Add interface documentation for the DANE library
[exim.git] / src / src / dane-openssl.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <stdint.h>
4
5 #include <openssl/opensslv.h>
6 #include <openssl/err.h>
7 #include <openssl/crypto.h>
8 #include <openssl/safestack.h>
9 #include <openssl/objects.h>
10 #include <openssl/x509.h>
11 #include <openssl/x509v3.h>
12 #include <openssl/evp.h>
13
14 #if OPENSSL_VERSION_NUMBER < 0x1000000fL
15 # error "OpenSSL 1.0.0 or higher required"
16 #else /* remainder of file */
17
18 #include "danessl.h"
19
20 #define DANE_F_ADD_SKID 100
21 #define DANE_F_CHECK_END_ENTITY 101
22 #define DANE_F_GROW_CHAIN 102
23 #define DANE_F_LIST_ALLOC 103
24 #define DANE_F_MATCH 104
25 #define DANE_F_PUSH_EXT 105
26 #define DANE_F_SET_TRUST_ANCHOR 106
27 #define DANE_F_SSL_CTX_DANE_INIT 107
28 #define DANE_F_SSL_DANE_ADD_TLSA 108
29 #define DANE_F_SSL_DANE_INIT 109
30 #define DANE_F_SSL_DANE_LIBRARY_INIT 110
31 #define DANE_F_VERIFY_CERT 111
32 #define DANE_F_WRAP_CERT 112
33
34 #define DANE_R_BAD_CERT 100
35 #define DANE_R_BAD_CERT_PKEY 101
36 #define DANE_R_BAD_DATA_LENGTH 102
37 #define DANE_R_BAD_DIGEST 103
38 #define DANE_R_BAD_NULL_DATA 104
39 #define DANE_R_BAD_PKEY 105
40 #define DANE_R_BAD_SELECTOR 106
41 #define DANE_R_BAD_USAGE 107
42 #define DANE_R_DANE_INIT 108
43 #define DANE_R_DANE_SUPPORT 109
44 #define DANE_R_LIBRARY_INIT 110
45 #define DANE_R_NOSIGN_KEY 111
46 #define DANE_R_SCTX_INIT 112
47
48 #ifndef OPENSSL_NO_ERR
49 # define DANE_F_PLACEHOLDER 0 /* FIRST! Value TBD */
50 static ERR_STRING_DATA dane_str_functs[] =
51 {
52 {DANE_F_PLACEHOLDER, "DANE library"}, /* FIRST!!! */
53 {DANE_F_ADD_SKID, "add_skid"},
54 {DANE_F_CHECK_END_ENTITY, "check_end_entity"},
55 {DANE_F_GROW_CHAIN, "grow_chain"},
56 {DANE_F_LIST_ALLOC, "list_alloc"},
57 {DANE_F_MATCH, "match"},
58 {DANE_F_PUSH_EXT, "push_ext"},
59 {DANE_F_SET_TRUST_ANCHOR, "set_trust_anchor"},
60 {DANE_F_SSL_CTX_DANE_INIT, "SSL_CTX_dane_init"},
61 {DANE_F_SSL_DANE_ADD_TLSA, "SSL_dane_add_tlsa"},
62 {DANE_F_SSL_DANE_INIT, "SSL_dane_init"},
63 {DANE_F_SSL_DANE_LIBRARY_INIT, "SSL_dane_library_init"},
64 {DANE_F_VERIFY_CERT, "verify_cert"},
65 {DANE_F_WRAP_CERT, "wrap_cert"},
66 {0, NULL}
67 };
68 static ERR_STRING_DATA dane_str_reasons[] =
69 {
70 {DANE_R_BAD_CERT, "Bad TLSA record certificate"},
71 {DANE_R_BAD_CERT_PKEY, "Bad TLSA record certificate public key"},
72 {DANE_R_BAD_DATA_LENGTH, "Bad TLSA record digest length"},
73 {DANE_R_BAD_DIGEST, "Bad TLSA record digest"},
74 {DANE_R_BAD_NULL_DATA, "Bad TLSA record null data"},
75 {DANE_R_BAD_PKEY, "Bad TLSA record public key"},
76 {DANE_R_BAD_SELECTOR, "Bad TLSA record selector"},
77 {DANE_R_BAD_USAGE, "Bad TLSA record usage"},
78 {DANE_R_DANE_INIT, "SSL_dane_init() required"},
79 {DANE_R_DANE_SUPPORT, "DANE library features not supported"},
80 {DANE_R_LIBRARY_INIT, "SSL_dane_library_init() required"},
81 {DANE_R_SCTX_INIT, "SSL_CTX_dane_init() required"},
82 {DANE_R_NOSIGN_KEY, "Certificate usage 2 requires EC support"},
83 {0, NULL}
84 };
85 #endif /*OPENSSL_NO_ERR*/
86
87 #define DANEerr(f, r) ERR_PUT_error(err_lib_dane, (f), (r), __FILE__, __LINE__)
88
89 static int err_lib_dane = -1;
90 static int dane_idx = -1;
91
92 #ifdef X509_V_FLAG_PARTIAL_CHAIN /* OpenSSL >= 1.0.2 */
93 static int wrap_to_root = 0;
94 #else
95 static int wrap_to_root = 1;
96 #endif
97
98 static void (*cert_free)(void *) = (void (*)(void *)) X509_free;
99 static void (*pkey_free)(void *) = (void (*)(void *)) EVP_PKEY_free;
100
101 typedef struct dane_list
102 {
103 struct dane_list *next;
104 void *value;
105 } *dane_list;
106
107 #define LINSERT(h, e) do { (e)->next = (h); (h) = (e); } while (0)
108
109 typedef struct dane_host_list
110 {
111 struct dane_host_list *next;
112 char *value;
113 } *dane_host_list;
114
115 typedef struct dane_data
116 {
117 size_t datalen;
118 unsigned char data[0];
119 } *dane_data;
120
121 typedef struct dane_data_list
122 {
123 struct dane_data_list *next;
124 dane_data value;
125 } *dane_data_list;
126
127 typedef struct dane_mtype
128 {
129 int mdlen;
130 const EVP_MD *md;
131 dane_data_list data;
132 } *dane_mtype;
133
134 typedef struct dane_mtype_list
135 {
136 struct dane_mtype_list *next;
137 dane_mtype value;
138 } *dane_mtype_list;
139
140 typedef struct dane_selector
141 {
142 uint8_t selector;
143 dane_mtype_list mtype;
144 } *dane_selector;
145
146 typedef struct dane_selector_list
147 {
148 struct dane_selector_list *next;
149 dane_selector value;
150 } *dane_selector_list;
151
152 typedef struct dane_pkey_list
153 {
154 struct dane_pkey_list *next;
155 EVP_PKEY *value;
156 } *dane_pkey_list;
157
158 typedef struct dane_cert_list
159 {
160 struct dane_cert_list *next;
161 X509 *value;
162 } *dane_cert_list;
163
164 typedef struct ssl_dane
165 {
166 int (*verify)(X509_STORE_CTX *);
167 STACK_OF(X509) *roots;
168 STACK_OF(X509) *chain;
169 const char *thost; /* TLSA base domain */
170 char *mhost; /* Matched, peer name */
171 dane_pkey_list pkeys;
172 dane_cert_list certs;
173 dane_host_list hosts;
174 dane_selector_list selectors[SSL_DANE_USAGE_LAST + 1];
175 int depth;
176 int multi; /* Multi-label wildcards? */
177 int count; /* Number of TLSA records */
178 } ssl_dane;
179
180 #ifndef X509_V_ERR_HOSTNAME_MISMATCH
181 # define X509_V_ERR_HOSTNAME_MISMATCH X509_V_ERR_APPLICATION_VERIFICATION
182 #endif
183
184 static int
185 match(dane_selector_list slist, X509 *cert, int depth)
186 {
187 int matched;
188
189 /*
190 * Note, set_trust_anchor() needs to know whether the match was for a
191 * pkey digest or a certificate digest. We return MATCHED_PKEY or
192 * MATCHED_CERT accordingly.
193 */
194 #define MATCHED_CERT (SSL_DANE_SELECTOR_CERT + 1)
195 #define MATCHED_PKEY (SSL_DANE_SELECTOR_SPKI + 1)
196
197 /*
198 * Loop over each selector, mtype, and associated data element looking
199 * for a match.
200 */
201 for(matched = 0; !matched && slist; slist = slist->next)
202 {
203 dane_mtype_list m;
204 unsigned char mdbuf[EVP_MAX_MD_SIZE];
205 unsigned char *buf;
206 unsigned char *buf2;
207 unsigned int len;
208
209 /*
210 * Extract ASN.1 DER form of certificate or public key.
211 */
212 switch(slist->value->selector)
213 {
214 case SSL_DANE_SELECTOR_CERT:
215 len = i2d_X509(cert, NULL);
216 buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
217 if(buf) i2d_X509(cert, &buf2);
218 break;
219 case SSL_DANE_SELECTOR_SPKI:
220 len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), NULL);
221 buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
222 if(buf) i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf2);
223 break;
224 }
225
226 if(!buf)
227 {
228 DANEerr(DANE_F_MATCH, ERR_R_MALLOC_FAILURE);
229 return 0;
230 }
231 OPENSSL_assert(buf2 - buf == len);
232
233 /*
234 * Loop over each mtype and data element
235 */
236 for(m = slist->value->mtype; !matched && m; m = m->next)
237 {
238 dane_data_list d;
239 unsigned char *cmpbuf = buf;
240 unsigned int cmplen = len;
241
242 /*
243 * If it is a digest, compute the corresponding digest of the
244 * DER data for comparison, otherwise, use the full object.
245 */
246 if(m->value->md)
247 {
248 cmpbuf = mdbuf;
249 if(!EVP_Digest(buf, len, cmpbuf, &cmplen, m->value->md, 0))
250 matched = -1;
251 }
252 for(d = m->value->data; !matched && d; d = d->next)
253 if( cmplen == d->value->datalen
254 && memcmp(cmpbuf, d->value->data, cmplen) == 0)
255 matched = slist->value->selector + 1;
256 }
257
258 OPENSSL_free(buf);
259 }
260
261 return matched;
262 }
263
264 static int
265 push_ext(X509 *cert, X509_EXTENSION *ext)
266 {
267 X509_EXTENSIONS *exts;
268
269 if(ext)
270 {
271 if(!(exts = cert->cert_info->extensions))
272 exts = cert->cert_info->extensions = sk_X509_EXTENSION_new_null();
273 if (exts && sk_X509_EXTENSION_push(exts, ext))
274 return 1;
275 X509_EXTENSION_free(ext);
276 }
277 DANEerr(DANE_F_PUSH_EXT, ERR_R_MALLOC_FAILURE);
278 return 0;
279 }
280
281 static int
282 add_ext(X509 *issuer, X509 *subject, int ext_nid, char *ext_val)
283 {
284 X509V3_CTX v3ctx;
285
286 X509V3_set_ctx(&v3ctx, issuer, subject, 0, 0, 0);
287 return push_ext(subject, X509V3_EXT_conf_nid(0, &v3ctx, ext_nid, ext_val));
288 }
289
290 static int
291 set_serial(X509 *cert, AUTHORITY_KEYID *akid, X509 *subject)
292 {
293 int ret = 0;
294 BIGNUM *bn;
295
296 if(akid && akid->serial)
297 return (X509_set_serialNumber(cert, akid->serial));
298
299 /*
300 * Add one to subject's serial to avoid collisions between TA serial and
301 * serial of signing root.
302 */
303 if( (bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0
304 && BN_add_word(bn, 1)
305 && BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert)))
306 ret = 1;
307
308 if(bn)
309 BN_free(bn);
310 return ret;
311 }
312
313 static int
314 add_akid(X509 *cert, AUTHORITY_KEYID *akid)
315 {
316 int nid = NID_authority_key_identifier;
317 ASN1_STRING *id;
318 unsigned char c = 0;
319 int ret = 0;
320
321 /*
322 * 0 will never be our subject keyid from a SHA-1 hash, but it could be
323 * our subject keyid if forced from child's akid. If so, set our
324 * authority keyid to 1. This way we are never self-signed, and thus
325 * exempt from any potential (off by default for now in OpenSSL)
326 * self-signature checks!
327 */
328 id = (ASN1_STRING *) ((akid && akid->keyid) ? akid->keyid : 0);
329 if(id && M_ASN1_STRING_length(id) == 1 && *M_ASN1_STRING_data(id) == c)
330 c = 1;
331
332 if( (akid = AUTHORITY_KEYID_new()) != 0
333 && (akid->keyid = ASN1_OCTET_STRING_new()) != 0
334 && M_ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1)
335 && X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_APPEND))
336 ret = 1;
337 if(akid)
338 AUTHORITY_KEYID_free(akid);
339 return ret;
340 }
341
342 static int
343 add_skid(X509 *cert, AUTHORITY_KEYID *akid)
344 {
345 int nid = NID_subject_key_identifier;
346
347 if(!akid || !akid->keyid)
348 return add_ext(0, cert, nid, "hash");
349 return X509_add1_ext_i2d(cert, nid, akid->keyid, 0, X509V3_ADD_APPEND) > 0;
350 }
351
352 static X509_NAME *
353 akid_issuer_name(AUTHORITY_KEYID *akid)
354 {
355 if(akid && akid->issuer)
356 {
357 int i;
358 GENERAL_NAMES *gens = akid->issuer;
359
360 for(i = 0; i < sk_GENERAL_NAME_num(gens); ++i)
361 {
362 GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
363
364 if(gn->type == GEN_DIRNAME)
365 return (gn->d.dirn);
366 }
367 }
368 return 0;
369 }
370
371 static int
372 set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid)
373 {
374 X509_NAME *name = akid_issuer_name(akid);
375
376 /*
377 * If subject's akid specifies an authority key identifer issuer name, we
378 * must use that.
379 */
380 return X509_set_issuer_name(cert,
381 name ? name : X509_get_subject_name(cert));
382 }
383
384 static int
385 grow_chain(ssl_dane *dane, int trusted, X509 *cert)
386 {
387 STACK_OF(X509) **xs = trusted ? &dane->roots : &dane->chain;
388 static ASN1_OBJECT *serverAuth = 0;
389
390 #define UNTRUSTED 0
391 #define TRUSTED 1
392
393 if( trusted && !serverAuth
394 && !(serverAuth = OBJ_nid2obj(NID_server_auth)))
395 {
396 DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
397 return 0;
398 }
399 if(!*xs && !(*xs = sk_X509_new_null()))
400 {
401 DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
402 return 0;
403 }
404
405 if(cert)
406 {
407 if(trusted && !X509_add1_trust_object(cert, serverAuth))
408 return 0;
409 CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
410 if (!sk_X509_push(*xs, cert))
411 {
412 X509_free(cert);
413 DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
414 return 0;
415 }
416 }
417 return 1;
418 }
419
420 static int
421 wrap_issuer(ssl_dane *dane, EVP_PKEY *key, X509 *subject, int depth, int top)
422 {
423 int ret = 1;
424 X509 *cert = 0;
425 AUTHORITY_KEYID *akid;
426 X509_NAME *name = X509_get_issuer_name(subject);
427 EVP_PKEY *newkey = key ? key : X509_get_pubkey(subject);
428
429 #define WRAP_MID 0 /* Ensure intermediate. */
430 #define WRAP_TOP 1 /* Ensure self-signed. */
431
432 if(!name || !newkey || !(cert = X509_new()))
433 return 0;
434
435 /*
436 * Record the depth of the trust-anchor certificate.
437 */
438 if(dane->depth < 0)
439 dane->depth = depth + 1;
440
441 /*
442 * XXX: Uncaught error condition:
443 *
444 * The return value is NULL both when the extension is missing, and when
445 * OpenSSL rans out of memory while parsing the extension.
446 */
447 ERR_clear_error();
448 akid = X509_get_ext_d2i(subject, NID_authority_key_identifier, 0, 0);
449 /* XXX: Should we peek at the error stack here??? */
450
451 /*
452 * If top is true generate a self-issued root CA, otherwise an
453 * intermediate CA and possibly its self-signed issuer.
454 *
455 * CA cert valid for +/- 30 days
456 */
457 if( !X509_set_version(cert, 2)
458 || !set_serial(cert, akid, subject)
459 || !X509_set_subject_name(cert, name)
460 || !set_issuer_name(cert, akid)
461 || !X509_gmtime_adj(X509_get_notBefore(cert), -30 * 86400L)
462 || !X509_gmtime_adj(X509_get_notAfter(cert), 30 * 86400L)
463 || !X509_set_pubkey(cert, newkey)
464 || !add_ext(0, cert, NID_basic_constraints, "CA:TRUE")
465 || (!top && !add_akid(cert, akid))
466 || !add_skid(cert, akid)
467 || ( !top && wrap_to_root
468 && !wrap_issuer(dane, newkey, cert, depth, WRAP_TOP)))
469 ret = 0;
470
471 if(akid)
472 AUTHORITY_KEYID_free(akid);
473 if(!key)
474 EVP_PKEY_free(newkey);
475 if(ret)
476 ret = grow_chain(dane, !top && wrap_to_root ? UNTRUSTED : TRUSTED, cert);
477 if(cert)
478 X509_free(cert);
479 return ret;
480 }
481
482 static int
483 wrap_cert(ssl_dane *dane, X509 *tacert, int depth)
484 {
485 if(dane->depth < 0)
486 dane->depth = depth + 1;
487
488 /*
489 * If the TA certificate is self-issued, or need not be, use it directly.
490 * Otherwise, synthesize requisuite ancestors.
491 */
492 if( !wrap_to_root
493 || X509_check_issued(tacert, tacert) == X509_V_OK)
494 return grow_chain(dane, TRUSTED, tacert);
495
496 if(wrap_issuer(dane, 0, tacert, depth, WRAP_MID))
497 return grow_chain(dane, UNTRUSTED, tacert);
498 return 0;
499 }
500
501 static int
502 ta_signed(ssl_dane *dane, X509 *cert, int depth)
503 {
504 dane_cert_list x;
505 dane_pkey_list k;
506 EVP_PKEY *pk;
507 int done = 0;
508
509 /*
510 * First check whether issued and signed by a TA cert, this is cheaper
511 * than the bare-public key checks below, since we can determine whether
512 * the candidate TA certificate issued the certificate to be checked
513 * first (name comparisons), before we bother with signature checks
514 * (public key operations).
515 */
516 for (x = dane->certs; !done && x; x = x->next)
517 {
518 if(X509_check_issued(x->value, cert) == X509_V_OK)
519 {
520 if(!(pk = X509_get_pubkey(x->value)))
521 {
522 /*
523 * The cert originally contained a valid pkey, which does
524 * not just vanish, so this is most likely a memory error.
525 */
526 done = -1;
527 break;
528 }
529 /* Check signature, since some other TA may work if not this. */
530 if(X509_verify(cert, pk) > 0)
531 done = wrap_cert(dane, x->value, depth) ? 1 : -1;
532 EVP_PKEY_free(pk);
533 }
534 }
535
536 /*
537 * With bare TA public keys, we can't check whether the trust chain is
538 * issued by the key, but we can determine whether it is signed by the
539 * key, so we go with that.
540 *
541 * Ideally, the corresponding certificate was presented in the chain, and we
542 * matched it by its public key digest one level up. This code is here
543 * to handle adverse conditions imposed by sloppy administrators of
544 * receiving systems with poorly constructed chains.
545 *
546 * We'd like to optimize out keys that should not match when the cert's
547 * authority key id does not match the key id of this key computed via
548 * the RFC keyid algorithm (SHA-1 digest of public key bit-string sans
549 * ASN1 tag and length thus also excluding the unused bits field that is
550 * logically part of the length). However, some CAs have a non-standard
551 * authority keyid, so we lose. Too bad.
552 *
553 * This may push errors onto the stack when the certificate signature is
554 * not of the right type or length, throw these away,
555 */
556 for(k = dane->pkeys; !done && k; k = k->next)
557 if(X509_verify(cert, k->value) > 0)
558 done = wrap_issuer(dane, k->value, cert, depth, WRAP_MID) ? 1 : -1;
559 else
560 ERR_clear_error();
561
562 return done;
563 }
564
565 static int
566 set_trust_anchor(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert)
567 {
568 int matched = 0;
569 int n;
570 int i;
571 int depth = 0;
572 EVP_PKEY *takey;
573 X509 *ca;
574 STACK_OF(X509) *in = ctx->untrusted; /* XXX: Accessor? */
575
576 if(!grow_chain(dane, UNTRUSTED, 0))
577 return -1;
578
579 /*
580 * Accept a degenerate case: depth 0 self-signed trust-anchor.
581 */
582 if(X509_check_issued(cert, cert) == X509_V_OK)
583 {
584 dane->depth = 0;
585 matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], cert, 0);
586 if(matched > 0 && !grow_chain(dane, TRUSTED, cert))
587 matched = -1;
588 return matched;
589 }
590
591 /* Make a shallow copy of the input untrusted chain. */
592 if(!(in = sk_X509_dup(in)))
593 {
594 DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
595 return -1;
596 }
597
598 /*
599 * At each iteration we consume the issuer of the current cert. This
600 * reduces the length of the "in" chain by one. If no issuer is found,
601 * we are done. We also stop when a certificate matches a TA in the
602 * peer's TLSA RRset.
603 *
604 * Caller ensures that the initial certificate is not self-signed.
605 */
606 for(n = sk_X509_num(in); n > 0; --n, ++depth)
607 {
608 for(i = 0; i < n; ++i)
609 if(X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK)
610 break;
611
612 /*
613 * Final untrusted element with no issuer in the peer's chain, it may
614 * however be signed by a pkey or cert obtained via a TLSA RR.
615 */
616 if(i == n)
617 break;
618
619 /* Peer's chain contains an issuer ca. */
620 ca = sk_X509_delete(in, i);
621
622 /* If not a trust anchor, record untrusted ca and continue. */
623 if((matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], ca, depth+1))
624 == 0)
625 {
626 if(grow_chain(dane, UNTRUSTED, ca))
627 {
628 if(!X509_check_issued(ca, ca) == X509_V_OK)
629 {
630 /* Restart with issuer as subject */
631 cert = ca;
632 continue;
633 }
634 /* Final self-signed element, skip ta_signed() check. */
635 cert = 0;
636 }
637 else
638 matched = -1;
639 }
640 else if(matched == MATCHED_CERT)
641 {
642 if(!wrap_cert(dane, ca, depth))
643 matched = -1;
644 }
645 else if(matched == MATCHED_PKEY)
646 {
647 if( !(takey = X509_get_pubkey(ca))
648 || !wrap_issuer(dane, takey, cert, depth, WRAP_MID))
649 {
650 if(takey)
651 EVP_PKEY_free(takey);
652 else
653 DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
654 matched = -1;
655 }
656 }
657 break;
658 }
659
660 /* Shallow free the duplicated input untrusted chain. */
661 sk_X509_free(in);
662
663 /*
664 * When the loop exits, if "cert" is set, it is not self-signed and has
665 * no issuer in the chain, we check for a possible signature via a DNS
666 * obtained TA cert or public key.
667 */
668 if(matched == 0 && cert)
669 matched = ta_signed(dane, cert, depth);
670
671 return matched;
672 }
673
674 static int
675 check_end_entity(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert)
676 {
677 int matched;
678
679 matched = match(dane->selectors[SSL_DANE_USAGE_FIXED_LEAF], cert, 0);
680 if(matched > 0)
681 if(!ctx->chain)
682 if( (ctx->chain = sk_X509_new_null())
683 && sk_X509_push(ctx->chain, cert))
684 CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
685 else
686 {
687 DANEerr(DANE_F_CHECK_END_ENTITY, ERR_R_MALLOC_FAILURE);
688 return -1;
689 }
690 return matched;
691 }
692
693 static int
694 match_name(const char *certid, ssl_dane *dane)
695 {
696 int multi = dane->multi;
697 dane_host_list hosts;
698
699 for(hosts = dane->hosts; hosts; hosts = hosts->next)
700 {
701 int match_subdomain = 0;
702 const char *domain = hosts->value;
703 const char *parent;
704 int idlen;
705 int domlen;
706
707 if(*domain == '.' && domain[1] != '\0')
708 {
709 ++domain;
710 match_subdomain = 1;
711 }
712
713 /*
714 * Sub-domain match: certid is any sub-domain of hostname.
715 */
716 if(match_subdomain)
717 if( (idlen = strlen(certid)) > (domlen = strlen(domain)) + 1
718 && certid[idlen - domlen - 1] == '.'
719 && !strcasecmp(certid + (idlen - domlen), domain))
720 return 1;
721 else
722 continue;
723
724 /*
725 * Exact match and initial "*" match. The initial "*" in a certid
726 * matches one (if multi is false) or more hostname components under
727 * the condition that the certid contains multiple hostname components.
728 */
729 if( !strcasecmp(certid, domain)
730 || ( certid[0] == '*' && certid[1] == '.' && certid[2] != 0
731 && (parent = strchr(domain, '.')) != 0
732 && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent))
733 && strcasecmp(multi ? parent + domlen - idlen : parent, certid+1) == 0))
734 return 1;
735 }
736 return 0;
737 }
738
739 static char *
740 check_name(char *name, int len)
741 {
742 char *cp = name + len;
743
744 while(len > 0 && !*--cp)
745 --len; /* Ignore trailing NULs */
746 if(len <= 0)
747 return 0;
748 for(cp = name; *cp; cp++)
749 {
750 char c = *cp;
751 if (!((c >= 'a' && c <= 'z') ||
752 (c >= '0' && c <= '9') ||
753 (c >= 'A' && c <= 'Z') ||
754 (c == '.' || c == '-') ||
755 (c == '*')))
756 return 0; /* Only LDH, '.' and '*' */
757 }
758 if(cp - name != len) /* Guard against internal NULs */
759 return 0;
760 return name;
761 }
762
763 static char *
764 parse_dns_name(const GENERAL_NAME *gn)
765 {
766 if(gn->type != GEN_DNS)
767 return 0;
768 if(ASN1_STRING_type(gn->d.ia5) != V_ASN1_IA5STRING)
769 return 0;
770 return check_name((char *) ASN1_STRING_data(gn->d.ia5),
771 ASN1_STRING_length(gn->d.ia5));
772 }
773
774 static char *
775 parse_subject_name(X509 *cert)
776 {
777 X509_NAME *name = X509_get_subject_name(cert);
778 X509_NAME_ENTRY *entry;
779 ASN1_STRING *entry_str;
780 unsigned char *namebuf;
781 int nid = NID_commonName;
782 int len;
783 int i;
784
785 if(!name || (i = X509_NAME_get_index_by_NID(name, nid, -1)) < 0)
786 return 0;
787 if(!(entry = X509_NAME_get_entry(name, i)))
788 return 0;
789 if(!(entry_str = X509_NAME_ENTRY_get_data(entry)))
790 return 0;
791
792 if((len = ASN1_STRING_to_UTF8(&namebuf, entry_str)) < 0)
793 return 0;
794 if(len <= 0 || check_name((char *) namebuf, len) == 0)
795 {
796 OPENSSL_free(namebuf);
797 return 0;
798 }
799 return (char *) namebuf;
800 }
801
802 static int
803 name_check(ssl_dane *dane, X509 *cert)
804 {
805 int matched = 0;
806 BOOL got_altname = FALSE;
807 GENERAL_NAMES *gens;
808
809 gens = X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0);
810 if(gens)
811 {
812 int n = sk_GENERAL_NAME_num(gens);
813 int i;
814
815 for(i = 0; i < n; ++i)
816 {
817 const GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
818 const char *certid;
819
820 if(gn->type != GEN_DNS)
821 continue;
822 got_altname = TRUE;
823 certid = parse_dns_name(gn);
824 if(certid && *certid)
825 {
826 if((matched = match_name(certid, dane)) == 0)
827 continue;
828 if(!(dane->mhost = OPENSSL_strdup(certid)))
829 matched = -1;
830 break;
831 }
832 }
833 GENERAL_NAMES_free(gens);
834 }
835
836 /*
837 * XXX: Should the subjectName be skipped when *any* altnames are present,
838 * or only when DNS altnames are present?
839 */
840 if(got_altname)
841 {
842 char *certid = parse_subject_name(cert);
843 if(certid != 0 && *certid && (matched = match_name(certid, dane)) != 0)
844 dane->mhost = certid; /* Already a copy */
845 }
846 return matched;
847 }
848
849 static int
850 verify_chain(X509_STORE_CTX *ctx)
851 {
852 dane_selector_list issuer_rrs;
853 dane_selector_list leaf_rrs;
854 int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb;
855 int ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
856 SSL *ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
857 ssl_dane *dane = SSL_get_ex_data(ssl, dane_idx);
858 X509 *cert = ctx->cert; /* XXX: accessor? */
859 int matched = 0;
860 int chain_length = sk_X509_num(ctx->chain);
861
862 issuer_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_ISSUER];
863 leaf_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_LEAF];
864 ctx->verify = dane->verify;
865
866 if((matched = name_check(dane, cert)) < 0)
867 {
868 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
869 return 0;
870 }
871
872 if(!matched)
873 {
874 ctx->error_depth = 0;
875 ctx->current_cert = cert;
876 X509_STORE_CTX_set_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH);
877 if(!cb(0, ctx))
878 return 0;
879 }
880 matched = 0;
881
882 /*
883 * Satisfy at least one usage 0 or 1 constraint, unless we've already
884 * matched a usage 2 trust anchor.
885 *
886 * XXX: internal_verify() doesn't callback with top certs that are not
887 * self-issued. This should be fixed in a future OpenSSL.
888 */
889 if(dane->roots && sk_X509_num(dane->roots))
890 {
891 #ifndef NO_CALLBACK_WORKAROUND
892 X509 *top = sk_X509_value(ctx->chain, dane->depth);
893
894 if(X509_check_issued(top, top) != X509_V_OK)
895 {
896 ctx->error_depth = dane->depth;
897 ctx->current_cert = top;
898 if(!cb(1, ctx))
899 return 0;
900 }
901 #endif
902 /* Pop synthetic trust-anchor ancestors off the chain! */
903 while (--chain_length > dane->depth)
904 X509_free(sk_X509_pop(ctx->chain));
905 }
906 else if(issuer_rrs || leaf_rrs)
907 {
908 int n = chain_length;
909
910 /*
911 * Check for an EE match, then a CA match at depths > 0, and
912 * finally, if the EE cert is self-issued, for a depth 0 CA match.
913 */
914 if(leaf_rrs)
915 matched = match(leaf_rrs, cert, 0);
916 while(!matched && issuer_rrs && --n >= 0)
917 {
918 X509 *xn = sk_X509_value(ctx->chain, n);
919
920 if(n > 0 || X509_check_issued(xn, xn) == X509_V_OK)
921 matched = match(issuer_rrs, xn, n);
922 }
923
924 if(matched < 0)
925 {
926 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
927 return 0;
928 }
929
930 if(!matched)
931 {
932 ctx->current_cert = cert;
933 ctx->error_depth = 0;
934 X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_UNTRUSTED);
935 if(!cb(0, ctx))
936 return 0;
937 }
938 }
939
940 return ctx->verify(ctx);
941 }
942
943 static int
944 verify_cert(X509_STORE_CTX *ctx, void *unused_ctx)
945 {
946 static int ssl_idx = -1;
947 SSL *ssl;
948 ssl_dane *dane;
949 int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb;
950 int matched;
951 X509 *cert = ctx->cert; /* XXX: accessor? */
952
953 if(ssl_idx < 0)
954 ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
955 if(dane_idx < 0)
956 {
957 DANEerr(DANE_F_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
958 return -1;
959 }
960
961 ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
962 if(!(dane = SSL_get_ex_data(ssl, dane_idx)) || !cert)
963 return X509_verify_cert(ctx);
964
965 if(dane->selectors[SSL_DANE_USAGE_FIXED_LEAF])
966 {
967 if((matched = check_end_entity(ctx, dane, cert)) > 0)
968 {
969 ctx->error_depth = 0;
970 ctx->current_cert = cert;
971 return cb(1, ctx);
972 }
973 if(matched < 0)
974 {
975 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
976 return -1;
977 }
978 }
979
980 if(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA])
981 {
982 if((matched = set_trust_anchor(ctx, dane, cert)) < 0)
983 {
984 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
985 return -1;
986 }
987 if(matched)
988 {
989 /*
990 * Check that setting the untrusted chain updates the expected
991 * structure member at the expected offset.
992 */
993 X509_STORE_CTX_trusted_stack(ctx, dane->roots);
994 X509_STORE_CTX_set_chain(ctx, dane->chain);
995 OPENSSL_assert(ctx->untrusted == dane->chain);
996 }
997 }
998
999 /*
1000 * Name checks and usage 0/1 constraint enforcement are delayed until
1001 * X509_verify_cert() builds the full chain and calls our verify_chain()
1002 * wrapper.
1003 */
1004 dane->verify = ctx->verify;
1005 ctx->verify = verify_chain;
1006
1007 return X509_verify_cert(ctx);
1008 }
1009
1010 static dane_list
1011 list_alloc(size_t vsize)
1012 {
1013 void *value = (void *) OPENSSL_malloc(vsize);
1014 dane_list l;
1015
1016 if(!value)
1017 {
1018 DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
1019 return 0;
1020 }
1021 if(!(l = (dane_list) OPENSSL_malloc(sizeof(*l))))
1022 {
1023 OPENSSL_free(value);
1024 DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
1025 return 0;
1026 }
1027 l->next = 0;
1028 l->value = value;
1029 return l;
1030 }
1031
1032 static void
1033 list_free(void *list, void (*f)(void *))
1034 {
1035 dane_list head;
1036 dane_list next;
1037
1038 for(head = (dane_list) list; head; head = next)
1039 {
1040 next = head->next;
1041 if (f && head->value)
1042 f(head->value);
1043 OPENSSL_free(head);
1044 }
1045 }
1046
1047 static void
1048 dane_mtype_free(void *p)
1049 {
1050 list_free(((dane_mtype) p)->data, OPENSSL_freeFunc);
1051 OPENSSL_free(p);
1052 }
1053
1054 static void
1055 dane_selector_free(void *p)
1056 {
1057 list_free(((dane_selector) p)->mtype, dane_mtype_free);
1058 OPENSSL_free(p);
1059 }
1060
1061
1062
1063 /*
1064
1065 Tidy up once the connection is finished with.
1066
1067 Arguments
1068 ssl The ssl connection handle
1069
1070 => Before calling SSL_free()
1071 tls_close() and tls_getc() [the error path] are the obvious places.
1072 Could we do it earlier - right after verification? In tls_client_start()
1073 right after SSL_connect() returns, in that case.
1074
1075 */
1076
1077 void
1078 DANESSL_cleanup(SSL *ssl)
1079 {
1080 ssl_dane *dane;
1081 int u;
1082
1083 if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
1084 return;
1085 (void) SSL_set_ex_data(ssl, dane_idx, 0);
1086
1087 if(dane->hosts)
1088 list_free(dane->hosts, OPENSSL_freeFunc);
1089 if(dane->mhost)
1090 OPENSSL_free(dane->mhost);
1091 for(u = 0; u <= SSL_DANE_USAGE_LAST; ++u)
1092 if(dane->selectors[u])
1093 list_free(dane->selectors[u], dane_selector_free);
1094 if(dane->pkeys)
1095 list_free(dane->pkeys, pkey_free);
1096 if(dane->certs)
1097 list_free(dane->certs, cert_free);
1098 if(dane->roots)
1099 sk_X509_pop_free(dane->roots, X509_free);
1100 if(dane->chain)
1101 sk_X509_pop_free(dane->chain, X509_free);
1102 OPENSSL_free(dane);
1103 }
1104
1105 static dane_host_list
1106 host_list_init(const char **src)
1107 {
1108 dane_host_list head = NULL;
1109
1110 while(*src)
1111 {
1112 dane_host_list elem = (dane_host_list) OPENSSL_malloc(sizeof(*elem));
1113 if(!elem)
1114 {
1115 list_free(head, OPENSSL_freeFunc);
1116 return 0;
1117 }
1118 elem->value = OPENSSL_strdup(*src++);
1119 LINSERT(head, elem);
1120 }
1121 return head;
1122 }
1123
1124
1125
1126
1127 /*
1128
1129 Call this for each TLSA record found for the target, after the
1130 DANE setup has been done on the ssl connection handle.
1131
1132 Arguments:
1133 ssl Connection handle
1134 usage TLSA record field
1135 selector TLSA record field
1136 mdname ??? message digest name?
1137 data ??? TLSA record megalump?
1138 dlen length of data
1139
1140 Return
1141 -1 on error
1142 0 action not taken
1143 1 record accepted
1144 */
1145
1146 int
1147 DANESSL_add_tlsa(SSL *ssl, uint8_t usage, uint8_t selector, const char *mdname,
1148 unsigned const char *data, size_t dlen)
1149 {
1150 ssl_dane *dane;
1151 dane_selector_list s = 0;
1152 dane_mtype_list m = 0;
1153 dane_data_list d = 0;
1154 dane_cert_list xlist = 0;
1155 dane_pkey_list klist = 0;
1156 const EVP_MD *md = 0;
1157
1158 if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
1159 {
1160 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_DANE_INIT);
1161 return -1;
1162 }
1163
1164 if(usage > SSL_DANE_USAGE_LAST)
1165 {
1166 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_USAGE);
1167 return 0;
1168 }
1169 if(selector > SSL_DANE_SELECTOR_LAST)
1170 {
1171 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_SELECTOR);
1172 return 0;
1173 }
1174 if(mdname && !(md = EVP_get_digestbyname(mdname)))
1175 {
1176 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DIGEST);
1177 return 0;
1178 }
1179 if(!data)
1180 {
1181 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_NULL_DATA);
1182 return 0;
1183 }
1184 if(mdname && dlen != EVP_MD_size(md))
1185 {
1186 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DATA_LENGTH);
1187 return 0;
1188 }
1189
1190 if(!mdname)
1191 {
1192 X509 *x = 0;
1193 EVP_PKEY *k = 0;
1194 const unsigned char *p = data;
1195
1196 #define xklistinit(lvar, ltype, var, freeFunc) do { \
1197 (lvar) = (ltype) OPENSSL_malloc(sizeof(*(lvar))); \
1198 if (!(lvar)) { \
1199 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, ERR_R_MALLOC_FAILURE); \
1200 freeFunc((var)); \
1201 return 0; \
1202 } \
1203 (lvar)->next = 0; \
1204 lvar->value = var; \
1205 } while (0)
1206 #define xkfreeret(ret) do { \
1207 if (xlist) list_free(xlist, cert_free); \
1208 if (klist) list_free(klist, pkey_free); \
1209 return (ret); \
1210 } while (0)
1211
1212 switch(selector)
1213 {
1214 case SSL_DANE_SELECTOR_CERT:
1215 if(!d2i_X509(&x, &p, dlen) || dlen != p - data)
1216 {
1217 if (x)
1218 X509_free(x);
1219 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT);
1220 return 0;
1221 }
1222 k = X509_get_pubkey(x);
1223 EVP_PKEY_free(k);
1224 if(!k)
1225 {
1226 X509_free(x);
1227 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT_PKEY);
1228 return 0;
1229 }
1230 if(usage == SSL_DANE_USAGE_TRUSTED_CA)
1231 xklistinit(xlist, dane_cert_list, x, X509_free);
1232 break;
1233
1234 case SSL_DANE_SELECTOR_SPKI:
1235 if(!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data)
1236 {
1237 if(k)
1238 EVP_PKEY_free(k);
1239 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_PKEY);
1240 return 0;
1241 }
1242 if(usage == SSL_DANE_USAGE_TRUSTED_CA)
1243 xklistinit(klist, dane_pkey_list, k, EVP_PKEY_free);
1244 break;
1245 }
1246 }
1247
1248 /* Find insertion point and don't add duplicate elements. */
1249 for(s = dane->selectors[usage]; s; s = s->next)
1250 if(s->value->selector == selector)
1251 for(m = s->value->mtype; m; m = m->next)
1252 if(m->value->md == md)
1253 for(d = m->value->data; d; d = d->next)
1254 if( d->value->datalen == dlen
1255 && memcmp(d->value->data, data, dlen) == 0)
1256 xkfreeret(1);
1257
1258 if(!(d = (dane_data_list) list_alloc(sizeof(*d->value) + dlen)))
1259 xkfreeret(0);
1260 d->value->datalen = dlen;
1261 memcpy(d->value->data, data, dlen);
1262 if(!m)
1263 {
1264 if(!(m = (dane_mtype_list) list_alloc(sizeof(*m->value))))
1265 {
1266 list_free(d, OPENSSL_freeFunc);
1267 xkfreeret(0);
1268 }
1269 m->value->data = 0;
1270 if((m->value->md = md) != 0)
1271 m->value->mdlen = dlen;
1272 if(!s)
1273 {
1274 if(!(s = (dane_selector_list) list_alloc(sizeof(*s->value))))
1275 {
1276 list_free(m, dane_mtype_free);
1277 xkfreeret(0);
1278 }
1279 s->value->mtype = 0;
1280 s->value->selector = selector;
1281 LINSERT(dane->selectors[usage], s);
1282 }
1283 LINSERT(s->value->mtype, m);
1284 }
1285 LINSERT(m->value->data, d);
1286
1287 if(xlist)
1288 LINSERT(dane->certs, xlist);
1289 else if(klist)
1290 LINSERT(dane->pkeys, klist);
1291 ++dane->count;
1292 return 1;
1293 }
1294
1295
1296
1297
1298 /*
1299 Call this once we have an ssl connection handle but before
1300 making the TLS connection.
1301
1302 => In tls_client_start() after the call to SSL_new()
1303 and before the call to SSL_connect(). Exactly where
1304 probably does not matter.
1305 We probably want to keep our existing SNI handling;
1306 call this with NULL.
1307
1308 Arguments:
1309 ssl Connection handle
1310 sni_domain Optional peer server name
1311 hostnames ?? list of names - but what names?
1312
1313 Return
1314 -1 on fatal error
1315 0 nonfatal error
1316 1 success
1317 */
1318
1319 int
1320 DANESSL_init(SSL *ssl, const char *sni_domain, const char **hostnames)
1321 {
1322 ssl_dane *dane;
1323 int i;
1324 #ifdef OPENSSL_INTERNAL
1325 SSL_CTX *sctx = SSL_get_SSL_CTX(ssl);
1326
1327 if(sctx->app_verify_callback != verify_cert)
1328 {
1329 DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_SCTX_INIT);
1330 return -1;
1331 }
1332 #else
1333 if(dane_idx < 0)
1334 {
1335 DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_LIBRARY_INIT);
1336 return -1;
1337 }
1338 #endif
1339
1340 if(sni_domain && !SSL_set_tlsext_host_name(ssl, sni_domain))
1341 return 0;
1342
1343 if(!(dane = (ssl_dane *) OPENSSL_malloc(sizeof(ssl_dane))))
1344 {
1345 DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
1346 return 0;
1347 }
1348 if(!SSL_set_ex_data(ssl, dane_idx, dane))
1349 {
1350 DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
1351 OPENSSL_free(dane);
1352 return 0;
1353 }
1354
1355 dane->pkeys = 0;
1356 dane->certs = 0;
1357 dane->chain = 0;
1358 dane->roots = 0;
1359 dane->depth = -1;
1360 dane->mhost = 0; /* Future SSL control interface */
1361 dane->multi = 0; /* Future SSL control interface */
1362 dane->count = 0;
1363
1364 for(i = 0; i <= SSL_DANE_USAGE_LAST; ++i)
1365 dane->selectors[i] = 0;
1366
1367 if(hostnames && !(dane->hosts = host_list_init(hostnames)))
1368 {
1369 DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
1370 DANESSL_cleanup(ssl);
1371 return 0;
1372 }
1373
1374 return 1;
1375 }
1376
1377
1378 /*
1379
1380 Call this once we have a context to work with, but
1381 before DANESSL_init()
1382
1383 => in tls_client_start(), after tls_init() call gives us the ctx,
1384 if we decide we want to (policy) and can (TLSA records available)
1385 replacing (? what about fallback) everything from testing tls_verify_hosts
1386 down to just before calling SSL_new() for the conn handle.
1387
1388 Arguments
1389 ctx SSL context
1390
1391 Return
1392 -1 Error
1393 1 Success
1394 */
1395
1396 int
1397 DANESSL_CTX_init(SSL_CTX *ctx)
1398 {
1399 if(dane_idx >= 0)
1400 {
1401 SSL_CTX_set_cert_verify_callback(ctx, verify_cert, 0);
1402 return 1;
1403 }
1404 DANEerr(DANE_F_SSL_CTX_DANE_INIT, DANE_R_LIBRARY_INIT);
1405 return -1;
1406 }
1407
1408 static int
1409 init_once(volatile int *value, int (*init)(void), void (*postinit)(void))
1410 {
1411 int wlock = 0;
1412
1413 CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
1414 if(*value < 0)
1415 {
1416 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
1417 CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
1418 wlock = 1;
1419 if(*value < 0)
1420 {
1421 *value = init();
1422 if(postinit)
1423 postinit();
1424 }
1425 }
1426 if (wlock)
1427 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
1428 else
1429 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
1430 return *value;
1431 }
1432
1433 static void
1434 dane_init(void)
1435 {
1436 /*
1437 * Store library id in zeroth function slot, used to locate the library
1438 * name. This must be done before we load the error strings.
1439 */
1440 #ifndef OPENSSL_NO_ERR
1441 dane_str_functs[0].error |= ERR_PACK(err_lib_dane, 0, 0);
1442 ERR_load_strings(err_lib_dane, dane_str_functs);
1443 ERR_load_strings(err_lib_dane, dane_str_reasons);
1444 #endif
1445
1446 /*
1447 * Register SHA-2 digests, if implemented and not already registered.
1448 */
1449 #if defined(LN_sha256) && defined(NID_sha256) && !defined(OPENSSL_NO_SHA256)
1450 if(!EVP_get_digestbyname(LN_sha224)) EVP_add_digest(EVP_sha224());
1451 if(!EVP_get_digestbyname(LN_sha256)) EVP_add_digest(EVP_sha256());
1452 #endif
1453 #if defined(LN_sha512) && defined(NID_sha512) && !defined(OPENSSL_NO_SHA512)
1454 if(!EVP_get_digestbyname(LN_sha384)) EVP_add_digest(EVP_sha384());
1455 if(!EVP_get_digestbyname(LN_sha512)) EVP_add_digest(EVP_sha512());
1456 #endif
1457
1458 /*
1459 * Register an SSL index for the connection-specific ssl_dane structure.
1460 * Using a separate index makes it possible to add DANE support to
1461 * existing OpenSSL releases that don't have a suitable pointer in the
1462 * SSL structure.
1463 */
1464 dane_idx = SSL_get_ex_new_index(0, 0, 0, 0, 0);
1465 }
1466
1467
1468
1469 /*
1470
1471 Call this once. Probably early in startup will do; may need
1472 to be after SSL library init.
1473
1474 */
1475
1476 int
1477 DANESSL_library_init(void)
1478 {
1479 if(err_lib_dane < 0)
1480 init_once(&err_lib_dane, ERR_get_next_error_library, dane_init);
1481
1482 #if defined(LN_sha256)
1483 /* No DANE without SHA256 support */
1484 if(dane_idx >= 0 && EVP_get_digestbyname(LN_sha256) != 0)
1485 return 1;
1486 #endif
1487
1488 DANEerr(DANE_F_SSL_DANE_LIBRARY_INIT, DANE_R_DANE_SUPPORT);
1489 return 0;
1490 }
1491
1492
1493 #endif /* OPENSSL_VERSION_NUMBER */
1494 /* vi: aw ai sw=2
1495 */