
An Information Theoretic Model of
Privacy and Security Metrics

- or -
How I learned to stop worrying about password meters

and love the dice

Bill Budington
 @legind

Who are we?

➲ Digital rights nonprofit

➲ Technologists, Lawyers, Activists

➲ Fight for Encryption, Privacy, and
Security on the Internet

➲ https://eff.org/

Who am I?
➲ Senior Staff Technologist

at EFF’s Threat Lab

➲ Digital Security Trainer

➲ Privacy & Security Auditor

➲ HTTPS Everywhere,
Cover Your Tracks

Cover Your Tracks
https://coveryourtracks.eff.org/

➲ Formerly called “Panopticlick”
➲ Uses different characteristics of the

browser (web headers, JS derived
properties)

➲ Combines these characteristics into
unique “Fingerprint” of your browser

➲ Compares browser fingerprint against
others we’ve recently seen

Fingerprinting

Calculating Entropy
Entropy: a mathematical quantity which allows us to
measure how close a fact comes to revealing a
person's identity uniquely.

Surprisal: a quantity measuring how unexpected a
new piece of information is, which allows us to
recalculate entropy.

Calculating Entropy
ΔS = log-2(Pr(X=x))

Starsign ΔS = log-2(Pr(Starsign=Capricorn)) = log-2(1/12) = 3.58 bits

Birthday ΔS = log-2(Pr(DOB=Jan 2)) = log-2(1/365) = 8.51 bits

Possible State Bits ≠
Identifying Bits

Cookies being disabled is very rare.

“True” or “False” → 1 bit of stored information

“I have cookies enabled” → 0.13 bits of
identifying information

Physical analogue: green eyes

Customization Not Recommended!

➲ If it looks like Safari on iOS, acts like
Safari on iOS, but says it’s Chrome
on Windows 10…

➲ More unique than Safari on iOS
announcing itself as such

Customization Not Recommended!

In order for browser
fingerprinting to work...

➲ Unique enough to be tracking
individual browsers

➲ Constant enough to be a stable
identifier

Tor Browser anti-FP

Goal is to make every TB instance
look exactly the same (mod OS)

Tor Browser anti-FP

Tor Browser anti-FP

Brave anti-FP

Certain metrics requested by 3rd parties
(AudioContext, Canvas Hash, WebGL
hash, list of plugins, CPU concurrency)
are randomized. Randomization seed:
first party domain

Brave anti-FP

 loaded on example1.com →

 loaded on example1.com →

 loaded on example2.com →

 loaded on example2.com →

Brave anti-FP

 loaded on example1.com →

 loaded on example1.com →

 loaded on example2.com →

 loaded on example2.com →

Brave anti-FP

View of Brave from Trackers

➲ Dumb Trackers:
“Check out this one weird trick -

Trackers HATE it!”

➲ Smart Trackers:
Able to determine randomization is used
and use that fact as a fingerprinting metric
itself (still less useful)

Goal:

Reduce the amount of usable
information trackers can gather.

Behavioral Fingerprinting
➲ Separate from the browser, what

behaviors can be observed that, in
combination, identify particular
users?

➲ What can be done in the browser to
mitigate the effectiveness of using
these behaviors to fingerprint users?

Behavioral Fingerprinting

➲ Highlighting text while reading an article

➲ Typing speed and cadence

➲ Cursor movement

➲ Scroll patterns

➲ Switching of tabs

Calculating Entropy
ΔS = log-2(Pr(X=x))

let event = User highlights text while reading article
ΔS = log-2(Pr(event))

Entropy Considerations
Entropy calculation is limited by
predefined parameters and when we
consider user behavior, misses a lot of
valuable information.

e.g. User highlights only first word of a
paragraph, or only in the middle of a text
block, or only in the morning after they
drink coffee, etc etc

Entropy Considerations
Unlike browser characteristics,
behavior of users is not confined to
discrete states. It is open-ended and
complex.

Open-ended: could be a pattern not
easily recognized.

Chaotic systems are subject
to massive perturbations from
small changes.

Ordered systems are too rigid
to exhibit interesting
characteristics.

Complexity emerges at the
edge of chaotic systems,
between chaotic and ordered
regimes. Adaptable &
resilient.

Human Behaviors are Complex

➲ Allows us to adapt to and navigate
our environment
○ Physical

○ Social / Group

○ Societal

Passwords & Human Neurology
➲ “Complexity” in this sense does not

lend itself to good password
choices!

➲ For cryptographic application
(where server-side rate limiting is
not an option) actual, strong
randomness is necessary

Passwords & Human Neurology
Not only are password choices
cryptographically weak, but they also exhibit
extreme bias (read: patterns)

Password Meters on Human Input

Password Meters on Human Input

Entropy meters

1. Apply intrinsic criteria to an
extrinsic data set
Simple example: the word “question” measured as
log2(268) bits

2. Do not even attempt to determine
the source of entropy

Fundamental Principle
Any entropy calculation run on an
open system (e.g. user input data) will
fail because it cannot accurately
model the source of entropy and data
set available to that system.

Practical Implication
➲ Any mismatch between pattern

recognition of meter (if it even has
one) and pattern generation of
attacker leads to enormous
advantage of attacker.

➲ This can include any personalized
knowledge of the target.

Practical Implication
Personalized wordlists - extremely common offsec practice

Why leave the choice of good
random passwords to chance?
➲ For orgs: generate random passphrases.
➲ For site logins, a using a good PBKDF

(scrypt) in case of DB compromise and
server-side rate limiting may be sufficient.
Still won’t help against password reuse,
but won’t frustrate users. If you don’t want
to frustrate users, mandating U2F also
won’t work. Or, highly encourage using
generated passphrase, but give a fallback.

Advantages of Diceware

➲ Can be guaranteed secure*

➲ Memorable

➲ Kind of fun

Disadvantages of Diceware

➲ Pretty anglocentric, not available in

many languages

➲ Maybe not fun

SecureDrop Sources

Diceware Entropy
bits = log-2(words in wordlist) * # of

words

bits = 12.92 * # of words

bits = 12.92 * 5 = 64.6

But are they memorable?

Random Diceware Trial
5 words

baritone repeater mower unzip pretext
viewless undead purify habitable theology
jargon context woof acquaint bruising
giblet issuing cattail handgrip immature

Discarding passphrases is a-OK*

*Depending on how many you discard on average

Only like 1 in 2? Lose one bit
 64.6 → 63.6
1 in 4? Lose two bits
 64.6 → 62.6
1 in 8? Lose three bits
 64.6 → 61.6

In conclusion...
➲ Password meters are free as in beer, and

they also suck as in free beer…

➲ Use Diceware to generate your master
passphrase if you’re a user.

➲ Generate user password/phrase (using
Diceware or other means) if you are a
security engineer and care about your users’
accounts.

Thank You!

Questions?
Bill Budington

 @legind

