Coding style closer to project norms
[exim.git] / src / src / dane-openssl.c
CommitLineData
e682570f
TL
1#include <stdio.h>
2#include <string.h>
3#include <stdint.h>
4
5#include <openssl/opensslv.h>
6#include <openssl/err.h>
7#include <openssl/crypto.h>
8#include <openssl/safestack.h>
9#include <openssl/objects.h>
10#include <openssl/x509.h>
11#include <openssl/x509v3.h>
12#include <openssl/evp.h>
13
14#if OPENSSL_VERSION_NUMBER < 0x1000000fL
880a1e77
JH
15# error "OpenSSL 1.0.0 or higher required"
16#else /* remainder of file */
e682570f
TL
17
18#include "danessl.h"
19
20#define DANE_F_ADD_SKID 100
21#define DANE_F_CHECK_END_ENTITY 101
22#define DANE_F_GROW_CHAIN 102
23#define DANE_F_LIST_ALLOC 103
24#define DANE_F_MATCH 104
25#define DANE_F_PUSH_EXT 105
26#define DANE_F_SET_TRUST_ANCHOR 106
27#define DANE_F_SSL_CTX_DANE_INIT 107
28#define DANE_F_SSL_DANE_ADD_TLSA 108
29#define DANE_F_SSL_DANE_INIT 109
30#define DANE_F_SSL_DANE_LIBRARY_INIT 110
31#define DANE_F_VERIFY_CERT 111
32#define DANE_F_WRAP_CERT 112
33
34#define DANE_R_BAD_CERT 100
35#define DANE_R_BAD_CERT_PKEY 101
36#define DANE_R_BAD_DATA_LENGTH 102
37#define DANE_R_BAD_DIGEST 103
38#define DANE_R_BAD_NULL_DATA 104
39#define DANE_R_BAD_PKEY 105
40#define DANE_R_BAD_SELECTOR 106
41#define DANE_R_BAD_USAGE 107
42#define DANE_R_DANE_INIT 108
43#define DANE_R_DANE_SUPPORT 109
44#define DANE_R_LIBRARY_INIT 110
45#define DANE_R_NOSIGN_KEY 111
46#define DANE_R_SCTX_INIT 112
47
48#ifndef OPENSSL_NO_ERR
880a1e77
JH
49# define DANE_F_PLACEHOLDER 0 /* FIRST! Value TBD */
50static ERR_STRING_DATA dane_str_functs[] =
51{
e682570f
TL
52 {DANE_F_PLACEHOLDER, "DANE library"}, /* FIRST!!! */
53 {DANE_F_ADD_SKID, "add_skid"},
54 {DANE_F_CHECK_END_ENTITY, "check_end_entity"},
55 {DANE_F_GROW_CHAIN, "grow_chain"},
56 {DANE_F_LIST_ALLOC, "list_alloc"},
57 {DANE_F_MATCH, "match"},
58 {DANE_F_PUSH_EXT, "push_ext"},
59 {DANE_F_SET_TRUST_ANCHOR, "set_trust_anchor"},
60 {DANE_F_SSL_CTX_DANE_INIT, "SSL_CTX_dane_init"},
61 {DANE_F_SSL_DANE_ADD_TLSA, "SSL_dane_add_tlsa"},
62 {DANE_F_SSL_DANE_INIT, "SSL_dane_init"},
63 {DANE_F_SSL_DANE_LIBRARY_INIT, "SSL_dane_library_init"},
64 {DANE_F_VERIFY_CERT, "verify_cert"},
65 {DANE_F_WRAP_CERT, "wrap_cert"},
66 {0, NULL}
67};
880a1e77
JH
68static ERR_STRING_DATA dane_str_reasons[] =
69{
e682570f
TL
70 {DANE_R_BAD_CERT, "Bad TLSA record certificate"},
71 {DANE_R_BAD_CERT_PKEY, "Bad TLSA record certificate public key"},
72 {DANE_R_BAD_DATA_LENGTH, "Bad TLSA record digest length"},
73 {DANE_R_BAD_DIGEST, "Bad TLSA record digest"},
74 {DANE_R_BAD_NULL_DATA, "Bad TLSA record null data"},
75 {DANE_R_BAD_PKEY, "Bad TLSA record public key"},
76 {DANE_R_BAD_SELECTOR, "Bad TLSA record selector"},
77 {DANE_R_BAD_USAGE, "Bad TLSA record usage"},
78 {DANE_R_DANE_INIT, "SSL_dane_init() required"},
79 {DANE_R_DANE_SUPPORT, "DANE library features not supported"},
80 {DANE_R_LIBRARY_INIT, "SSL_dane_library_init() required"},
81 {DANE_R_SCTX_INIT, "SSL_CTX_dane_init() required"},
82 {DANE_R_NOSIGN_KEY, "Certificate usage 2 requires EC support"},
83 {0, NULL}
84};
880a1e77 85#endif /*OPENSSL_NO_ERR*/
e682570f
TL
86
87#define DANEerr(f, r) ERR_PUT_error(err_lib_dane, (f), (r), __FILE__, __LINE__)
88
89static int err_lib_dane = -1;
90static int dane_idx = -1;
91
92#ifdef X509_V_FLAG_PARTIAL_CHAIN /* OpenSSL >= 1.0.2 */
93static int wrap_to_root = 0;
94#else
95static int wrap_to_root = 1;
96#endif
97
98static void (*cert_free)(void *) = (void (*)(void *)) X509_free;
99static void (*pkey_free)(void *) = (void (*)(void *)) EVP_PKEY_free;
100
880a1e77
JH
101typedef struct dane_list
102{
e682570f
TL
103 struct dane_list *next;
104 void *value;
105} *dane_list;
106
107#define LINSERT(h, e) do { (e)->next = (h); (h) = (e); } while (0)
108
880a1e77
JH
109typedef struct dane_host_list
110{
111 struct dane_host_list *next;
e682570f 112 char *value;
880a1e77 113} *dane_host_list;
e682570f 114
880a1e77
JH
115typedef struct dane_data
116{
e682570f
TL
117 size_t datalen;
118 unsigned char data[0];
119} *dane_data;
120
880a1e77
JH
121typedef struct dane_data_list
122{
123 struct dane_data_list *next;
e682570f 124 dane_data value;
880a1e77 125} *dane_data_list;
e682570f 126
880a1e77
JH
127typedef struct dane_mtype
128{
e682570f
TL
129 int mdlen;
130 const EVP_MD *md;
880a1e77 131 dane_data_list data;
e682570f
TL
132} *dane_mtype;
133
880a1e77
JH
134typedef struct dane_mtype_list
135{
136 struct dane_mtype_list *next;
e682570f 137 dane_mtype value;
880a1e77 138} *dane_mtype_list;
e682570f 139
880a1e77
JH
140typedef struct dane_selector
141{
e682570f 142 uint8_t selector;
880a1e77 143 dane_mtype_list mtype;
e682570f
TL
144} *dane_selector;
145
880a1e77
JH
146typedef struct dane_selector_list
147{
148 struct dane_selector_list *next;
e682570f 149 dane_selector value;
880a1e77 150} *dane_selector_list;
e682570f 151
880a1e77
JH
152typedef struct dane_pkey_list
153{
154 struct dane_pkey_list *next;
e682570f 155 EVP_PKEY *value;
880a1e77 156} *dane_pkey_list;
e682570f 157
880a1e77
JH
158typedef struct dane_cert_list
159{
160 struct dane_cert_list *next;
e682570f 161 X509 *value;
880a1e77 162} *dane_cert_list;
e682570f 163
880a1e77
JH
164typedef struct ssl_dane
165{
e682570f
TL
166 int (*verify)(X509_STORE_CTX *);
167 STACK_OF(X509) *roots;
168 STACK_OF(X509) *chain;
169 const char *thost; /* TLSA base domain */
170 char *mhost; /* Matched, peer name */
880a1e77
JH
171 dane_pkey_list pkeys;
172 dane_cert_list certs;
173 dane_host_list hosts;
174 dane_selector_list selectors[SSL_DANE_USAGE_LAST + 1];
e682570f
TL
175 int depth;
176 int multi; /* Multi-label wildcards? */
177 int count; /* Number of TLSA records */
880a1e77 178} ssl_dane;
e682570f
TL
179
180#ifndef X509_V_ERR_HOSTNAME_MISMATCH
880a1e77 181# define X509_V_ERR_HOSTNAME_MISMATCH X509_V_ERR_APPLICATION_VERIFICATION
e682570f
TL
182#endif
183
880a1e77
JH
184static int
185match(dane_selector_list slist, X509 *cert, int depth)
e682570f 186{
880a1e77 187int matched;
e682570f 188
880a1e77
JH
189/*
190 * Note, set_trust_anchor() needs to know whether the match was for a
191 * pkey digest or a certificate digest. We return MATCHED_PKEY or
192 * MATCHED_CERT accordingly.
193 */
e682570f
TL
194#define MATCHED_CERT (SSL_DANE_SELECTOR_CERT + 1)
195#define MATCHED_PKEY (SSL_DANE_SELECTOR_SPKI + 1)
196
880a1e77
JH
197/*
198 * Loop over each selector, mtype, and associated data element looking
199 * for a match.
200 */
201for(matched = 0; !matched && slist; slist = slist->next)
202 {
203 dane_mtype_list m;
204 unsigned char mdbuf[EVP_MAX_MD_SIZE];
205 unsigned char *buf;
206 unsigned char *buf2;
207 unsigned int len;
208
209 /*
210 * Extract ASN.1 DER form of certificate or public key.
211 */
212 switch(slist->value->selector)
213 {
214 case SSL_DANE_SELECTOR_CERT:
215 len = i2d_X509(cert, NULL);
216 buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
217 if(buf) i2d_X509(cert, &buf2);
218 break;
219 case SSL_DANE_SELECTOR_SPKI:
220 len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), NULL);
221 buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
222 if(buf) i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf2);
223 break;
224 }
225
226 if(!buf)
227 {
228 DANEerr(DANE_F_MATCH, ERR_R_MALLOC_FAILURE);
229 return 0;
230 }
231 OPENSSL_assert(buf2 - buf == len);
232
233 /*
234 * Loop over each mtype and data element
235 */
236 for(m = slist->value->mtype; !matched && m; m = m->next)
237 {
238 dane_data_list d;
239 unsigned char *cmpbuf = buf;
240 unsigned int cmplen = len;
241
e682570f 242 /*
880a1e77
JH
243 * If it is a digest, compute the corresponding digest of the
244 * DER data for comparison, otherwise, use the full object.
e682570f 245 */
880a1e77
JH
246 if(m->value->md)
247 {
248 cmpbuf = mdbuf;
249 if(!EVP_Digest(buf, len, cmpbuf, &cmplen, m->value->md, 0))
250 matched = -1;
251 }
252 for(d = m->value->data; !matched && d; d = d->next)
253 if( cmplen == d->value->datalen
254 && memcmp(cmpbuf, d->value->data, cmplen) == 0)
255 matched = slist->value->selector + 1;
e682570f
TL
256 }
257
880a1e77
JH
258 OPENSSL_free(buf);
259 }
e682570f 260
880a1e77 261return matched;
e682570f
TL
262}
263
880a1e77
JH
264static int
265push_ext(X509 *cert, X509_EXTENSION *ext)
e682570f 266{
880a1e77 267X509_EXTENSIONS *exts;
e682570f 268
880a1e77
JH
269if(ext)
270 {
271 if(!(exts = cert->cert_info->extensions))
272 exts = cert->cert_info->extensions = sk_X509_EXTENSION_new_null();
273 if (exts && sk_X509_EXTENSION_push(exts, ext))
274 return 1;
275 X509_EXTENSION_free(ext);
276 }
277DANEerr(DANE_F_PUSH_EXT, ERR_R_MALLOC_FAILURE);
278return 0;
e682570f
TL
279}
280
880a1e77
JH
281static int
282add_ext(X509 *issuer, X509 *subject, int ext_nid, char *ext_val)
e682570f 283{
880a1e77 284X509V3_CTX v3ctx;
e682570f 285
880a1e77
JH
286X509V3_set_ctx(&v3ctx, issuer, subject, 0, 0, 0);
287return push_ext(subject, X509V3_EXT_conf_nid(0, &v3ctx, ext_nid, ext_val));
e682570f
TL
288}
289
880a1e77
JH
290static int
291set_serial(X509 *cert, AUTHORITY_KEYID *akid, X509 *subject)
e682570f 292{
880a1e77
JH
293int ret = 0;
294BIGNUM *bn;
295
296if(akid && akid->serial)
297 return (X509_set_serialNumber(cert, akid->serial));
298
299/*
300 * Add one to subject's serial to avoid collisions between TA serial and
301 * serial of signing root.
302 */
303if( (bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0
304 && BN_add_word(bn, 1)
305 && BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert)))
306 ret = 1;
307
308if(bn)
309 BN_free(bn);
310return ret;
311}
e682570f 312
880a1e77
JH
313static int
314add_akid(X509 *cert, AUTHORITY_KEYID *akid)
315{
316int nid = NID_authority_key_identifier;
317ASN1_STRING *id;
318unsigned char c = 0;
319int ret = 0;
320
321/*
322 * 0 will never be our subject keyid from a SHA-1 hash, but it could be
323 * our subject keyid if forced from child's akid. If so, set our
324 * authority keyid to 1. This way we are never self-signed, and thus
325 * exempt from any potential (off by default for now in OpenSSL)
326 * self-signature checks!
327 */
328id = (ASN1_STRING *) ((akid && akid->keyid) ? akid->keyid : 0);
329if(id && M_ASN1_STRING_length(id) == 1 && *M_ASN1_STRING_data(id) == c)
330 c = 1;
331
332if( (akid = AUTHORITY_KEYID_new()) != 0
333 && (akid->keyid = ASN1_OCTET_STRING_new()) != 0
334 && M_ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1)
335 && X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_APPEND))
336 ret = 1;
337if(akid)
338 AUTHORITY_KEYID_free(akid);
339return ret;
e682570f
TL
340}
341
880a1e77
JH
342static int
343add_skid(X509 *cert, AUTHORITY_KEYID *akid)
e682570f 344{
880a1e77 345int nid = NID_subject_key_identifier;
e682570f 346
880a1e77
JH
347if(!akid || !akid->keyid)
348 return add_ext(0, cert, nid, "hash");
349return X509_add1_ext_i2d(cert, nid, akid->keyid, 0, X509V3_ADD_APPEND) > 0;
e682570f
TL
350}
351
880a1e77
JH
352static X509_NAME *
353akid_issuer_name(AUTHORITY_KEYID *akid)
e682570f 354{
880a1e77
JH
355if(akid && akid->issuer)
356 {
357 int i;
358 GENERAL_NAMES *gens = akid->issuer;
e682570f 359
880a1e77
JH
360 for(i = 0; i < sk_GENERAL_NAME_num(gens); ++i)
361 {
362 GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
e682570f 363
880a1e77
JH
364 if(gn->type == GEN_DIRNAME)
365 return (gn->d.dirn);
e682570f 366 }
880a1e77
JH
367 }
368return 0;
e682570f
TL
369}
370
880a1e77
JH
371static int
372set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid)
e682570f 373{
880a1e77
JH
374X509_NAME *name = akid_issuer_name(akid);
375
376/*
377 * If subject's akid specifies an authority key identifer issuer name, we
378 * must use that.
379 */
380return X509_set_issuer_name(cert,
381 name ? name : X509_get_subject_name(cert));
e682570f
TL
382}
383
880a1e77
JH
384static int
385grow_chain(ssl_dane *dane, int trusted, X509 *cert)
e682570f 386{
880a1e77
JH
387STACK_OF(X509) **xs = trusted ? &dane->roots : &dane->chain;
388static ASN1_OBJECT *serverAuth = 0;
e682570f
TL
389
390#define UNTRUSTED 0
391#define TRUSTED 1
392
880a1e77
JH
393if( trusted && !serverAuth
394 && !(serverAuth = OBJ_nid2obj(NID_server_auth)))
395 {
396 DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
397 return 0;
398 }
399if(!*xs && !(*xs = sk_X509_new_null()))
400 {
401 DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
402 return 0;
403 }
404
405if(cert)
406 {
407 if(trusted && !X509_add1_trust_object(cert, serverAuth))
408 return 0;
409 CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
410 if (!sk_X509_push(*xs, cert))
411 {
412 X509_free(cert);
413 DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
414 return 0;
e682570f 415 }
880a1e77
JH
416 }
417return 1;
e682570f
TL
418}
419
880a1e77
JH
420static int
421wrap_issuer(ssl_dane *dane, EVP_PKEY *key, X509 *subject, int depth, int top)
e682570f 422{
880a1e77
JH
423int ret = 1;
424X509 *cert = 0;
425AUTHORITY_KEYID *akid;
426X509_NAME *name = X509_get_issuer_name(subject);
427EVP_PKEY *newkey = key ? key : X509_get_pubkey(subject);
e682570f
TL
428
429#define WRAP_MID 0 /* Ensure intermediate. */
430#define WRAP_TOP 1 /* Ensure self-signed. */
431
880a1e77
JH
432if(!name || !newkey || !(cert = X509_new()))
433 return 0;
434
435/*
436 * Record the depth of the trust-anchor certificate.
437 */
438if(dane->depth < 0)
439 dane->depth = depth + 1;
440
441/*
442 * XXX: Uncaught error condition:
443 *
444 * The return value is NULL both when the extension is missing, and when
445 * OpenSSL rans out of memory while parsing the extension.
446 */
447ERR_clear_error();
448akid = X509_get_ext_d2i(subject, NID_authority_key_identifier, 0, 0);
449/* XXX: Should we peek at the error stack here??? */
450
451/*
452 * If top is true generate a self-issued root CA, otherwise an
453 * intermediate CA and possibly its self-signed issuer.
454 *
455 * CA cert valid for +/- 30 days
456 */
457if( !X509_set_version(cert, 2)
458 || !set_serial(cert, akid, subject)
459 || !X509_set_subject_name(cert, name)
460 || !set_issuer_name(cert, akid)
461 || !X509_gmtime_adj(X509_get_notBefore(cert), -30 * 86400L)
462 || !X509_gmtime_adj(X509_get_notAfter(cert), 30 * 86400L)
463 || !X509_set_pubkey(cert, newkey)
464 || !add_ext(0, cert, NID_basic_constraints, "CA:TRUE")
465 || (!top && !add_akid(cert, akid))
466 || !add_skid(cert, akid)
467 || ( !top && wrap_to_root
468 && !wrap_issuer(dane, newkey, cert, depth, WRAP_TOP)))
469 ret = 0;
470
471if(akid)
472 AUTHORITY_KEYID_free(akid);
473if(!key)
474 EVP_PKEY_free(newkey);
475if(ret)
476 ret = grow_chain(dane, !top && wrap_to_root ? UNTRUSTED : TRUSTED, cert);
477if(cert)
478 X509_free(cert);
479return ret;
e682570f
TL
480}
481
880a1e77
JH
482static int
483wrap_cert(ssl_dane *dane, X509 *tacert, int depth)
e682570f 484{
880a1e77
JH
485if(dane->depth < 0)
486 dane->depth = depth + 1;
487
488/*
489 * If the TA certificate is self-issued, or need not be, use it directly.
490 * Otherwise, synthesize requisuite ancestors.
491 */
492if( !wrap_to_root
493 || X509_check_issued(tacert, tacert) == X509_V_OK)
494 return grow_chain(dane, TRUSTED, tacert);
495
496if(wrap_issuer(dane, 0, tacert, depth, WRAP_MID))
497 return grow_chain(dane, UNTRUSTED, tacert);
498return 0;
e682570f
TL
499}
500
880a1e77
JH
501static int
502ta_signed(ssl_dane *dane, X509 *cert, int depth)
e682570f 503{
880a1e77
JH
504dane_cert_list x;
505dane_pkey_list k;
506EVP_PKEY *pk;
507int done = 0;
508
509/*
510 * First check whether issued and signed by a TA cert, this is cheaper
511 * than the bare-public key checks below, since we can determine whether
512 * the candidate TA certificate issued the certificate to be checked
513 * first (name comparisons), before we bother with signature checks
514 * (public key operations).
515 */
516for (x = dane->certs; !done && x; x = x->next)
517 {
518 if(X509_check_issued(x->value, cert) == X509_V_OK)
519 {
520 if(!(pk = X509_get_pubkey(x->value)))
521 {
522 /*
523 * The cert originally contained a valid pkey, which does
524 * not just vanish, so this is most likely a memory error.
525 */
526 done = -1;
527 break;
528 }
529 /* Check signature, since some other TA may work if not this. */
530 if(X509_verify(cert, pk) > 0)
531 done = wrap_cert(dane, x->value, depth) ? 1 : -1;
532 EVP_PKEY_free(pk);
e682570f 533 }
880a1e77
JH
534 }
535
536/*
537 * With bare TA public keys, we can't check whether the trust chain is
538 * issued by the key, but we can determine whether it is signed by the
539 * key, so we go with that.
540 *
541 * Ideally, the corresponding certificate was presented in the chain, and we
542 * matched it by its public key digest one level up. This code is here
543 * to handle adverse conditions imposed by sloppy administrators of
544 * receiving systems with poorly constructed chains.
545 *
546 * We'd like to optimize out keys that should not match when the cert's
547 * authority key id does not match the key id of this key computed via
548 * the RFC keyid algorithm (SHA-1 digest of public key bit-string sans
549 * ASN1 tag and length thus also excluding the unused bits field that is
550 * logically part of the length). However, some CAs have a non-standard
551 * authority keyid, so we lose. Too bad.
552 *
553 * This may push errors onto the stack when the certificate signature is
554 * not of the right type or length, throw these away,
555 */
556for(k = dane->pkeys; !done && k; k = k->next)
557 if(X509_verify(cert, k->value) > 0)
558 done = wrap_issuer(dane, k->value, cert, depth, WRAP_MID) ? 1 : -1;
559 else
560 ERR_clear_error();
e682570f 561
880a1e77 562return done;
e682570f
TL
563}
564
880a1e77
JH
565static int
566set_trust_anchor(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert)
e682570f 567{
880a1e77
JH
568int matched = 0;
569int n;
570int i;
571int depth = 0;
572EVP_PKEY *takey;
573X509 *ca;
574STACK_OF(X509) *in = ctx->untrusted; /* XXX: Accessor? */
575
576if(!grow_chain(dane, UNTRUSTED, 0))
577 return -1;
578
579/*
580 * Accept a degenerate case: depth 0 self-signed trust-anchor.
581 */
582if(X509_check_issued(cert, cert) == X509_V_OK)
583 {
584 dane->depth = 0;
585 matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], cert, 0);
586 if(matched > 0 && !grow_chain(dane, TRUSTED, cert))
587 matched = -1;
588 return matched;
589 }
590
591/* Make a shallow copy of the input untrusted chain. */
592if(!(in = sk_X509_dup(in)))
593 {
594 DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
595 return -1;
596 }
597
598/*
599 * At each iteration we consume the issuer of the current cert. This
600 * reduces the length of the "in" chain by one. If no issuer is found,
601 * we are done. We also stop when a certificate matches a TA in the
602 * peer's TLSA RRset.
603 *
604 * Caller ensures that the initial certificate is not self-signed.
605 */
606for(n = sk_X509_num(in); n > 0; --n, ++depth)
607 {
608 for(i = 0; i < n; ++i)
609 if(X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK)
610 break;
611
612 /*
613 * Final untrusted element with no issuer in the peer's chain, it may
614 * however be signed by a pkey or cert obtained via a TLSA RR.
615 */
616 if(i == n)
617 break;
618
619 /* Peer's chain contains an issuer ca. */
620 ca = sk_X509_delete(in, i);
621
622 /* If not a trust anchor, record untrusted ca and continue. */
623 if((matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], ca, depth+1))
624 == 0)
625 {
626 if(grow_chain(dane, UNTRUSTED, ca))
627 {
628 if(!X509_check_issued(ca, ca) == X509_V_OK)
629 {
630 /* Restart with issuer as subject */
631 cert = ca;
632 continue;
633 }
634 /* Final self-signed element, skip ta_signed() check. */
635 cert = 0;
636 }
637 else
638 matched = -1;
e682570f 639 }
880a1e77
JH
640 else if(matched == MATCHED_CERT)
641 {
642 if(!wrap_cert(dane, ca, depth))
643 matched = -1;
e682570f 644 }
880a1e77
JH
645 else if(matched == MATCHED_PKEY)
646 {
647 if( !(takey = X509_get_pubkey(ca))
648 || !wrap_issuer(dane, takey, cert, depth, WRAP_MID))
649 {
650 if(takey)
651 EVP_PKEY_free(takey);
652 else
653 DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
654 matched = -1;
655 }
e682570f 656 }
880a1e77
JH
657 break;
658 }
e682570f 659
880a1e77
JH
660/* Shallow free the duplicated input untrusted chain. */
661sk_X509_free(in);
e682570f 662
880a1e77
JH
663/*
664 * When the loop exits, if "cert" is set, it is not self-signed and has
665 * no issuer in the chain, we check for a possible signature via a DNS
666 * obtained TA cert or public key.
667 */
668if(matched == 0 && cert)
669 matched = ta_signed(dane, cert, depth);
e682570f 670
880a1e77 671return matched;
e682570f
TL
672}
673
880a1e77
JH
674static int
675check_end_entity(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert)
e682570f 676{
880a1e77
JH
677int matched;
678
679matched = match(dane->selectors[SSL_DANE_USAGE_FIXED_LEAF], cert, 0);
680if(matched > 0)
681 if(!ctx->chain)
682 if( (ctx->chain = sk_X509_new_null())
683 && sk_X509_push(ctx->chain, cert))
684 CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
685 else
686 {
687 DANEerr(DANE_F_CHECK_END_ENTITY, ERR_R_MALLOC_FAILURE);
688 return -1;
689 }
690return matched;
e682570f
TL
691}
692
880a1e77
JH
693static int
694match_name(const char *certid, ssl_dane *dane)
e682570f 695{
880a1e77
JH
696int multi = dane->multi;
697dane_host_list hosts;
698
699for(hosts = dane->hosts; hosts; hosts = hosts->next)
700 {
701 int match_subdomain = 0;
702 const char *domain = hosts->value;
703 const char *parent;
704 int idlen;
705 int domlen;
706
707 if(*domain == '.' && domain[1] != '\0')
708 {
709 ++domain;
710 match_subdomain = 1;
e682570f 711 }
880a1e77
JH
712
713 /*
714 * Sub-domain match: certid is any sub-domain of hostname.
715 */
716 if(match_subdomain)
717 if( (idlen = strlen(certid)) > (domlen = strlen(domain)) + 1
718 && certid[idlen - domlen - 1] == '.'
719 && !strcasecmp(certid + (idlen - domlen), domain))
720 return 1;
721 else
722 continue;
723
724 /*
725 * Exact match and initial "*" match. The initial "*" in a certid
726 * matches one (if multi is false) or more hostname components under
727 * the condition that the certid contains multiple hostname components.
728 */
729 if( !strcasecmp(certid, domain)
730 || ( certid[0] == '*' && certid[1] == '.' && certid[2] != 0
731 && (parent = strchr(domain, '.')) != 0
732 && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent))
733 && strcasecmp(multi ? parent + domlen - idlen : parent, certid+1) == 0))
734 return 1;
735 }
736return 0;
e682570f
TL
737}
738
880a1e77
JH
739static char *
740check_name(char *name, int len)
e682570f 741{
880a1e77
JH
742char *cp = name + len;
743
744while(len > 0 && !*--cp)
745 --len; /* Ignore trailing NULs */
746if(len <= 0)
747 return 0;
748for(cp = name; *cp; cp++)
749 {
750 char c = *cp;
751 if (!((c >= 'a' && c <= 'z') ||
752 (c >= '0' && c <= '9') ||
753 (c >= 'A' && c <= 'Z') ||
754 (c == '.' || c == '-') ||
755 (c == '*')))
756 return 0; /* Only LDH, '.' and '*' */
757 }
758if(cp - name != len) /* Guard against internal NULs */
759 return 0;
760return name;
e682570f
TL
761}
762
880a1e77
JH
763static char *
764parse_dns_name(const GENERAL_NAME *gn)
e682570f 765{
880a1e77
JH
766if(gn->type != GEN_DNS)
767 return 0;
768if(ASN1_STRING_type(gn->d.ia5) != V_ASN1_IA5STRING)
769 return 0;
770return check_name((char *) ASN1_STRING_data(gn->d.ia5),
771 ASN1_STRING_length(gn->d.ia5));
e682570f
TL
772}
773
880a1e77
JH
774static char *
775parse_subject_name(X509 *cert)
e682570f 776{
880a1e77
JH
777X509_NAME *name = X509_get_subject_name(cert);
778X509_NAME_ENTRY *entry;
779ASN1_STRING *entry_str;
780unsigned char *namebuf;
781int nid = NID_commonName;
782int len;
783int i;
784
785if(!name || (i = X509_NAME_get_index_by_NID(name, nid, -1)) < 0)
786 return 0;
787if(!(entry = X509_NAME_get_entry(name, i)))
788 return 0;
789if(!(entry_str = X509_NAME_ENTRY_get_data(entry)))
790 return 0;
791
792if((len = ASN1_STRING_to_UTF8(&namebuf, entry_str)) < 0)
793 return 0;
794if(len <= 0 || check_name((char *) namebuf, len) == 0)
795 {
796 OPENSSL_free(namebuf);
797 return 0;
798 }
799return (char *) namebuf;
e682570f
TL
800}
801
880a1e77
JH
802static int
803name_check(ssl_dane *dane, X509 *cert)
e682570f 804{
880a1e77
JH
805int matched = 0;
806BOOL got_altname = FALSE;
807GENERAL_NAMES *gens;
808
809gens = X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0);
810if(gens)
811 {
812 int n = sk_GENERAL_NAME_num(gens);
813 int i;
814
815 for(i = 0; i < n; ++i)
816 {
817 const GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
818 const char *certid;
819
820 if(gn->type != GEN_DNS)
821 continue;
822 got_altname = TRUE;
823 certid = parse_dns_name(gn);
824 if(certid && *certid)
825 {
826 if((matched = match_name(certid, dane)) == 0)
827 continue;
828 if(!(dane->mhost = OPENSSL_strdup(certid)))
829 matched = -1;
830 break;
831 }
e682570f 832 }
880a1e77
JH
833 GENERAL_NAMES_free(gens);
834 }
835
836/*
837 * XXX: Should the subjectName be skipped when *any* altnames are present,
838 * or only when DNS altnames are present?
839 */
840if(got_altname)
841 {
842 char *certid = parse_subject_name(cert);
843 if(certid != 0 && *certid && (matched = match_name(certid, dane)) != 0)
844 dane->mhost = certid; /* Already a copy */
845 }
846return matched;
e682570f
TL
847}
848
880a1e77
JH
849static int
850verify_chain(X509_STORE_CTX *ctx)
e682570f 851{
880a1e77
JH
852dane_selector_list issuer_rrs;
853dane_selector_list leaf_rrs;
854int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb;
855int ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
856SSL *ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
857ssl_dane *dane = SSL_get_ex_data(ssl, dane_idx);
858X509 *cert = ctx->cert; /* XXX: accessor? */
859int matched = 0;
860int chain_length = sk_X509_num(ctx->chain);
861
862issuer_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_ISSUER];
863leaf_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_LEAF];
864ctx->verify = dane->verify;
865
866if((matched = name_check(dane, cert)) < 0)
867 {
868 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
869 return 0;
870 }
871
872if(!matched)
873 {
874 ctx->error_depth = 0;
875 ctx->current_cert = cert;
876 X509_STORE_CTX_set_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH);
877 if(!cb(0, ctx))
878 return 0;
879 }
880matched = 0;
881
882/*
883 * Satisfy at least one usage 0 or 1 constraint, unless we've already
884 * matched a usage 2 trust anchor.
885 *
886 * XXX: internal_verify() doesn't callback with top certs that are not
887 * self-issued. This should be fixed in a future OpenSSL.
888 */
889if(dane->roots && sk_X509_num(dane->roots))
890 {
891#ifndef NO_CALLBACK_WORKAROUND
892 X509 *top = sk_X509_value(ctx->chain, dane->depth);
893
894 if(X509_check_issued(top, top) != X509_V_OK)
895 {
896 ctx->error_depth = dane->depth;
897 ctx->current_cert = top;
898 if(!cb(1, ctx))
899 return 0;
900 }
901#endif
902 /* Pop synthetic trust-anchor ancestors off the chain! */
903 while (--chain_length > dane->depth)
904 X509_free(sk_X509_pop(ctx->chain));
905 }
906else if(issuer_rrs || leaf_rrs)
907 {
908 int n = chain_length;
909
910 /*
911 * Check for an EE match, then a CA match at depths > 0, and
912 * finally, if the EE cert is self-issued, for a depth 0 CA match.
913 */
914 if(leaf_rrs)
915 matched = match(leaf_rrs, cert, 0);
916 while(!matched && issuer_rrs && --n >= 0)
917 {
918 X509 *xn = sk_X509_value(ctx->chain, n);
919
920 if(n > 0 || X509_check_issued(xn, xn) == X509_V_OK)
921 matched = match(issuer_rrs, xn, n);
e682570f
TL
922 }
923
880a1e77
JH
924 if(matched < 0)
925 {
926 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
927 return 0;
e682570f 928 }
e682570f 929
880a1e77
JH
930 if(!matched)
931 {
932 ctx->current_cert = cert;
933 ctx->error_depth = 0;
934 X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_UNTRUSTED);
935 if(!cb(0, ctx))
936 return 0;
e682570f 937 }
880a1e77 938 }
e682570f 939
880a1e77 940return ctx->verify(ctx);
e682570f
TL
941}
942
880a1e77
JH
943static int
944verify_cert(X509_STORE_CTX *ctx, void *unused_ctx)
e682570f 945{
880a1e77
JH
946static int ssl_idx = -1;
947SSL *ssl;
948ssl_dane *dane;
949int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb;
950int matched;
951X509 *cert = ctx->cert; /* XXX: accessor? */
952
953if(ssl_idx < 0)
954 ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
955if(dane_idx < 0)
956 {
957 DANEerr(DANE_F_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
958 return -1;
959 }
960
961ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
962if(!(dane = SSL_get_ex_data(ssl, dane_idx)) || !cert)
963 return X509_verify_cert(ctx);
964
965if(dane->selectors[SSL_DANE_USAGE_FIXED_LEAF])
966 {
967 if((matched = check_end_entity(ctx, dane, cert)) > 0)
968 {
969 ctx->error_depth = 0;
970 ctx->current_cert = cert;
971 return cb(1, ctx);
e682570f 972 }
880a1e77
JH
973 if(matched < 0)
974 {
975 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
976 return -1;
e682570f 977 }
880a1e77 978 }
e682570f 979
880a1e77
JH
980if(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA])
981 {
982 if((matched = set_trust_anchor(ctx, dane, cert)) < 0)
983 {
984 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
985 return -1;
e682570f 986 }
880a1e77
JH
987 if(matched)
988 {
e682570f 989 /*
880a1e77
JH
990 * Check that setting the untrusted chain updates the expected
991 * structure member at the expected offset.
e682570f 992 */
880a1e77
JH
993 X509_STORE_CTX_trusted_stack(ctx, dane->roots);
994 X509_STORE_CTX_set_chain(ctx, dane->chain);
995 OPENSSL_assert(ctx->untrusted == dane->chain);
996 }
997 }
e682570f 998
880a1e77
JH
999/*
1000 * Name checks and usage 0/1 constraint enforcement are delayed until
1001 * X509_verify_cert() builds the full chain and calls our verify_chain()
1002 * wrapper.
1003 */
1004dane->verify = ctx->verify;
1005ctx->verify = verify_chain;
1006
1007return X509_verify_cert(ctx);
e682570f
TL
1008}
1009
880a1e77
JH
1010static dane_list
1011list_alloc(size_t vsize)
e682570f 1012{
880a1e77
JH
1013void *value = (void *) OPENSSL_malloc(vsize);
1014dane_list l;
1015
1016if(!value)
1017 {
1018 DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
1019 return 0;
1020 }
1021if(!(l = (dane_list) OPENSSL_malloc(sizeof(*l))))
1022 {
1023 OPENSSL_free(value);
1024 DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
1025 return 0;
1026 }
1027l->next = 0;
1028l->value = value;
1029return l;
e682570f
TL
1030}
1031
880a1e77
JH
1032static void
1033list_free(void *list, void (*f)(void *))
e682570f 1034{
880a1e77
JH
1035dane_list head;
1036dane_list next;
1037
1038for(head = (dane_list) list; head; head = next)
1039 {
1040 next = head->next;
1041 if (f && head->value)
1042 f(head->value);
1043 OPENSSL_free(head);
1044 }
e682570f
TL
1045}
1046
880a1e77
JH
1047static void
1048dane_mtype_free(void *p)
e682570f 1049{
880a1e77
JH
1050list_free(((dane_mtype) p)->data, OPENSSL_freeFunc);
1051OPENSSL_free(p);
e682570f
TL
1052}
1053
880a1e77
JH
1054static void
1055dane_selector_free(void *p)
e682570f 1056{
880a1e77
JH
1057list_free(((dane_selector) p)->mtype, dane_mtype_free);
1058OPENSSL_free(p);
e682570f
TL
1059}
1060
880a1e77
JH
1061void
1062DANESSL_cleanup(SSL *ssl)
e682570f 1063{
880a1e77
JH
1064ssl_dane *dane;
1065int u;
1066
1067if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
1068 return;
1069(void) SSL_set_ex_data(ssl, dane_idx, 0);
1070
1071if(dane->hosts)
1072 list_free(dane->hosts, OPENSSL_freeFunc);
1073if(dane->mhost)
1074 OPENSSL_free(dane->mhost);
1075for(u = 0; u <= SSL_DANE_USAGE_LAST; ++u)
1076 if(dane->selectors[u])
1077 list_free(dane->selectors[u], dane_selector_free);
1078if(dane->pkeys)
1079 list_free(dane->pkeys, pkey_free);
1080if(dane->certs)
1081 list_free(dane->certs, cert_free);
1082if(dane->roots)
1083 sk_X509_pop_free(dane->roots, X509_free);
1084if(dane->chain)
1085 sk_X509_pop_free(dane->chain, X509_free);
1086OPENSSL_free(dane);
e682570f
TL
1087}
1088
880a1e77
JH
1089static dane_host_list
1090host_list_init(const char **src)
e682570f 1091{
880a1e77
JH
1092dane_host_list head = NULL;
1093
1094while(*src)
1095 {
1096 dane_host_list elem = (dane_host_list) OPENSSL_malloc(sizeof(*elem));
1097 if(!elem)
1098 {
1099 list_free(head, OPENSSL_freeFunc);
1100 return 0;
e682570f 1101 }
880a1e77
JH
1102 elem->value = OPENSSL_strdup(*src++);
1103 LINSERT(head, elem);
1104 }
1105return head;
e682570f
TL
1106}
1107
880a1e77
JH
1108int
1109DANESSL_add_tlsa(SSL *ssl, uint8_t usage, uint8_t selector, const char *mdname,
1110 unsigned const char *data, size_t dlen)
e682570f 1111{
880a1e77
JH
1112ssl_dane *dane;
1113dane_selector_list s = 0;
1114dane_mtype_list m = 0;
1115dane_data_list d = 0;
1116dane_cert_list xlist = 0;
1117dane_pkey_list klist = 0;
1118const EVP_MD *md = 0;
1119
1120if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
1121 {
1122 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_DANE_INIT);
1123 return -1;
1124 }
1125
1126if(usage > SSL_DANE_USAGE_LAST)
1127 {
1128 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_USAGE);
1129 return 0;
1130 }
1131if(selector > SSL_DANE_SELECTOR_LAST)
1132 {
1133 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_SELECTOR);
1134 return 0;
1135 }
1136if(mdname && !(md = EVP_get_digestbyname(mdname)))
1137 {
1138 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DIGEST);
1139 return 0;
1140 }
1141if(!data)
1142 {
1143 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_NULL_DATA);
1144 return 0;
1145 }
1146if(mdname && dlen != EVP_MD_size(md))
1147 {
1148 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DATA_LENGTH);
1149 return 0;
1150 }
1151
1152if(!mdname)
1153 {
1154 X509 *x = 0;
1155 EVP_PKEY *k = 0;
1156 const unsigned char *p = data;
e682570f
TL
1157
1158#define xklistinit(lvar, ltype, var, freeFunc) do { \
880a1e77
JH
1159 (lvar) = (ltype) OPENSSL_malloc(sizeof(*(lvar))); \
1160 if (!(lvar)) { \
1161 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, ERR_R_MALLOC_FAILURE); \
1162 freeFunc((var)); \
1163 return 0; \
1164 } \
1165 (lvar)->next = 0; \
1166 lvar->value = var; \
1167 } while (0)
e682570f 1168#define xkfreeret(ret) do { \
880a1e77
JH
1169 if (xlist) list_free(xlist, cert_free); \
1170 if (klist) list_free(klist, pkey_free); \
1171 return (ret); \
1172 } while (0)
1173
1174 switch(selector)
1175 {
1176 case SSL_DANE_SELECTOR_CERT:
1177 if(!d2i_X509(&x, &p, dlen) || dlen != p - data)
1178 {
1179 if (x)
1180 X509_free(x);
1181 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT);
1182 return 0;
1183 }
1184 k = X509_get_pubkey(x);
1185 EVP_PKEY_free(k);
1186 if(!k)
1187 {
1188 X509_free(x);
1189 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT_PKEY);
1190 return 0;
1191 }
1192 if(usage == SSL_DANE_USAGE_TRUSTED_CA)
1193 xklistinit(xlist, dane_cert_list, x, X509_free);
1194 break;
1195
1196 case SSL_DANE_SELECTOR_SPKI:
1197 if(!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data)
1198 {
1199 if(k)
1200 EVP_PKEY_free(k);
1201 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_PKEY);
1202 return 0;
1203 }
1204 if(usage == SSL_DANE_USAGE_TRUSTED_CA)
1205 xklistinit(klist, dane_pkey_list, k, EVP_PKEY_free);
1206 break;
e682570f 1207 }
880a1e77
JH
1208 }
1209
1210/* Find insertion point and don't add duplicate elements. */
1211for(s = dane->selectors[usage]; s; s = s->next)
1212 if(s->value->selector == selector)
1213 for(m = s->value->mtype; m; m = m->next)
1214 if(m->value->md == md)
1215 for(d = m->value->data; d; d = d->next)
1216 if( d->value->datalen == dlen
1217 && memcmp(d->value->data, data, dlen) == 0)
1218 xkfreeret(1);
1219
1220if(!(d = (dane_data_list) list_alloc(sizeof(*d->value) + dlen)))
1221 xkfreeret(0);
1222d->value->datalen = dlen;
1223memcpy(d->value->data, data, dlen);
1224if(!m)
1225 {
1226 if(!(m = (dane_mtype_list) list_alloc(sizeof(*m->value))))
1227 {
1228 list_free(d, OPENSSL_freeFunc);
1229 xkfreeret(0);
e682570f 1230 }
880a1e77
JH
1231 m->value->data = 0;
1232 if((m->value->md = md) != 0)
1233 m->value->mdlen = dlen;
1234 if(!s)
1235 {
1236 if(!(s = (dane_selector_list) list_alloc(sizeof(*s->value))))
1237 {
1238 list_free(m, dane_mtype_free);
1239 xkfreeret(0);
1240 }
1241 s->value->mtype = 0;
1242 s->value->selector = selector;
1243 LINSERT(dane->selectors[usage], s);
1244 }
1245 LINSERT(s->value->mtype, m);
1246 }
1247LINSERT(m->value->data, d);
1248
1249if(xlist)
1250 LINSERT(dane->certs, xlist);
1251else if(klist)
1252 LINSERT(dane->pkeys, klist);
1253++dane->count;
1254return 1;
e682570f
TL
1255}
1256
880a1e77
JH
1257int
1258DANESSL_init(SSL *ssl, const char *sni_domain, const char **hostnames)
e682570f 1259{
880a1e77
JH
1260ssl_dane *dane;
1261int i;
e682570f 1262#ifdef OPENSSL_INTERNAL
880a1e77 1263SSL_CTX *sctx = SSL_get_SSL_CTX(ssl);
e682570f 1264
880a1e77
JH
1265if(sctx->app_verify_callback != verify_cert)
1266 {
1267 DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_SCTX_INIT);
1268 return -1;
1269 }
e682570f 1270#else
880a1e77
JH
1271if(dane_idx < 0)
1272 {
1273 DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_LIBRARY_INIT);
1274 return -1;
1275 }
e682570f
TL
1276#endif
1277
880a1e77
JH
1278if(sni_domain && !SSL_set_tlsext_host_name(ssl, sni_domain))
1279 return 0;
e682570f 1280
880a1e77
JH
1281if(!(dane = (ssl_dane *) OPENSSL_malloc(sizeof(ssl_dane))))
1282 {
1283 DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
1284 return 0;
1285 }
1286if(!SSL_set_ex_data(ssl, dane_idx, dane))
1287 {
1288 DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
1289 OPENSSL_free(dane);
1290 return 0;
1291 }
1292
1293dane->pkeys = 0;
1294dane->certs = 0;
1295dane->chain = 0;
1296dane->roots = 0;
1297dane->depth = -1;
1298dane->mhost = 0; /* Future SSL control interface */
1299dane->multi = 0; /* Future SSL control interface */
1300dane->count = 0;
1301
1302for(i = 0; i <= SSL_DANE_USAGE_LAST; ++i)
1303 dane->selectors[i] = 0;
1304
1305if(hostnames && !(dane->hosts = host_list_init(hostnames)))
1306 {
1307 DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
1308 DANESSL_cleanup(ssl);
1309 return 0;
1310 }
1311
1312return 1;
e682570f
TL
1313}
1314
880a1e77
JH
1315int
1316DANESSL_CTX_init(SSL_CTX *ctx)
e682570f 1317{
880a1e77
JH
1318if(dane_idx >= 0)
1319 {
1320 SSL_CTX_set_cert_verify_callback(ctx, verify_cert, 0);
1321 return 1;
1322 }
1323DANEerr(DANE_F_SSL_CTX_DANE_INIT, DANE_R_LIBRARY_INIT);
1324return -1;
e682570f
TL
1325}
1326
880a1e77
JH
1327static int
1328init_once(volatile int *value, int (*init)(void), void (*postinit)(void))
e682570f 1329{
880a1e77
JH
1330int wlock = 0;
1331
1332CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
1333if(*value < 0)
1334 {
1335 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
1336 CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
1337 wlock = 1;
1338 if(*value < 0)
1339 {
1340 *value = init();
1341 if(postinit)
1342 postinit();
e682570f 1343 }
880a1e77
JH
1344 }
1345if (wlock)
1346 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
1347else
1348 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
1349return *value;
e682570f
TL
1350}
1351
880a1e77
JH
1352static void
1353dane_init(void)
e682570f 1354{
880a1e77
JH
1355/*
1356 * Store library id in zeroth function slot, used to locate the library
1357 * name. This must be done before we load the error strings.
1358 */
e682570f 1359#ifndef OPENSSL_NO_ERR
880a1e77
JH
1360dane_str_functs[0].error |= ERR_PACK(err_lib_dane, 0, 0);
1361ERR_load_strings(err_lib_dane, dane_str_functs);
1362ERR_load_strings(err_lib_dane, dane_str_reasons);
e682570f
TL
1363#endif
1364
880a1e77
JH
1365/*
1366 * Register SHA-2 digests, if implemented and not already registered.
1367 */
e682570f 1368#if defined(LN_sha256) && defined(NID_sha256) && !defined(OPENSSL_NO_SHA256)
880a1e77
JH
1369if(!EVP_get_digestbyname(LN_sha224)) EVP_add_digest(EVP_sha224());
1370if(!EVP_get_digestbyname(LN_sha256)) EVP_add_digest(EVP_sha256());
e682570f
TL
1371#endif
1372#if defined(LN_sha512) && defined(NID_sha512) && !defined(OPENSSL_NO_SHA512)
880a1e77
JH
1373if(!EVP_get_digestbyname(LN_sha384)) EVP_add_digest(EVP_sha384());
1374if(!EVP_get_digestbyname(LN_sha512)) EVP_add_digest(EVP_sha512());
e682570f
TL
1375#endif
1376
880a1e77
JH
1377/*
1378 * Register an SSL index for the connection-specific ssl_dane structure.
1379 * Using a separate index makes it possible to add DANE support to
1380 * existing OpenSSL releases that don't have a suitable pointer in the
1381 * SSL structure.
1382 */
1383dane_idx = SSL_get_ex_new_index(0, 0, 0, 0, 0);
e682570f
TL
1384}
1385
880a1e77
JH
1386int
1387DANESSL_library_init(void)
e682570f 1388{
880a1e77
JH
1389if(err_lib_dane < 0)
1390 init_once(&err_lib_dane, ERR_get_next_error_library, dane_init);
e682570f
TL
1391
1392#if defined(LN_sha256)
880a1e77
JH
1393/* No DANE without SHA256 support */
1394if(dane_idx >= 0 && EVP_get_digestbyname(LN_sha256) != 0)
1395 return 1;
e682570f 1396#endif
880a1e77
JH
1397
1398DANEerr(DANE_F_SSL_DANE_LIBRARY_INIT, DANE_R_DANE_SUPPORT);
1399return 0;
e682570f
TL
1400}
1401
1402#endif /* OPENSSL_VERSION_NUMBER */
880a1e77
JH
1403/* vi: aw ai sw=2
1404*/