loop over each selector, mtype, and associated data element looking + * for a match. + */ +for (matched = 0; !matched && slist; slist = slist->next) + { + dane_mtype_list m; + unsigned char mdbuf[EVP_MAX_MD_SIZE]; + unsigned char *buf = NULL; + unsigned char *buf2; + unsigned int len = 0; + + /* + * Extract ASN.1 DER form of certificate or public key. + */ + switch(slist->value->selector) + { + case DANESSL_SELECTOR_CERT: + len = i2d_X509(cert, NULL); + buf2 = buf = US OPENSSL_malloc(len); + if(buf) i2d_X509(cert, &buf2); + break; + case DANESSL_SELECTOR_SPKI: + len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), NULL); + buf2 = buf = US OPENSSL_malloc(len); + if(buf) i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf2); + break; + } - /* - * Note, set_trust_anchor() needs to know whether the match was for a - * pkey digest or a certificate digest. We return MATCHED_PKEY or - * MATCHED_CERT accordingly. - */ -#define MATCHED_CERT (SSL_DANE_SELECTOR_CERT + 1) -#define MATCHED_PKEY (SSL_DANE_SELECTOR_SPKI + 1) + if (!buf) + { + DANEerr(DANESSL_F_MATCH, ERR_R_MALLOC_FAILURE); + return 0; + } + OPENSSL_assert(buf2 - buf == len); + + /* + * Loop over each mtype and data element + */ + for (m = slist->value->mtype; !matched && m; m = m->next) + { + dane_data_list d; + unsigned char *cmpbuf = buf; + unsigned int cmplen = len; /* - * Loop over each selector, mtype, and associated data element looking - * for a match. + * If it is a digest, compute the corresponding digest of the + * DER data for comparison, otherwise, use the full object. */ - for (matched = 0; !matched && slist; slist = slist->next) { - DANE_MTYPE_LIST m; - unsigned char mdbuf[EVP_MAX_MD_SIZE]; - unsigned char *buf; - unsigned char *buf2; - unsigned int len; - - /* - * Extract ASN.1 DER form of certificate or public key. - */ - switch (slist->value->selector) { - case SSL_DANE_SELECTOR_CERT: - len = i2d_X509(cert, NULL); - buf2 = buf = (unsigned char *) OPENSSL_malloc(len); - if (buf) - i2d_X509(cert, &buf2); - break; - case SSL_DANE_SELECTOR_SPKI: - len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), NULL); - buf2 = buf = (unsigned char *) OPENSSL_malloc(len); - if (buf) - i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf2); - break; - } - - if (buf == NULL) { - DANEerr(DANE_F_MATCH, ERR_R_MALLOC_FAILURE); - return 0; - } - OPENSSL_assert(buf2 - buf == len); - - /* - * Loop over each mtype and data element - */ - for (m = slist->value->mtype; !matched && m; m = m->next) { - DANE_DATA_LIST d; - unsigned char *cmpbuf = buf; - unsigned int cmplen = len; - - /* - * If it is a digest, compute the corresponding digest of the - * DER data for comparison, otherwise, use the full object. - */ - if (m->value->md) { - cmpbuf = mdbuf; - if (!EVP_Digest(buf, len, cmpbuf, &cmplen, m->value->md, 0)) - matched = -1; - } - for (d = m->value->data; !matched && d; d = d->next) - if (cmplen == d->value->datalen && - memcmp(cmpbuf, d->value->data, cmplen) == 0) - matched = slist->value->selector + 1; - } - - OPENSSL_free(buf); + if (m->value->md) + { + cmpbuf = mdbuf; + if (!EVP_Digest(buf, len, cmpbuf, &cmplen, m->value->md, 0)) + matched = -1; + } + for (d = m->value->data; !matched && d; d = d->next) + if ( cmplen == d->value->datalen + && memcmp(cmpbuf, d->value->data, cmplen) == 0) + matched = slist->value->selector + 1; } - return matched; + OPENSSL_free(buf); + } + +return matched; } -static int push_ext(X509 *cert, X509_EXTENSION *ext) +static int +push_ext(X509 *cert, X509_EXTENSION *ext) { - X509_EXTENSIONS *exts; - - if (ext) { - if ((exts = cert->cert_info->extensions) == 0) - exts = cert->cert_info->extensions = sk_X509_EXTENSION_new_null(); - if (exts && sk_X509_EXTENSION_push(exts, ext)) - return 1; - X509_EXTENSION_free(ext); - } - DANEerr(DANE_F_PUSH_EXT, ERR_R_MALLOC_FAILURE); - return 0; +if (ext) + { + if (X509_add_ext(cert, ext, -1)) + return 1; + X509_EXTENSION_free(ext); + } +DANEerr(DANESSL_F_PUSH_EXT, ERR_R_MALLOC_FAILURE); +return 0; } -static int add_ext(X509 *issuer, X509 *subject, int ext_nid, char *ext_val) +static int +add_ext(X509 *issuer, X509 *subject, int ext_nid, char *ext_val) { - X509V3_CTX v3ctx; +X509V3_CTX v3ctx; - X509V3_set_ctx(&v3ctx, issuer, subject, 0, 0, 0); - return push_ext(subject, X509V3_EXT_conf_nid(0, &v3ctx, ext_nid, ext_val)); +X509V3_set_ctx(&v3ctx, issuer, subject, 0, 0, 0); +return push_ext(subject, X509V3_EXT_conf_nid(0, &v3ctx, ext_nid, ext_val)); } -static int set_serial(X509 *cert, AUTHORITY_KEYID *akid, X509 *subject) +static int +set_serial(X509 *cert, AUTHORITY_KEYID *akid, X509 *subject) { - int ret = 0; - BIGNUM *bn; - - if (akid && akid->serial) - return (X509_set_serialNumber(cert, akid->serial)); - - /* - * Add one to subject's serial to avoid collisions between TA serial and - * serial of signing root. - */ - if ((bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0 - && BN_add_word(bn, 1) - && BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert))) - ret = 1; - - if (bn) - BN_free(bn); - return ret; +int ret = 0; +BIGNUM *bn; + +if (akid && akid->serial) + return (X509_set_serialNumber(cert, akid->serial)); + +/* + * Add one to subject's serial to avoid collisions between TA serial and + * serial of signing root. + */ +if ( (bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0 + && BN_add_word(bn, 1) + && BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert))) + ret = 1; + +if (bn) + BN_free(bn); +return ret; } -static int add_akid(X509 *cert, AUTHORITY_KEYID *akid) +static int +add_akid(X509 *cert, AUTHORITY_KEYID *akid) { - int nid = NID_authority_key_identifier; - ASN1_STRING *id; - unsigned char c = 0; - int ret = 0; - - /* - * 0 will never be our subject keyid from a SHA-1 hash, but it could be - * our subject keyid if forced from child's akid. If so, set our - * authority keyid to 1. This way we are never self-signed, and thus - * exempt from any potential (off by default for now in OpenSSL) - * self-signature checks! - */ - id = (ASN1_STRING *) ((akid && akid->keyid) ? akid->keyid : 0); - if (id && M_ASN1_STRING_length(id) == 1 && *M_ASN1_STRING_data(id) == c) - c = 1; - - if ((akid = AUTHORITY_KEYID_new()) != 0 - && (akid->keyid = ASN1_OCTET_STRING_new()) != 0 - && M_ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1) - && X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_APPEND)) - ret = 1; - if (akid) - AUTHORITY_KEYID_free(akid); - return ret; +int nid = NID_authority_key_identifier; +ASN1_OCTET_STRING *id; +unsigned char c = 0; +int ret = 0; + +/* + * 0 will never be our subject keyid from a SHA-1 hash, but it could be + * our subject keyid if forced from child's akid. If so, set our + * authority keyid to 1. This way we are never self-signed, and thus + * exempt from any potential (off by default for now in OpenSSL) + * self-signature checks! + */ +id = akid && akid->keyid ? akid->keyid : 0; +if (id && ASN1_STRING_length(id) == 1 && *ASN1_STRING_get0_data(id) == c) + c = 1; + +if ( (akid = AUTHORITY_KEYID_new()) != 0 + && (akid->keyid = ASN1_OCTET_STRING_new()) != 0 +#ifdef EXIM_HAVE_ASN1_MACROS + && ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1) +#else + && M_ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1) +#endif + && X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_APPEND)) + ret = 1; +if (akid) + AUTHORITY_KEYID_free(akid); +return ret; } -static int add_skid(X509 *cert, AUTHORITY_KEYID *akid) +static int +add_skid(X509 *cert, AUTHORITY_KEYID *akid) { - int nid = NID_subject_key_identifier; +int nid = NID_subject_key_identifier; - if (!akid || !akid->keyid) - return add_ext(0, cert, nid, "hash"); - return X509_add1_ext_i2d(cert, nid, akid->keyid, 0, X509V3_ADD_APPEND) > 0; +if (!akid || !akid->keyid) + return add_ext(0, cert, nid, "hash"); +return X509_add1_ext_i2d(cert, nid, akid->keyid, 0, X509V3_ADD_APPEND) > 0; } -static X509_NAME *akid_issuer_name(AUTHORITY_KEYID *akid) +static X509_NAME * +akid_issuer_name(AUTHORITY_KEYID *akid) { - if (akid && akid->issuer) { - int i; - GENERAL_NAMES *gens = akid->issuer; +if (akid && akid->issuer) + { + int i; + GENERAL_NAMES *gens = akid->issuer; - for (i = 0; i < sk_GENERAL_NAME_num(gens); ++i) { - GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i); + for (i = 0; i < sk_GENERAL_NAME_num(gens); ++i) + { + GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i); - if (gn->type == GEN_DIRNAME) - return (gn->d.dirn); - } + if (gn->type == GEN_DIRNAME) + return (gn->d.dirn); } - return 0; + } +return 0; } -static int set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid) +static int +set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid) { - X509_NAME *name = akid_issuer_name(akid); - - /* - * If subject's akid specifies an authority key identifer issuer name, we - * must use that. - */ - if (name) - return X509_set_issuer_name(cert, name); - return X509_set_issuer_name(cert, X509_get_subject_name(cert)); +X509_NAME *name = akid_issuer_name(akid); + +/* + * If subject's akid specifies an authority key identifer issuer name, we + * must use that. + */ +return X509_set_issuer_name(cert, + name ? name : X509_get_subject_name(cert)); } -static int grow_chain(SSL_DANE *dane, int trusted, X509 *cert) +static int +grow_chain(ssl_dane *dane, int trusted, X509 *cert) { - STACK_OF(X509) **xs = trusted ? &dane->roots : &dane->chain; - static ASN1_OBJECT *serverAuth = 0; +STACK_OF(X509) **xs = trusted ? &dane->roots : &dane->chain; +static ASN1_OBJECT *serverAuth = 0; #define UNTRUSTED 0 #define TRUSTED 1 - if (trusted && serverAuth == 0 && - (serverAuth = OBJ_nid2obj(NID_server_auth)) == 0) { - DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE); - return 0; - } - if (!*xs && (*xs = sk_X509_new_null()) == 0) { - DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE); - return 0; - } - - if (cert) { - if (trusted && !X509_add1_trust_object(cert, serverAuth)) - return 0; - CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509); - if (!sk_X509_push(*xs, cert)) { - X509_free(cert); - DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE); - return 0; - } +if ( trusted && !serverAuth + && !(serverAuth = OBJ_nid2obj(NID_server_auth))) + { + DANEerr(DANESSL_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE); + return 0; + } +if (!*xs && !(*xs = sk_X509_new_null())) + { + DANEerr(DANESSL_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE); + return 0; + } + +if (cert) + { + if (trusted && !X509_add1_trust_object(cert, serverAuth)) + return 0; +#ifdef EXIM_OPAQUE_X509 + X509_up_ref(cert); +#else + CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509); +#endif + if (!sk_X509_push(*xs, cert)) + { + X509_free(cert); + DANEerr(DANESSL_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE); + return 0; } - return 1; + } +return 1; } -static int wrap_issuer( - SSL_DANE *dane, - EVP_PKEY *key, - X509 *subject, - int depth, - int top -) +static int +wrap_issuer(ssl_dane *dane, EVP_PKEY *key, X509 *subject, int depth, int top) { - int ret = 1; - X509 *cert = 0; - AUTHORITY_KEYID *akid; - X509_NAME *name = X509_get_issuer_name(subject); - EVP_PKEY *newkey = key ? key : X509_get_pubkey(subject); +int ret = 1; +X509 *cert = 0; +AUTHORITY_KEYID *akid; +X509_NAME *name = X509_get_issuer_name(subject); +EVP_PKEY *newkey = key ? key : X509_get_pubkey(subject); #define WRAP_MID 0 /* Ensure intermediate. */ #define WRAP_TOP 1 /* Ensure self-signed. */ - if (name == 0 || newkey == 0 || (cert = X509_new()) == 0) - return 0; - - /* - * Record the depth of the trust-anchor certificate. - */ - if (dane->depth < 0) - dane->depth = depth + 1; - - /* - * XXX: Uncaught error condition: - * - * The return value is NULL both when the extension is missing, and when - * OpenSSL rans out of memory while parsing the extension. - */ - ERR_clear_error(); - akid = X509_get_ext_d2i(subject, NID_authority_key_identifier, 0, 0); - /* XXX: Should we peek at the error stack here??? */ - - /* - * If top is true generate a self-issued root CA, otherwise an - * intermediate CA and possibly its self-signed issuer. - * - * CA cert valid for +/- 30 days - */ - if (!X509_set_version(cert, 2) - || !set_serial(cert, akid, subject) - || !X509_set_subject_name(cert, name) - || !set_issuer_name(cert, akid) - || !X509_gmtime_adj(X509_get_notBefore(cert), -30 * 86400L) - || !X509_gmtime_adj(X509_get_notAfter(cert), 30 * 86400L) - || !X509_set_pubkey(cert, newkey) - || !add_ext(0, cert, NID_basic_constraints, "CA:TRUE") - || (!top && !add_akid(cert, akid)) - || !add_skid(cert, akid) - || (!top && wrap_to_root && - !wrap_issuer(dane, newkey, cert, depth, WRAP_TOP))) { - ret = 0; - } - if (akid) - AUTHORITY_KEYID_free(akid); - if (!key) - EVP_PKEY_free(newkey); - if (ret) { - if (!top && wrap_to_root) - ret = grow_chain(dane, UNTRUSTED, cert); - else - ret = grow_chain(dane, TRUSTED, cert); - } - if (cert) - X509_free(cert); - return ret; +if (!name || !newkey || !(cert = X509_new())) + return 0; + +/* + * Record the depth of the trust-anchor certificate. + */ +if (dane->depth < 0) + dane->depth = depth + 1; + +/* + * XXX: Uncaught error condition: + * + * The return value is NULL both when the extension is missing, and when + * OpenSSL rans out of memory while parsing the extension. + */ +ERR_clear_error(); +akid = X509_get_ext_d2i(subject, NID_authority_key_identifier, 0, 0); +/* XXX: Should we peek at the error stack here??? */ + +/* + * If top is true generate a self-issued root CA, otherwise an + * intermediate CA and possibly its self-signed issuer. + * + * CA cert valid for +/- 30 days + */ +if ( !X509_set_version(cert, 2) + || !set_serial(cert, akid, subject) + || !set_issuer_name(cert, akid) + || !X509_gmtime_adj(X509_getm_notBefore(cert), -30 * 86400L) + || !X509_gmtime_adj(X509_getm_notAfter(cert), 30 * 86400L) + || !X509_set_subject_name(cert, name) + || !X509_set_pubkey(cert, newkey) + || !add_ext(0, cert, NID_basic_constraints, "CA:TRUE") + || (!top && !add_akid(cert, akid)) + || !add_skid(cert, akid) + || ( !top && wrap_to_root + && !wrap_issuer(dane, newkey, cert, depth, WRAP_TOP))) + ret = 0; + +if (akid) + AUTHORITY_KEYID_free(akid); +if (!key) + EVP_PKEY_free(newkey); +if (ret) + ret = grow_chain(dane, !top && wrap_to_root ? UNTRUSTED : TRUSTED, cert); +if (cert) + X509_free(cert); +return ret; } -static int wrap_cert(SSL_DANE *dane, X509 *tacert, int depth) +static int +wrap_cert(ssl_dane *dane, X509 *tacert, int depth) { - if (dane->depth < 0) - dane->depth = depth + 1; - - /* - * If the TA certificate is self-issued, or need not be, use it directly. - * Otherwise, synthesize requisuite ancestors. - */ - if (!wrap_to_root - || X509_check_issued(tacert, tacert) == X509_V_OK) - return grow_chain(dane, TRUSTED, tacert); - - if (wrap_issuer(dane, 0, tacert, depth, WRAP_MID)) - return grow_chain(dane, UNTRUSTED, tacert); - return 0; +if (dane->depth < 0) + dane->depth = depth + 1; + +/* + * If the TA certificate is self-issued, or need not be, use it directly. + * Otherwise, synthesize requisite ancestors. + */ +if ( !wrap_to_root + || X509_check_issued(tacert, tacert) == X509_V_OK) + return grow_chain(dane, TRUSTED, tacert); + +if (wrap_issuer(dane, 0, tacert, depth, WRAP_MID)) + return grow_chain(dane, UNTRUSTED, tacert); +return 0; } -static int ta_signed(SSL_DANE *dane, X509 *cert, int depth) +static int +ta_signed(ssl_dane *dane, X509 *cert, int depth) { - DANE_CERT_LIST x; - DANE_PKEY_LIST k; - EVP_PKEY *pk; - int done = 0; - - /* - * First check whether issued and signed by a TA cert, this is cheaper - * than the bare-public key checks below, since we can determine whether - * the candidate TA certificate issued the certificate to be checked - * first (name comparisons), before we bother with signature checks - * (public key operations). - */ - for (x = dane->certs; !done && x; x = x->next) { - if (X509_check_issued(x->value, cert) == X509_V_OK) { - if ((pk = X509_get_pubkey(x->value)) == 0) { - /* - * The cert originally contained a valid pkey, which does - * not just vanish, so this is most likely a memory error. - */ - done = -1; - break; - } - /* Check signature, since some other TA may work if not this. */ - if (X509_verify(cert, pk) > 0) - done = wrap_cert(dane, x->value, depth) ? 1 : -1; - EVP_PKEY_free(pk); - } +dane_cert_list x; +dane_pkey_list k; +EVP_PKEY *pk; +int done = 0; + +/* + * First check whether issued and signed by a TA cert, this is cheaper + * than the bare-public key checks below, since we can determine whether + * the candidate TA certificate issued the certificate to be checked + * first (name comparisons), before we bother with signature checks + * (public key operations). + */ +for (x = dane->certs; !done && x; x = x->next) + { + if (X509_check_issued(x->value, cert) == X509_V_OK) + { + if (!(pk = X509_get_pubkey(x->value))) + { + /* + * The cert originally contained a valid pkey, which does + * not just vanish, so this is most likely a memory error. + */ + done = -1; + break; + } + /* Check signature, since some other TA may work if not this. */ + if (X509_verify(cert, pk) > 0) + done = wrap_cert(dane, x->value, depth) ? 1 : -1; + EVP_PKEY_free(pk); } + } + +/* + * With bare TA public keys, we can't check whether the trust chain is + * issued by the key, but we can determine whether it is signed by the + * key, so we go with that. + * + * Ideally, the corresponding certificate was presented in the chain, and we + * matched it by its public key digest one level up. This code is here + * to handle adverse conditions imposed by sloppy administrators of + * receiving systems with poorly constructed chains. + * + * We'd like to optimize out keys that should not match when the cert's + * authority key id does not match the key id of this key computed via + * the RFC keyid algorithm (SHA-1 digest of public key bit-string sans + * ASN1 tag and length thus also excluding the unused bits field that is + * logically part of the length). However, some CAs have a non-standard + * authority keyid, so we lose. Too bad. + * + * This may push errors onto the stack when the certificate signature is + * not of the right type or length, throw these away, + */ +for (k = dane->pkeys; !done && k; k = k->next) + if (X509_verify(cert, k->value) > 0) + done = wrap_issuer(dane, k->value, cert, depth, WRAP_MID) ? 1 : -1; + else + ERR_clear_error(); - /* - * With bare TA public keys, we can't check whether the trust chain is - * issued by the key, but we can determine whether it is signed by the - * key, so we go with that. - * - * Ideally, the corresponding certificate was presented in the chain, and we - * matched it by its public key digest one level up. This code is here - * to handle adverse conditions imposed by sloppy administrators of - * receiving systems with poorly constructed chains. - * - * We'd like to optimize out keys that should not match when the cert's - * authority key id does not match the key id of this key computed via - * the RFC keyid algorithm (SHA-1 digest of public key bit-string sans - * ASN1 tag and length thus also excluding the unused bits field that is - * logically part of the length). However, some CAs have a non-standard - * authority keyid, so we lose. Too bad. - * - * This may push errors onto the stack when the certificate signature is - * not of the right type or length, throw these away, - */ - for (k = dane->pkeys; !done && k; k = k->next) - if (X509_verify(cert, k->value) > 0) - done = wrap_issuer(dane, k->value, cert, depth, WRAP_MID) ? 1 : -1; - else - ERR_clear_error(); - - return done; +return done; } -static int set_trust_anchor(X509_STORE_CTX *ctx, SSL_DANE *dane, X509 *cert) +static int +set_trust_anchor(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert) { - int matched = 0; - int n; - int i; - int depth = 0; - EVP_PKEY *takey; - X509 *ca; - STACK_OF(X509) *in = ctx->untrusted; /* XXX: Accessor? */ - - if (!grow_chain(dane, UNTRUSTED, 0)) - return -1; - - /* - * Accept a degenerate case: depth 0 self-signed trust-anchor. - */ - if (X509_check_issued(cert, cert) == X509_V_OK) { - dane->depth = 0; - matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], cert, 0); - if (matched > 0 && !grow_chain(dane, TRUSTED, cert)) - matched = -1; - return matched; +int matched = 0; +int n; +int i; +int depth = 0; +EVP_PKEY *takey; +X509 *ca; +STACK_OF(X509) *in = X509_STORE_CTX_get0_untrusted(ctx); + +if (!grow_chain(dane, UNTRUSTED, 0)) + return -1; + +/* + * Accept a degenerate case: depth 0 self-signed trust-anchor. + */ +if (X509_check_issued(cert, cert) == X509_V_OK) + { + dane->depth = 0; + matched = match(dane->selectors[DANESSL_USAGE_DANE_TA], cert, 0); + if (matched > 0 && !grow_chain(dane, TRUSTED, cert)) + matched = -1; + return matched; + } + +/* Make a shallow copy of the input untrusted chain. */ +if (!(in = sk_X509_dup(in))) + { + DANEerr(DANESSL_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE); + return -1; + } + +/* + * At each iteration we consume the issuer of the current cert. This + * reduces the length of the "in" chain by one. If no issuer is found, + * we are done. We also stop when a certificate matches a TA in the + * peer's TLSA RRset. + * + * Caller ensures that the initial certificate is not self-signed. + */ +for (n = sk_X509_num(in); n > 0; --n, ++depth) + { + for (i = 0; i < n; ++i) + if (X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK) + break; + + /* + * Final untrusted element with no issuer in the peer's chain, it may + * however be signed by a pkey or cert obtained via a TLSA RR. + */ + if (i == n) + break; + + /* Peer's chain contains an issuer ca. */ + ca = sk_X509_delete(in, i); + + /* If not a trust anchor, record untrusted ca and continue. */ + if ((matched = match(dane->selectors[DANESSL_USAGE_DANE_TA], ca, + depth + 1)) == 0) + { + if (grow_chain(dane, UNTRUSTED, ca)) + { + if (X509_check_issued(ca, ca) != X509_V_OK) + { + /* Restart with issuer as subject */ + cert = ca; + continue; + } + /* Final self-signed element, skip ta_signed() check. */ + cert = 0; + } + else + matched = -1; } - - /* Make a shallow copy of the input untrusted chain. */ - if ((in = sk_X509_dup(in)) == 0) { - DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE); - return -1; + else if(matched == MATCHED_CERT) + { + if(!wrap_cert(dane, ca, depth)) + matched = -1; } - - /* - * At each iteration we consume the issuer of the current cert. This - * reduces the length of the "in" chain by one. If no issuer is found, - * we are done. We also stop when a certificate matches a TA in the - * peer's TLSA RRset. - * - * Caller ensures that the initial certificate is not self-signed. - */ - for (n = sk_X509_num(in); n > 0; --n, ++depth) { - for (i = 0; i < n; ++i) - if (X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK) - break; - - /* - * Final untrusted element with no issuer in the peer's chain, it may - * however be signed by a pkey or cert obtained via a TLSA RR. - */ - if (i == n) - break; - - /* Peer's chain contains an issuer ca. */ - ca = sk_X509_delete(in, i); - - /* If not a trust anchor, record untrusted ca and continue. */ - if ((matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], ca, - depth + 1)) == 0) { - if (grow_chain(dane, UNTRUSTED, ca)) { - if (!X509_check_issued(ca, ca) == X509_V_OK) { - /* Restart with issuer as subject */ - cert = ca; - continue; - } - /* Final self-signed element, skip ta_signed() check. */ - cert = 0; - } else - matched = -1; - } else if (matched == MATCHED_CERT) { - if (!wrap_cert(dane, ca, depth)) - matched = -1; - } else if (matched == MATCHED_PKEY) { - if ((takey = X509_get_pubkey(ca)) == 0 || - !wrap_issuer(dane, takey, cert, depth, WRAP_MID)) { - if (takey) - EVP_PKEY_free(takey); - else - DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE); - matched = -1; - } - } - break; + else if(matched == MATCHED_PKEY) + { + if ( !(takey = X509_get_pubkey(ca)) + || !wrap_issuer(dane, takey, cert, depth, WRAP_MID)) + { + if (takey) + EVP_PKEY_free(takey); + else + DANEerr(DANESSL_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE); + matched = -1; + } } + break; + } - /* Shallow free the duplicated input untrusted chain. */ - sk_X509_free(in); +/* Shallow free the duplicated input untrusted chain. */ +sk_X509_free(in); - /* - * When the loop exits, if "cert" is set, it is not self-signed and has - * no issuer in the chain, we check for a possible signature via a DNS - * obtained TA cert or public key. - */ - if (matched == 0 && cert) - matched = ta_signed(dane, cert, depth); +/* + * When the loop exits, if "cert" is set, it is not self-signed and has + * no issuer in the chain, we check for a possible signature via a DNS + * obtained TA cert or public key. + */ +if (matched == 0 && cert) + matched = ta_signed(dane, cert, depth); - return matched; +return matched; } -static int check_end_entity(X509_STORE_CTX *ctx, SSL_DANE *dane, X509 *cert) +static int +check_end_entity(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert) { - int matched; - - matched = match(dane->selectors[SSL_DANE_USAGE_FIXED_LEAF], cert, 0); - if (matched > 0) { - if (ctx->chain == 0) { - if ((ctx->chain = sk_X509_new_null()) != 0 && - sk_X509_push(ctx->chain, cert)) { - CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509); - } else { - DANEerr(DANE_F_CHECK_END_ENTITY, ERR_R_MALLOC_FAILURE); - return -1; - } - } +int matched; + +matched = match(dane->selectors[DANESSL_USAGE_DANE_EE], cert, 0); +if (matched > 0) + { + dane->mdpth = 0; + dane->match = cert; + X509_up_ref(cert); + if(!X509_STORE_CTX_get0_chain(ctx)) + { + STACK_OF(X509) * sk = sk_X509_new_null(); + if (sk && sk_X509_push(sk, cert)) + { + X509_up_ref(cert); + X509_STORE_CTX_set0_verified_chain(ctx, sk); + } + else + { + if (sk) sk_X509_free(sk); + DANEerr(DANESSL_F_CHECK_END_ENTITY, ERR_R_MALLOC_FAILURE); + return -1; + } } - return matched; + } +return matched; } -static int match_name(const char *certid, SSL_DANE *dane) +static int +match_name(const char *certid, ssl_dane *dane) { - int multi = dane->multi; - DANE_HOST_LIST hosts = dane->hosts; - - for (/* NOP */; hosts; hosts = hosts->next) { - int match_subdomain = 0; - const char *domain = hosts->value; - const char *parent; - int idlen; - int domlen; - - if (*domain == '.' && domain[1] != '\0') { - ++domain; - match_subdomain = 1; - } - - /* - * Sub-domain match: certid is any sub-domain of hostname. - */ - if (match_subdomain) { - if ((idlen = strlen(certid)) > (domlen = strlen(domain)) + 1 - && certid[idlen - domlen - 1] == '.' - && !strcasecmp(certid + (idlen - domlen), domain)) - return 1; - else - continue; - } - - /* - * Exact match and initial "*" match. The initial "*" in a certid - * matches one (if multi is false) or more hostname components under - * the condition that the certid contains multiple hostname components. - */ - if (!strcasecmp(certid, domain) - || (certid[0] == '*' && certid[1] == '.' && certid[2] != 0 - && (parent = strchr(domain, '.')) != 0 - && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent)) - && strcasecmp(multi ? parent + domlen - idlen : parent, - certid + 1) == 0)) - return 1; +int multi = dane->multi; +dane_host_list hosts; + +for (hosts = dane->hosts; hosts; hosts = hosts->next) + { + int match_subdomain = 0; + const char *domain = hosts->value; + const char *parent; + int idlen; + int domlen; + + if (*domain == '.' && domain[1] != '\0') + { + ++domain; + match_subdomain = 1; } - return 0; + + /* + * Sub-domain match: certid is any sub-domain of hostname. + */ + if(match_subdomain) + { + if ( (idlen = strlen(certid)) > (domlen = strlen(domain)) + 1 + && certid[idlen - domlen - 1] == '.' + && !strcasecmp(certid + (idlen - domlen), domain)) + return 1; + else + continue; + } + + /* + * Exact match and initial "*" match. The initial "*" in a certid + * matches one (if multi is false) or more hostname components under + * the condition that the certid contains multiple hostname components. + */ + if ( !strcasecmp(certid, domain) + || ( certid[0] == '*' && certid[1] == '.' && certid[2] != 0 + && (parent = strchr(domain, '.')) != 0 + && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent)) + && strcasecmp(multi ? parent + domlen - idlen : parent, certid+1) == 0)) + return 1; + } +return 0; } -static char *check_name(char *name, int len) +static const char * +check_name(const char *name, int len) { - register char *cp = name + len; - - while (len > 0 && *--cp == 0) - --len; /* Ignore trailing NULs */ - if (len <= 0) - return 0; - for (cp = name; *cp; cp++) { - register char c = *cp; - if (!((c >= 'a' && c <= 'z') || - (c >= '0' && c <= '9') || - (c >= 'A' && c <= 'Z') || - (c == '.' || c == '-') || - (c == '*'))) - return 0; /* Only LDH, '.' and '*' */ - } - if (cp - name != len) /* Guard against internal NULs */ - return 0; - return name; +const char *cp = name + len; + +while (len > 0 && !*--cp) + --len; /* Ignore trailing NULs */ +if (len <= 0) + return 0; +for (cp = name; *cp; cp++) + { + char c = *cp; + if (!((c >= 'a' && c <= 'z') || + (c >= '0' && c <= '9') || + (c >= 'A' && c <= 'Z') || + (c == '.' || c == '-') || + (c == '*'))) + return 0; /* Only LDH, '.' and '*' */ + } +if (cp - name != len) /* Guard against internal NULs */ + return 0; +return name; } -static char *parse_dns_name(const GENERAL_NAME *gn) +static const char * +parse_dns_name(const GENERAL_NAME *gn) { - if (gn->type != GEN_DNS) - return 0; - if (ASN1_STRING_type(gn->d.ia5) != V_ASN1_IA5STRING) - return 0; - return check_name((char *) ASN1_STRING_data(gn->d.ia5), - ASN1_STRING_length(gn->d.ia5)); +if (gn->type != GEN_DNS) + return 0; +if (ASN1_STRING_type(gn->d.ia5) != V_ASN1_IA5STRING) + return 0; +return check_name(CCS ASN1_STRING_get0_data(gn->d.ia5), + ASN1_STRING_length(gn->d.ia5)); } -static char *parse_subject_name(X509 *cert) +static char * +parse_subject_name(X509 *cert) { - X509_NAME *name = X509_get_subject_name(cert); - X509_NAME_ENTRY *entry; - ASN1_STRING *entry_str; - unsigned char *namebuf; - int nid = NID_commonName; - int len; - int i; - - if (name == 0 || (i = X509_NAME_get_index_by_NID(name, nid, -1)) < 0) - return 0; - if ((entry = X509_NAME_get_entry(name, i)) == 0) - return 0; - if ((entry_str = X509_NAME_ENTRY_get_data(entry)) == 0) - return 0; - - if ((len = ASN1_STRING_to_UTF8(&namebuf, entry_str)) < 0) - return 0; - if (len <= 0 || check_name((char *) namebuf, len) == 0) { - OPENSSL_free(namebuf); - return 0; - } - return (char *) namebuf; +X509_NAME *name = X509_get_subject_name(cert); +X509_NAME_ENTRY *entry; +ASN1_STRING *entry_str; +unsigned char *namebuf; +int nid = NID_commonName; +int len; +int i; + +if (!name || (i = X509_NAME_get_index_by_NID(name, nid, -1)) < 0) + return 0; +if (!(entry = X509_NAME_get_entry(name, i))) + return 0; +if (!(entry_str = X509_NAME_ENTRY_get_data(entry))) + return 0; + +if ((len = ASN1_STRING_to_UTF8(&namebuf, entry_str)) < 0) + return 0; +if (len <= 0 || check_name(CS namebuf, len) == 0) + { + OPENSSL_free(namebuf); + return 0; + } +return CS namebuf; } -static int name_check(SSL_DANE *dane, X509 *cert) +static int +name_check(ssl_dane *dane, X509 *cert) { - int matched = 0; - int got_altname = 0; - GENERAL_NAMES *gens; - - gens = X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0); - if (gens) { - int n = sk_GENERAL_NAME_num(gens); - int i; - - for (i = 0; i < n; ++i) { - const GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i); - const char *certid; - - if (gn->type != GEN_DNS) - continue; - got_altname = 1; - certid = parse_dns_name(gn); - if (certid && *certid) { - if ((matched = match_name(certid, dane)) == 0) - continue; - if ((dane->mhost = OPENSSL_strdup(certid)) == 0) - matched = -1; - break; - } - } - GENERAL_NAMES_free(gens); - } +int matched = 0; +BOOL got_altname = FALSE; +GENERAL_NAMES *gens; - /* - * XXX: Should the subjectName be skipped when *any* altnames are present, - * or only when DNS altnames are present? - */ - if (got_altname == 0) { - char *certid = parse_subject_name(cert); - if (certid != 0 && *certid && (matched = match_name(certid, dane)) != 0) - dane->mhost = certid; /* Already a copy */ +gens = X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0); +if (gens) + { + int n = sk_GENERAL_NAME_num(gens); + int i; + + for (i = 0; i < n; ++i) + { + const GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i); + const char *certid; + + if (gn->type != GEN_DNS) + continue; + got_altname = TRUE; + certid = parse_dns_name(gn); + if (certid && *certid) + { + if ((matched = match_name(certid, dane)) == 0) + continue; + if (!(dane->mhost = OPENSSL_strdup(certid))) + matched = -1; + DEBUG(D_tls) debug_printf("Dane name_check: matched SAN %s\n", certid); + break; + } + } + GENERAL_NAMES_free(gens); + } + +/* + * XXX: Should the subjectName be skipped when *any* altnames are present, + * or only when DNS altnames are present? + */ +if (!got_altname) + { + char *certid = parse_subject_name(cert); + if (certid != 0 && *certid && (matched = match_name(certid, dane)) != 0) + { + DEBUG(D_tls) debug_printf("Dane name_check: matched SN %s\n", certid); + dane->mhost = OPENSSL_strdup(certid); } - return matched; + if (certid) + OPENSSL_free(certid); + } +return matched; } -static int verify_chain(X509_STORE_CTX *ctx) +static int +verify_chain(X509_STORE_CTX *ctx) { - DANE_SELECTOR_LIST issuer_rrs; - DANE_SELECTOR_LIST leaf_rrs; - int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb; - int ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx(); - SSL *ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx); - SSL_DANE *dane = SSL_get_ex_data(ssl, dane_idx); - X509 *cert = ctx->cert; /* XXX: accessor? */ - int matched = 0; - int chain_length = sk_X509_num(ctx->chain); - - issuer_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_ISSUER]; - leaf_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_LEAF]; - ctx->verify = dane->verify; - - if ((matched = name_check(dane, cert)) < 0) { - X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM); - return 0; - } - - if (!matched) { - ctx->error_depth = 0; - ctx->current_cert = cert; - X509_STORE_CTX_set_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH); - if (!cb(0, ctx)) - return 0; +int (*cb)(int, X509_STORE_CTX *) = X509_STORE_CTX_get_verify_cb(ctx); +X509 *cert = X509_STORE_CTX_get0_cert(ctx); +STACK_OF(X509) * chain = X509_STORE_CTX_get0_chain(ctx); +int chain_length = sk_X509_num(chain); +int ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx(); +SSL *ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx); +ssl_dane *dane = SSL_get_ex_data(ssl, dane_idx); +dane_selector_list issuer_rrs = dane->selectors[DANESSL_USAGE_PKIX_TA]; +dane_selector_list leaf_rrs = dane->selectors[DANESSL_USAGE_PKIX_EE]; +int matched = 0; + +DEBUG(D_tls) debug_printf("Dane verify_chain\n"); + +/* Restore OpenSSL's internal_verify() as the signature check function */ +X509_STORE_CTX_set_verify(ctx, dane->verify); + +if ((matched = name_check(dane, cert)) < 0) + { + X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM); + return 0; + } + +if (!matched) + { + X509_STORE_CTX_set_error_depth(ctx, 0); + X509_STORE_CTX_set_current_cert(ctx, cert); + X509_STORE_CTX_set_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH); + if (!cb(0, ctx)) + return 0; + } +matched = 0; + +/* + * Satisfy at least one usage 0 or 1 constraint, unless we've already + * matched a usage 2 trust anchor. + * + * XXX: internal_verify() doesn't callback with top certs that are not + * self-issued. This is fixed in OpenSSL 1.1.0. + */ +if (dane->roots && sk_X509_num(dane->roots)) + { + X509 *top = sk_X509_value(chain, dane->depth); + + dane->mdpth = dane->depth; + dane->match = top; + X509_up_ref(top); + +#if OPENSSL_VERSION_NUMBER < 0x10100000L + if (X509_check_issued(top, top) != X509_V_OK) + { + X509_STORE_CTX_set_error_depth(ctx, dane->depth); + X509_STORE_CTX_set_current_cert(ctx, top); + if (!cb(1, ctx)) + return 0; } - matched = 0; - - /* - * Satisfy at least one usage 0 or 1 constraint, unless we've already - * matched a usage 2 trust anchor. - * - * XXX: internal_verify() doesn't callback with top certs that are not - * self-issued. This should be fixed in a future OpenSSL. - */ - if (dane->roots && sk_X509_num(dane->roots)) { -#ifndef NO_CALLBACK_WORKAROUND - X509 *top = sk_X509_value(ctx->chain, dane->depth); - - if (X509_check_issued(top, top) != X509_V_OK) { - ctx->error_depth = dane->depth; - ctx->current_cert = top; - if (!cb(1, ctx)) - return 0; - } #endif - /* Pop synthetic trust-anchor ancestors off the chain! */ - while (--chain_length > dane->depth) - X509_free(sk_X509_pop(ctx->chain)); - } else if (issuer_rrs || leaf_rrs) { - int n = chain_length; - - /* - * Check for an EE match, then a CA match at depths > 0, and - * finally, if the EE cert is self-issued, for a depth 0 CA match. - */ - if (leaf_rrs) - matched = match(leaf_rrs, cert, 0); - while (!matched && issuer_rrs && --n >= 0) { - X509 *xn = sk_X509_value(ctx->chain, n); - - if (n > 0 || X509_check_issued(xn, xn) == X509_V_OK) - matched = match(issuer_rrs, xn, n); - } - - if (matched < 0) { - X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM); - return 0; - } - - if (!matched) { - ctx->current_cert = cert; - ctx->error_depth = 0; - X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_UNTRUSTED); - if (!cb(0, ctx)) - return 0; - } + /* Pop synthetic trust-anchor ancestors off the chain! */ + while (--chain_length > dane->depth) + X509_free(sk_X509_pop(chain)); + } +else + { + int n = 0; + X509 *xn = cert; + + /* + * Check for an EE match, then a CA match at depths > 0, and + * finally, if the EE cert is self-issued, for a depth 0 CA match. + */ + if (leaf_rrs) + matched = match(leaf_rrs, xn, 0); + if (matched) DEBUG(D_tls) debug_printf("Dane verify_chain: matched EE\n"); + + if (!matched && issuer_rrs) + for (n = chain_length-1; !matched && n >= 0; --n) + { + xn = sk_X509_value(chain, n); + if (n > 0 || X509_check_issued(xn, xn) == X509_V_OK) + matched = match(issuer_rrs, xn, n); + } + if (matched) DEBUG(D_tls) debug_printf("Dane verify_chain: matched %s\n", + n>0 ? "CA" : "selfisssued EE"); + + if (!matched) + { + X509_STORE_CTX_set_error_depth(ctx, 0); + X509_STORE_CTX_set_current_cert(ctx, cert); + X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_UNTRUSTED); + if (!cb(0, ctx)) + return 0; + } + else + { + dane->mdpth = n; + dane->match = xn; + X509_up_ref(xn); } + } - return ctx->verify(ctx); +/* Tail recurse into OpenSSL's internal_verify */ +return dane->verify(ctx); } -static int verify_cert(X509_STORE_CTX *ctx, void *unused_ctx) +static void +dane_reset(ssl_dane *dane) { - static int ssl_idx = -1; - SSL *ssl; - SSL_DANE *dane; - int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb; - int matched; - X509 *cert = ctx->cert; /* XXX: accessor? */ - - if (ssl_idx < 0) - ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx(); - if (dane_idx < 0) { - DANEerr(DANE_F_VERIFY_CERT, ERR_R_MALLOC_FAILURE); - return -1; - } +dane->depth = -1; +if (dane->mhost) + { + OPENSSL_free(dane->mhost); + dane->mhost = 0; + } +if (dane->roots) + { + sk_X509_pop_free(dane->roots, X509_free); + dane->roots = 0; + } +if (dane->chain) + { + sk_X509_pop_free(dane->chain, X509_free); + dane->chain = 0; + } +if (dane->match) + { + X509_free(dane->match); + dane->match = 0; + } +dane->mdpth = -1; +} - ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx); - if ((dane = SSL_get_ex_data(ssl, dane_idx)) == 0 || cert == 0) - return X509_verify_cert(ctx); - - if (dane->selectors[SSL_DANE_USAGE_FIXED_LEAF]) { - if ((matched = check_end_entity(ctx, dane, cert)) > 0) { - ctx->error_depth = 0; - ctx->current_cert = cert; - return cb(1, ctx); - } - if (matched < 0) { - X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM); - return -1; - } +static int +verify_cert(X509_STORE_CTX *ctx, void *unused_ctx) +{ +static int ssl_idx = -1; +SSL *ssl; +ssl_dane *dane; +int (*cb)(int, X509_STORE_CTX *) = X509_STORE_CTX_get_verify_cb(ctx); +X509 *cert = X509_STORE_CTX_get0_cert(ctx); +int matched; + +DEBUG(D_tls) debug_printf("Dane verify_cert\n"); + +if (ssl_idx < 0) + ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx(); +if (dane_idx < 0) + { + DANEerr(DANESSL_F_VERIFY_CERT, ERR_R_MALLOC_FAILURE); + return -1; + } + +ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx); +if (!(dane = SSL_get_ex_data(ssl, dane_idx)) || !cert) + return X509_verify_cert(ctx); + +/* Reset for verification of a new chain, perhaps a renegotiation. */ +dane_reset(dane); + +if (dane->selectors[DANESSL_USAGE_DANE_EE]) + { + if ((matched = check_end_entity(ctx, dane, cert)) > 0) + { + X509_STORE_CTX_set_error_depth(ctx, 0); + X509_STORE_CTX_set_current_cert(ctx, cert); + return cb(1, ctx); } - - if (dane->selectors[SSL_DANE_USAGE_TRUSTED_CA]) { - if ((matched = set_trust_anchor(ctx, dane, cert)) < 0) { - X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM); - return -1; - } - if (matched) { - /* - * Check that setting the untrusted chain updates the expected - * structure member at the expected offset. - */ - X509_STORE_CTX_trusted_stack(ctx, dane->roots); - X509_STORE_CTX_set_chain(ctx, dane->chain); - OPENSSL_assert(ctx->untrusted == dane->chain); - } + if (matched < 0) + { + X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM); + return -1; + } + } + + if (dane->selectors[DANESSL_USAGE_DANE_TA]) + { + if ((matched = set_trust_anchor(ctx, dane, cert)) < 0) + { + X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM); + return -1; + } + if (matched) + { + /* + * Check that setting the untrusted chain updates the expected + * structure member at the expected offset. + */ + X509_STORE_CTX_trusted_stack(ctx, dane->roots); + X509_STORE_CTX_set_chain(ctx, dane->chain); + OPENSSL_assert(dane->chain == X509_STORE_CTX_get0_untrusted(ctx)); + } } - /* - * Name checks and usage 0/1 constraint enforcement are delayed until - * X509_verify_cert() builds the full chain and calls our verify_chain() - * wrapper. - */ - dane->verify = ctx->verify; - ctx->verify = verify_chain; + /* + * Name checks and usage 0/1 constraint enforcement are delayed until + * X509_verify_cert() builds the full chain and calls our verify_chain() + * wrapper. + */ + dane->verify = X509_STORE_CTX_get_verify(ctx); + X509_STORE_CTX_set_verify(ctx, verify_chain); + + if (X509_verify_cert(ctx)) + return 1; - return X509_verify_cert(ctx); + /* + * If the chain is invalid, clear any matching cert or hostname, to + * protect callers that might erroneously rely on these alone without + * checking the validation status. + */ + if (dane->match) + { + X509_free(dane->match); + dane->match = 0; + } + if (dane->mhost) + { + OPENSSL_free(dane->mhost); + dane->mhost = 0; + } + return 0; } -static dane_list list_alloc(size_t vsize) +static dane_list +list_alloc(size_t vsize) { - void *value = (void *) OPENSSL_malloc(vsize); - dane_list l; +void *value = (void *) OPENSSL_malloc(vsize); +dane_list l; + +if (!value) + { + DANEerr(DANESSL_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE); + return 0; + } +if (!(l = (dane_list) OPENSSL_malloc(sizeof(*l)))) + { + OPENSSL_free(value); + DANEerr(DANESSL_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE); + return 0; + } +l->next = 0; +l->value = value; +return l; +} - if (value == 0) { - DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE); - return 0; - } - if ((l = (dane_list) OPENSSL_malloc(sizeof(*l))) == 0) { - OPENSSL_free(value); - DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE); - return 0; - } - l->next = 0; - l->value = value; - return l; +static void +list_free(void *list, void (*f)(void *)) +{ +dane_list head; +dane_list next; + +for (head = (dane_list) list; head; head = next) + { + next = head->next; + if (f && head->value) + f(head->value); + OPENSSL_free(head); + } } -static void list_free(void *list, void (*f)(void *)) +static void +ossl_free(void * p) { - dane_list head = (dane_list) list; - dane_list next; - - for (/* NOP */; head; head = next) { - next = head->next; - if (f && head->value) - f(head->value); - OPENSSL_free(head); - } +OPENSSL_free(p); } -static void dane_mtype_free(void *p) +static void +dane_mtype_free(void *p) { - list_free(((dane_mtype) p)->data, OPENSSL_freeFunc); - OPENSSL_free(p); +list_free(((dane_mtype) p)->data, ossl_free); +OPENSSL_free(p); } -static void dane_selector_free(void *p) +static void +dane_selector_free(void *p) { - list_free(((dane_selector) p)->mtype, dane_mtype_free); - OPENSSL_free(p); +list_free(((dane_selector) p)->mtype, dane_mtype_free); +OPENSSL_free(p); } -void DANESSL_cleanup(SSL *ssl) + + +/* + +Tidy up once the connection is finished with. + +Arguments + ssl The ssl connection handle + +=> Before calling SSL_free() +tls_close() and tls_getc() [the error path] are the obvious places. +Could we do it earlier - right after verification? In tls_client_start() +right after SSL_connect() returns, in that case. + +*/ + +void +DANESSL_cleanup(SSL *ssl) { - SSL_DANE *dane; - int u; - - if (dane_idx < 0 || (dane = SSL_get_ex_data(ssl, dane_idx)) == 0) - return; - (void) SSL_set_ex_data(ssl, dane_idx, 0); - - if (dane->hosts) - list_free(dane->hosts, OPENSSL_freeFunc); - if (dane->mhost) - OPENSSL_free(dane->mhost); - for (u = 0; u <= SSL_DANE_USAGE_LAST; ++u) - if (dane->selectors[u]) - list_free(dane->selectors[u], dane_selector_free); - if (dane->pkeys) - list_free(dane->pkeys, pkey_free); - if (dane->certs) - list_free(dane->certs, cert_free); - if (dane->roots) - sk_X509_pop_free(dane->roots, X509_free); - if (dane->chain) - sk_X509_pop_free(dane->chain, X509_free); - OPENSSL_free(dane); +ssl_dane *dane; +int u; + +DEBUG(D_tls) debug_printf("Dane lib-cleanup\n"); + +if (dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx))) + return; +(void) SSL_set_ex_data(ssl, dane_idx, 0); + +dane_reset(dane); +if (dane->hosts) + list_free(dane->hosts, ossl_free); +for (u = 0; u <= DANESSL_USAGE_LAST; ++u) + if (dane->selectors[u]) + list_free(dane->selectors[u], dane_selector_free); +if (dane->pkeys) + list_free(dane->pkeys, pkey_free); +if (dane->certs) + list_free(dane->certs, cert_free); +OPENSSL_free(dane); } -static DANE_HOST_LIST host_list_init(const char **src) +static dane_host_list +host_list_init(const char **src) { - DANE_HOST_LIST head = 0; - - while (*src) { - DANE_HOST_LIST elem = (DANE_HOST_LIST) OPENSSL_malloc(sizeof(*elem)); - if (elem == 0) { - list_free(head, OPENSSL_freeFunc); - return 0; - } - elem->value = OPENSSL_strdup(*src++); - LINSERT(head, elem); +dane_host_list head = NULL; + +while (*src) + { + dane_host_list elem = (dane_host_list) OPENSSL_malloc(sizeof(*elem)); + if (elem == 0) + { + list_free(head, ossl_free); + return 0; } - return head; + elem->value = OPENSSL_strdup(*src++); + LINSERT(head, elem); + } +return head; } -int DANESSL_add_tlsa( - SSL *ssl, - uint8_t usage, - uint8_t selector, - const char *mdname, - unsigned const char *data, - size_t dlen -) + +int +DANESSL_get_match_cert(SSL *ssl, X509 **match, const char **mhost, int *depth) { - SSL_DANE *dane; - DANE_SELECTOR_LIST s = 0; - DANE_MTYPE_LIST m = 0; - DANE_DATA_LIST d = 0; - DANE_CERT_LIST xlist = 0; - DANE_PKEY_LIST klist = 0; - const EVP_MD *md = 0; - - if (dane_idx < 0 || (dane = SSL_get_ex_data(ssl, dane_idx)) == 0) { - DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_DANE_INIT); - return -1; - } +ssl_dane *dane; + +if (dane_idx < 0 || (dane = SSL_get_ex_data(ssl, dane_idx)) == 0) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_INIT); + return -1; + } + +if (dane->match) + { + if (match) + *match = dane->match; + if (mhost) + *mhost = dane->mhost; + if (depth) + *depth = dane->mdpth; + } + + return (dane->match != 0); +} - if (usage > SSL_DANE_USAGE_LAST) { - DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_USAGE); - return 0; - } - if (selector > SSL_DANE_SELECTOR_LAST) { - DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_SELECTOR); - return 0; + +#ifdef never_called +int +DANESSL_verify_chain(SSL *ssl, STACK_OF(X509) *chain) +{ +int ret; +X509 *cert; +X509_STORE_CTX * store_ctx; +SSL_CTX *ssl_ctx = SSL_get_SSL_CTX(ssl); +X509_STORE *store = SSL_CTX_get_cert_store(ssl_ctx); +int store_ctx_idx = SSL_get_ex_data_X509_STORE_CTX_idx(); + +cert = sk_X509_value(chain, 0); +if (!(store_ctx = X509_STORE_CTX_new())) + { + DANEerr(DANESSL_F_DANESSL_VERIFY_CHAIN, ERR_R_MALLOC_FAILURE); + return 0; + } +if (!X509_STORE_CTX_init(store_ctx, store, cert, chain)) + { + X509_STORE_CTX_free(store_ctx); + return 0; + } +X509_STORE_CTX_set_ex_data(store_ctx, store_ctx_idx, ssl); + +X509_STORE_CTX_set_default(store_ctx, + SSL_is_server(ssl) ? "ssl_client" : "ssl_server"); +X509_VERIFY_PARAM_set1(X509_STORE_CTX_get0_param(store_ctx), + SSL_get0_param(ssl)); + +if (SSL_get_verify_callback(ssl)) + X509_STORE_CTX_set_verify_cb(store_ctx, SSL_get_verify_callback(ssl)); + +ret = verify_cert(store_ctx, NULL); + +SSL_set_verify_result(ssl, X509_STORE_CTX_get_error(store_ctx)); +X509_STORE_CTX_cleanup(store_ctx); + +return (ret); +} +#endif + + + + +/* + +Call this for each TLSA record found for the target, after the +DANE setup has been done on the ssl connection handle. + +Arguments: + ssl Connection handle + usage TLSA record field + selector TLSA record field + mdname ??? message digest name? + data ??? TLSA record megalump? + dlen length of data + +Return + -1 on error + 0 action not taken + 1 record accepted +*/ + +int +DANESSL_add_tlsa(SSL *ssl, uint8_t usage, uint8_t selector, const char *mdname, + unsigned const char *data, size_t dlen) +{ +ssl_dane *dane; +dane_selector_list s = 0; +dane_mtype_list m = 0; +dane_data_list d = 0; +dane_cert_list xlist = 0; +dane_pkey_list klist = 0; +const EVP_MD *md = 0; + +DEBUG(D_tls) debug_printf("Dane add-tlsa: usage %u sel %u mdname \"%s\"\n", + usage, selector, mdname); + +if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx))) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_INIT); + return -1; + } + +if (usage > DANESSL_USAGE_LAST) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_USAGE); + return 0; + } +if (selector > DANESSL_SELECTOR_LAST) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_SELECTOR); + return 0; + } + + /* Support built-in standard one-digit mtypes */ + if (mdname && *mdname && mdname[1] == '\0') + switch (*mdname - '0') + { + case DANESSL_MATCHING_FULL: mdname = 0; break; + case DANESSL_MATCHING_2256: mdname = "sha256"; break; + case DANESSL_MATCHING_2512: mdname = "sha512"; break; } - if (mdname && (md = EVP_get_digestbyname(mdname)) == 0) { - DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DIGEST); - return 0; + if (mdname && *mdname && (md = EVP_get_digestbyname(mdname)) == 0) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_DIGEST); + return 0; } - if (!data) { - DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_NULL_DATA); - return 0; + if (mdname && *mdname && dlen != EVP_MD_size(md)) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_DATA_LENGTH); + return 0; } - if (mdname && dlen != EVP_MD_size(md)) { - DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DATA_LENGTH); - return 0; + if (!data) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_NULL_DATA); + return 0; } - if (mdname == 0) { - X509 *x = 0; - EVP_PKEY *k = 0; - const unsigned char *p = data; + /* + * Full Certificate or Public Key when NULL or empty digest name + */ + if (!mdname || !*mdname) + { + X509 *x = 0; + EVP_PKEY *k = 0; + const unsigned char *p = data; #define xklistinit(lvar, ltype, var, freeFunc) do { \ - (lvar) = (ltype) OPENSSL_malloc(sizeof(*(lvar))); \ - if ((lvar) == 0) { \ - DANEerr(DANE_F_SSL_DANE_ADD_TLSA, ERR_R_MALLOC_FAILURE); \ - freeFunc((var)); \ - return 0; \ - } \ - (lvar)->next = 0; \ - lvar->value = var; \ - } while (0) + (lvar) = (ltype) OPENSSL_malloc(sizeof(*(lvar))); \ + if ((lvar) == 0) { \ + DANEerr(DANESSL_F_ADD_TLSA, ERR_R_MALLOC_FAILURE); \ + freeFunc((var)); \ + return 0; \ + } \ + (lvar)->next = 0; \ + lvar->value = var; \ + } while (0) #define xkfreeret(ret) do { \ - if (xlist) list_free(xlist, cert_free); \ - if (klist) list_free(klist, pkey_free); \ - return (ret); \ - } while (0) - - switch (selector) { - case SSL_DANE_SELECTOR_CERT: - if (!d2i_X509(&x, &p, dlen) || dlen != p - data) { - if (x) - X509_free(x); - DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT); - return 0; - } - k = X509_get_pubkey(x); - EVP_PKEY_free(k); - if (k == 0) { - X509_free(x); - DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT_PKEY); - return 0; - } - if (usage == SSL_DANE_USAGE_TRUSTED_CA) - xklistinit(xlist, DANE_CERT_LIST, x, X509_free); - break; - - case SSL_DANE_SELECTOR_SPKI: - if (!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data) { - if (k) - EVP_PKEY_free(k); - DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_PKEY); - return 0; - } - if (usage == SSL_DANE_USAGE_TRUSTED_CA) - xklistinit(klist, DANE_PKEY_LIST, k, EVP_PKEY_free); - break; - } + if (xlist) list_free(xlist, cert_free); \ + if (klist) list_free(klist, pkey_free); \ + return (ret); \ + } while (0) + + switch (selector) + { + case DANESSL_SELECTOR_CERT: + if (!d2i_X509(&x, &p, dlen) || dlen != p - data) + { + if (x) + X509_free(x); + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_CERT); + return 0; + } + k = X509_get_pubkey(x); + EVP_PKEY_free(k); + if (k == 0) + { + X509_free(x); + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_CERT_PKEY); + return 0; + } + if (usage == DANESSL_USAGE_DANE_TA) + xklistinit(xlist, dane_cert_list, x, X509_free); + break; + + case DANESSL_SELECTOR_SPKI: + if (!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data) + { + if (k) + EVP_PKEY_free(k); + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_PKEY); + return 0; + } + if (usage == DANESSL_USAGE_DANE_TA) + xklistinit(klist, dane_pkey_list, k, EVP_PKEY_free); + break; } - - /* Find insertion point and don't add duplicate elements. */ - for (s = dane->selectors[usage]; s; s = s->next) - if (s->value->selector == selector) - for (m = s->value->mtype; m; m = m->next) - if (m->value->md == md) - for (d = m->value->data; d; d = d->next) - if (d->value->datalen == dlen && - memcmp(d->value->data, data, dlen) == 0) - xkfreeret(1); - - if ((d = (DANE_DATA_LIST) list_alloc(sizeof(*d->value) + dlen)) == 0) - xkfreeret(0); - d->value->datalen = dlen; - memcpy(d->value->data, data, dlen); - if (!m) { - if ((m = (DANE_MTYPE_LIST) list_alloc(sizeof(*m->value))) == 0) { - list_free(d, OPENSSL_freeFunc); - xkfreeret(0); - } - m->value->data = 0; - if ((m->value->md = md) != 0) - m->value->mdlen = dlen; - if (!s) { - if ((s = (DANE_SELECTOR_LIST) list_alloc(sizeof(*s->value))) == 0) { - list_free(m, dane_mtype_free); - xkfreeret(0); - } - s->value->mtype = 0; - s->value->selector = selector; - LINSERT(dane->selectors[usage], s); - } - LINSERT(s->value->mtype, m); + } + +/* Find insertion point and don't add duplicate elements. */ +for (s = dane->selectors[usage]; s; s = s->next) + if (s->value->selector == selector) + { + for (m = s->value->mtype; m; m = m->next) + if (m->value->md == md) + { + for (d = m->value->data; d; d = d->next) + if ( d->value->datalen == dlen + && memcmp(d->value->data, data, dlen) == 0) + xkfreeret(1); + break; + } + break; } - LINSERT(m->value->data, d); - if (xlist) - LINSERT(dane->certs, xlist); - else if (klist) - LINSERT(dane->pkeys, klist); - ++dane->count; - return 1; -} - -int DANESSL_init(SSL *ssl, const char *sni_domain, const char **hostnames) -{ - SSL_DANE *dane; - int i; -#ifdef OPENSSL_INTERNAL - SSL_CTX *sctx = SSL_get_SSL_CTX(ssl); - - if (sctx->app_verify_callback != verify_cert) { - DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_SCTX_INIT); - return -1; +if ((d = (dane_data_list) list_alloc(sizeof(*d->value) + dlen)) == 0) + xkfreeret(0); +d->value->datalen = dlen; +memcpy(d->value->data, data, dlen); +if (!m) + { + if ((m = (dane_mtype_list) list_alloc(sizeof(*m->value))) == 0) + { + list_free(d, ossl_free); + xkfreeret(0); } -#else - if (dane_idx < 0) { - DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_LIBRARY_INIT); - return -1; + m->value->data = 0; + if ((m->value->md = md) != 0) + m->value->mdlen = dlen; + if (!s) + { + if ((s = (dane_selector_list) list_alloc(sizeof(*s->value))) == 0) + { + list_free(m, dane_mtype_free); + xkfreeret(0); + } + s->value->mtype = 0; + s->value->selector = selector; + LINSERT(dane->selectors[usage], s); } -#endif + LINSERT(s->value->mtype, m); + } +LINSERT(m->value->data, d); + +if (xlist) + LINSERT(dane->certs, xlist); +else if (klist) + LINSERT(dane->pkeys, klist); +++dane->count; +return 1; +} - if (sni_domain && !SSL_set_tlsext_host_name(ssl, sni_domain)) - return 0; - if ((dane = (SSL_DANE *) OPENSSL_malloc(sizeof(SSL_DANE))) == 0) { - DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE); - return 0; - } - if (!SSL_set_ex_data(ssl, dane_idx, dane)) { - DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE); - OPENSSL_free(dane); - return 0; - } - dane->pkeys = 0; - dane->certs = 0; - dane->chain = 0; - dane->roots = 0; - dane->depth = -1; - dane->mhost = 0; /* Future SSL control interface */ - dane->multi = 0; /* Future SSL control interface */ - dane->count = 0; - - for (i = 0; i <= SSL_DANE_USAGE_LAST; ++i) - dane->selectors[i] = 0; - - if (hostnames && (dane->hosts = host_list_init(hostnames)) == 0) { - DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE); - DANESSL_cleanup(ssl); - return 0; - } - return 1; -} +/* +Call this once we have an ssl connection handle but before +making the TLS connection. + +=> In tls_client_start() after the call to SSL_new() +and before the call to SSL_connect(). Exactly where +probably does not matter. +We probably want to keep our existing SNI handling; +call this with NULL. -int DANESSL_CTX_init(SSL_CTX *ctx) +Arguments: + ssl Connection handle + sni_domain Optional peer server name + hostnames list of names to chack against peer cert + +Return + -1 on fatal error + 0 nonfatal error + 1 success +*/ + +int +DANESSL_init(SSL *ssl, const char *sni_domain, const char **hostnames) { - if (dane_idx >= 0) { - SSL_CTX_set_cert_verify_callback(ctx, verify_cert, 0); - return 1; - } - DANEerr(DANE_F_SSL_CTX_DANE_INIT, DANE_R_LIBRARY_INIT); - return -1; +ssl_dane *dane; +int i; + +DEBUG(D_tls) debug_printf("Dane ssl_init\n"); +if (dane_idx < 0) + { + DANEerr(DANESSL_F_INIT, DANESSL_R_LIBRARY_INIT); + return -1; + } + +if (sni_domain && !SSL_set_tlsext_host_name(ssl, sni_domain)) + return 0; + +if ((dane = (ssl_dane *) OPENSSL_malloc(sizeof(ssl_dane))) == 0) + { + DANEerr(DANESSL_F_INIT, ERR_R_MALLOC_FAILURE); + return 0; + } +if (!SSL_set_ex_data(ssl, dane_idx, dane)) + { + DANEerr(DANESSL_F_INIT, ERR_R_MALLOC_FAILURE); + OPENSSL_free(dane); + return 0; + } + +dane->verify = 0; +dane->hosts = 0; +dane->thost = 0; +dane->pkeys = 0; +dane->certs = 0; +dane->chain = 0; +dane->match = 0; +dane->roots = 0; +dane->depth = -1; +dane->mhost = 0; /* Future SSL control interface */ +dane->mdpth = 0; /* Future SSL control interface */ +dane->multi = 0; /* Future SSL control interface */ +dane->count = 0; +dane->hosts = 0; + +for (i = 0; i <= DANESSL_USAGE_LAST; ++i) + dane->selectors[i] = 0; + +if (hostnames && (dane->hosts = host_list_init(hostnames)) == 0) + { + DANEerr(DANESSL_F_INIT, ERR_R_MALLOC_FAILURE); + DANESSL_cleanup(ssl); + return 0; + } + +return 1; } -static int init_once( - volatile int *value, - int (*init)(void), - void (*postinit)(void) -) + +/* + +Call this once we have a context to work with, but +before DANESSL_init() + +=> in tls_client_start(), after tls_init() call gives us the ctx, +if we decide we want to (policy) and can (TLSA records available) +replacing (? what about fallback) everything from testing tls_verify_hosts +down to just before calling SSL_new() for the conn handle. + +Arguments + ctx SSL context + +Return + -1 Error + 1 Success +*/ + +int +DANESSL_CTX_init(SSL_CTX *ctx) { - int wlock = 0; - - CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX); - if (*value < 0) { - CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX); - CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX); - wlock = 1; - if (*value < 0) { - *value = init(); - if (postinit) - postinit(); - } - } - if (wlock) - CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX); - else - CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX); - return *value; +DEBUG(D_tls) debug_printf("Dane ctx-init\n"); +if (dane_idx >= 0) + { + SSL_CTX_set_cert_verify_callback(ctx, verify_cert, 0); + return 1; + } +DANEerr(DANESSL_F_CTX_INIT, DANESSL_R_LIBRARY_INIT); +return -1; } -static void dane_init(void) +static void +dane_init(void) { - /* - * Store library id in zeroth function slot, used to locate the library - * name. This must be done before we load the error strings. - */ +/* + * Store library id in zeroth function slot, used to locate the library + * name. This must be done before we load the error strings. + */ +err_lib_dane = ERR_get_next_error_library(); + #ifndef OPENSSL_NO_ERR - dane_str_functs[0].error |= ERR_PACK(err_lib_dane, 0, 0); - ERR_load_strings(err_lib_dane, dane_str_functs); - ERR_load_strings(err_lib_dane, dane_str_reasons); +if (err_lib_dane > 0) + { + dane_str_functs[0].error |= ERR_PACK(err_lib_dane, 0, 0); + ERR_load_strings(err_lib_dane, dane_str_functs); + ERR_load_strings(err_lib_dane, dane_str_reasons); + } #endif - /* - * Register SHA-2 digests, if implemented and not already registered. - */ +/* + * Register SHA-2 digests, if implemented and not already registered. + */ #if defined(LN_sha256) && defined(NID_sha256) && !defined(OPENSSL_NO_SHA256) - if (!EVP_get_digestbyname(LN_sha224)) - EVP_add_digest(EVP_sha224()); - if (!EVP_get_digestbyname(LN_sha256)) - EVP_add_digest(EVP_sha256()); +if (!EVP_get_digestbyname(LN_sha224)) EVP_add_digest(EVP_sha224()); +if (!EVP_get_digestbyname(LN_sha256)) EVP_add_digest(EVP_sha256()); #endif #if defined(LN_sha512) && defined(NID_sha512) && !defined(OPENSSL_NO_SHA512) - if (!EVP_get_digestbyname(LN_sha384)) - EVP_add_digest(EVP_sha384()); - if (!EVP_get_digestbyname(LN_sha512)) - EVP_add_digest(EVP_sha512()); +if (!EVP_get_digestbyname(LN_sha384)) EVP_add_digest(EVP_sha384()); +if (!EVP_get_digestbyname(LN_sha512)) EVP_add_digest(EVP_sha512()); #endif - /* - * Register an SSL index for the connection-specific SSL_DANE structure. - * Using a separate index makes it possible to add DANE support to - * existing OpenSSL releases that don't have a suitable pointer in the - * SSL structure. - */ - dane_idx = SSL_get_ex_new_index(0, 0, 0, 0, 0); +/* + * Register an SSL index for the connection-specific ssl_dane structure. + * Using a separate index makes it possible to add DANE support to + * existing OpenSSL releases that don't have a suitable pointer in the + * SSL structure. + */ +dane_idx = SSL_get_ex_new_index(0, 0, 0, 0, 0); } -int DANESSL_library_init(void) + +#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER) +static void +run_once(volatile int * once, void (*init)(void)) { - if (err_lib_dane < 0) - init_once(&err_lib_dane, ERR_get_next_error_library, dane_init); +int wlock = 0; + +CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX); +if (!*once) + { + CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX); + CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX); + wlock = 1; + if (!*once) + { + *once = 1; + init(); + } + } +if (wlock) + CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX); +else + CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX); +} +#endif + + + +/* + +Call this once. Probably early in startup will do; may need +to be after SSL library init. + +=> put after call to tls_init() for now + +Return + 1 Success + 0 Fail +*/ + +int +DANESSL_library_init(void) +{ +static CRYPTO_ONCE once = CRYPTO_ONCE_STATIC_INIT; + +DEBUG(D_tls) debug_printf("Dane lib-init\n"); +(void) CRYPTO_THREAD_run_once(&once, dane_init); #if defined(LN_sha256) - /* No DANE without SHA256 support */ - if (dane_idx >= 0 && EVP_get_digestbyname(LN_sha256) != 0) - return 1; +/* No DANE without SHA256 support */ +if (dane_idx >= 0 && EVP_get_digestbyname(LN_sha256) != 0) + return 1; #endif - DANEerr(DANE_F_SSL_DANE_LIBRARY_INIT, DANE_R_DANE_SUPPORT); - return 0; +DANEerr(DANESSL_F_LIBRARY_INIT, DANESSL_R_SUPPORT); +return 0; } -#endif /* OPENSSL_VERSION_NUMBER */ + +/* vi: aw ai sw=2 +*/